Polymeric Membrane for CO2/CH4 Separation


Polymeric Membrane for CO2/CH4 Separation

N. Sazali, W.N.W. Salleh, A.F. Ismail

This chapter presents a critical overview of polymeric membrane applications for CO2/CH4 separation. Comparative summary of availability and practice of different gas separation methods are outlined to give a state-of-the-art view of this technology. Detailed discussions on polymer-based membranes are also discussed in this work, highlighting the mechanism of selective gas permeation through the membranes. Future direction is discussed for possible new experimental design to maximize the membrane performances in separation of CO2/CH4.

Polymeric Membranes, Gas Separation, Membrane Technology, CO2 Capture, Methane

Published online , 40 pages

Citation: N. Sazali, W.N.W. Salleh, A.F. Ismail, Polymeric Membrane for CO2/CH4 Separation, Materials Research Foundations, Vol. 113, pp 203-242, 2021

DOI: https://doi.org/10.21741/9781644901632-7

Part of the book on Polymeric Membranes for Water Purification and Gas Separation

[1] N.C. Mat, G.G. Lipscomb, Membrane process optimization for carbon capture, Int. J. Greenhouse Gas Control 62 (2017) 1-12. https://doi.org/10.1016/j.ijggc.2017.04.002
[2] M. Rezakazemi, M. Sadrzadeh, T. Matsuura, Thermally stable polymers for advanced high-performance gas separation membranes, Prog. Energy Combust. Sci. 66 (2018) 1-41. https://doi.org/10.1016/j.pecs.2017.11.002
[3] Y. Han, W.S.W. Ho, Recent advances in polymeric membranes for CO2 capture, Chin. J. Chem. Eng. 26 (2018) 2238-2254. https://doi.org/10.1016/j.cjche.2018.07.010
[4] J. Liu, X. Hou, H.B. Park, H. Lin, High-Performance Polymers for Membrane CO2/N2 Separation, Chem. – Eur. J. 22 (2016) 15980-15990. https://doi.org/10.1002/chem.201603002
[5] L. Yang, Z. Tian, X. Zhang, X. Wu, Y. Wu, Y. Wang, D. Peng, S. Wang, H. Wu, Z. Jiang, Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into polymers of intrinsic microporosity membrane, J. Membr. Sci. 543 (2017) 69-78. https://doi.org/10.1016/j.memsci.2017.08.050
[6] H. Shabgard, M.J. Allen, N. Sharifi, S.P. Benn, A. Faghri, T.L. Bergman, Heat pipe heat exchangers and heat sinks: Opportunities, challenges, applications, analysis, and state of the art, Int. J. Heat Mass Transfer 89 (2015) 138-158. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.020
[7] S. Haider, A. Lindbråthen, J.A. Lie, I.C.T. Andersen, M.-B. Hägg, CO2 separation with carbon membranes in high pressure and elevated temperature applications, Sep. Purif. Technol. 190 (2018) 177-189. https://doi.org/10.1016/j.seppur.2017.08.038
[8] N. Sazali, W.N.W. Salleh, A.F. Ismail, N.H. Ismail, F. Aziz, N. Yusof, H. Hasbullah, Effect of stabilization temperature during pyrolysis process of P84 co-polyimide-based tubular carbon membrane for H2/N2 and He/N2 separations, IOP Conf. Ser.: Mater. Sci. Eng. 342 (2018) 012027. https://doi.org/10.1088/1757-899X/342/1/012027
[9] N.H. Ismail, W.N.W. Salleh, N. Sazali, A.F. Ismail, N. Yusof, F. Aziz, Disk supported carbon membrane via spray coating method: Effect of carbonization temperature and atmosphere, Sep. Purif. Technol. 195 (2018) 295-304. https://doi.org/10.1016/j.seppur.2017.12.032
[10] K. Hunger, N. Schmeling, H.B.T. Jeazet, C. Janiak, C. Staudt, K. Kleinermanns, Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation, Membranes 2 (2012) 727-763. https://doi.org/10.3390/membranes2040727
[11] W.J. Lau, C.S. Ong, N.A.H.M. Nordin, N.A.A. Sani, N.M. Mokhtar, R.J. Gohari, D. Emadzadeh, A.F. Ismail, Surface Modification of Polymeric Membranes for Various Separation Processes, in: M. Gürsoy, M. Karaman (Eds.), Surf. Treat. Biol., Chem., Phys. Appl., Wiley-VCH, Weinheim, 2017, pp. 115-180. https://doi.org/10.1002/9783527698813.ch4
[12] X.Q. Cheng, Z.X. Wang, X. Jiang, T. Li, C.H. Lau, Z. Guo, J. Ma, L. Shao, Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials, Prog. Mater. Sci. 92 (2018) 258-283. https://doi.org/10.1016/j.pmatsci.2017.10.006
[13] S. Hasebe, S. Aoyama, M. Tanaka, H. Kawakami, CO2 separation of polymer membranes containing silica nanoparticles with gas permeable nano-space, J. Membr. Sci. 536 (2017) 148-155. https://doi.org/10.1016/j.memsci.2017.05.005
[14] S. Yuan, F. Shen, C.K. Chua, K. Zhou, Polymeric composites for powder-based additive manufacturing: Materials and applications, Prog. Polym. Sci. 91 (2019) 141-168. https://doi.org/10.1016/j.progpolymsci.2018.11.001
[15] X. Wang, E.N. Kalali, J.-T. Wan, D.-Y. Wang, Carbon-family materials for flame retardant polymeric materials, Prog. Polym. Sci. 69 (2017) 22-46. https://doi.org/10.1016/j.progpolymsci.2017.02.001
[16] B. Notario, J. Pinto, M.A. Rodriguez-Perez, Nanoporous polymeric materials: A new class of materials with enhanced properties, Prog. Mater. Sci. 78-79 (2016) 93-139. https://doi.org/10.1016/j.pmatsci.2016.02.002
[17] O. Heinz, M. Aghajani, A.R. Greenberg, Y. Ding, Surface-patterning of polymeric membranes: fabrication and performance, Curr. Opin. Chem. Eng. 20 (2018) 1-12. https://doi.org/10.1016/j.coche.2018.01.008
[18] C. Castel, L. Wang, J.P. Corriou, E. Favre, Steady vs unsteady membrane gas separation processes, Chem. Eng. Sci. 183 (2018) 136-147. https://doi.org/10.1016/j.ces.2018.03.013
[19] M. Takht Ravanchi, T. Kaghazchi, A. Kargari, Application of membrane separation processes in petrochemical industry: a review, Desalination 235 (2009) 199-244. https://doi.org/10.1016/j.desal.2007.10.042
[20] H. Nakajima, P. Dijkstra, K. Loos, The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed, Polymers 9 (2017) 523. https://doi.org/10.3390/polym9100523
[21] A.M. Abdalla, S. Hossain, O.B. Nisfindy, A.T. Azad, M. Dawood, A.K. Azad, Hydrogen production, storage, transportation and key challenges with applications: A review, Energy Convers. Manage. 165 (2018) 602-627. https://doi.org/10.1016/j.enconman.2018.03.088
[22] R. Bounaceur, E. Berger, M. Pfister, A.A. Ramirez Santos, E. Favre, Rigorous variable permeability modelling and process simulation for the design of polymeric membrane gas separation units: MEMSIC simulation tool, J. Membr. Sci. 523 (2017) 77-91. https://doi.org/10.1016/j.memsci.2016.09.011
[23] M.W. Anjum, F. de Clippel, J. Didden, A.L. Khan, S. Couck, G.V. Baron, J.F.M. Denayer, B.F. Sels, I.F.J. Vankelecom, Polyimide mixed matrix membranes for CO2 separations using carbon–silica nanocomposite fillers, J. Membr. Sci. 495 (2015) 121-129. https://doi.org/10.1016/j.memsci.2015.08.006
[24] E.P. Favvas, F.K. Katsaros, S.K. Papageorgiou, A.A. Sapalidis, A.C. Mitropoulos, A review of the latest development of polyimide based membranes for CO2 separations, React. Funct. Polym. 120 (2017) 104-130. https://doi.org/10.1016/j.reactfunctpolym.2017.09.002
[25] M. Lanč, P. Sysel, M. Šoltys, F. Štěpánek, K. Fónod, M. Klepić, O. Vopička, M. Lhotka, P. Ulbrich, K. Friess, Synthesis, preparation and characterization of novel hyperbranched 6FDA-TTM based polyimide membranes for effective CO2 separation: Effect of embedded mesoporous silica particles and siloxane linkages, Polymer 144 (2018) 33-42. https://doi.org/10.1016/j.polymer.2018.04.033
[26] C. Zhang, P. Li, B. Cao, Decarboxylation crosslinking of polyimides with high CO2/CH4 separation performance and plasticization resistance, J. Membr. Sci. 528 (2017) 206-216. https://doi.org/10.1016/j.memsci.2017.01.008
[27] I. Hossain, A.Z. Al Munsur, O. Choi, T.H. Kim, Bisimidazolium PEG-mediated crosslinked 6FDA-durene polyimide membranes for CO2 separation, Sep. Purif. Technol. 224 (2019) 180-188. https://doi.org/10.1016/j.seppur.2019.05.014
[28] C. Atalay-Oral, M. Tatlier, Effects of structural properties of fillers on performances of Matrimid® 5218 mixed matrix membranes, Sep. Purif. Technol. 236 (2020) 116277. https://doi.org/10.1016/j.seppur.2019.116277
[29] R. Castro-Muñoz, V. Fíla, V. Martin-Gil, C. Muller, Enhanced CO2 permeability in Matrimid® 5218 mixed matrix membranes for separating binary CO2/CH4 mixtures, Sep. Purif. Technol. 210 (2019) 553-562. https://doi.org/10.1016/j.seppur.2018.08.046
[30] A.E. Amooghin, M. Omidkhah, A. Kargari, The effects of aminosilane grafting on NaY zeolite–Matrimid®5218 mixed matrix membranes for CO2/CH4 separation, J. Membr. Sci. 490 (2015) 364-379. https://doi.org/10.1016/j.memsci.2015.04.070
[31] A.E. Amooghin, M. Omidkhah, H. Sanaeepur, A. Kargari, Preparation and characterization of Ag+ ion-exchanged zeolite-Matrimid®5218 mixed matrix membrane for CO2/CH4 separation, J. Energy Chem. (2016). https://doi.org/10.1016/j.jechem.2016.02.004
[32] S. Abdollahi, H.R. Mortaheb, A. Ghadimi, M. Esmaeili, Improvement in separation performance of Matrimid®5218 with encapsulated [Emim][Tf2N] in a heterogeneous structure: CO2/CH4 separation, J. Membr. Sci. 557 (2018) 38-48. https://doi.org/10.1016/j.memsci.2018.04.026
[33] H. Rajati, A.H. Navarchian, S. Tangestaninejad, Preparation and characterization of mixed matrix membranes based on Matrimid/PVDF blend and MIL-101(Cr) as filler for CO2/CH4 separation, Chem. Eng. Sci. 185 (2018) 92-104. https://doi.org/10.1016/j.ces.2018.04.006
[34] H. Julian, I.G. Wenten, Polysulfone membranes for CO2/CH4 separation: State of the art, IOSR J. Eng. 2 (2012) 484-495. https://doi.org/10.9790/3021-0203484495
[35] L.G. Tiron, S. Pintilie, M. Vlad, I. Bîrsan, Ș. Baltă, Characterization of Polysulfone Membranes Prepared with Thermally Induced Phase Separation Technique, IOP Conf. Ser.: Mater. Sci. Eng. 209 (2017) 012013. https://doi.org/10.1088/1757-899X/209/1/012013
[36] A. Hatami, I. Salahshoori, N. Rashidi, D. Nasirian, The effect of ZIF-90 particle in Pebax/PSF composite membrane on the transport properties of CO2, CH4 and N2 gases by molecular dynamics simulation method, Chin. J. Chem. Eng. 28 (2020) 2267-2284. https://doi.org/10.1016/j.cjche.2019.12.011
[37] M.B. Mohamad, Y.Y. Fong, A. Shariff, Gas Separation of Carbon Dioxide from Methane Using Polysulfone Membrane Incorporated with Zeolite-T, Procedia Eng. 148 (2016) 621-629. https://doi.org/10.1016/j.proeng.2016.06.526
[38] M.S. Suleman, K.K. Lau, Y.F. Yeong, Characterization and Performance Evaluation of PDMS/PSF Membrane for CO2/CH4 Separation under the Effect of Swelling, Procedia Eng. 148 (2016) 176-183. https://doi.org/10.1016/j.proeng.2016.06.525
[39] A.D. Kiadehi, A. Rahimpour, M. Jahanshahi, A.A. Ghoreyshi, Novel carbon nano-fibers (CNF)/polysulfone (PSf) mixed matrix membranes for gas separation, J. Ind. Eng. Chem. 22 (2015) 199-207. https://doi.org/10.1016/j.jiec.2014.07.011
[40] A. Rusli, N.S.M. Raffi, H. Ismail, Solubility, Miscibility and Processability of Thermosetting Monomers as Reactive Plasticizers of Polyetherimide, Procedia Chem. 19 (2016) 776-781. https://doi.org/10.1016/j.proche.2016.03.084
[41] Z.P. Madzarevic, S. Shahid, K. Nijmeijer, T.J. Dingemans, The role of ortho-, meta- and para-substitutions in the main-chain structure of poly(etherimide)s and the effects on CO2/CH4 gas separation performance, Sep. Purif. Technol. 210 (2019) 242-250. https://doi.org/10.1016/j.seppur.2018.08.006
[42] S. Belhaj Messaoud, A. Takagaki, T. Sugawara, R. Kikuchi, S.T. Oyama, Mixed matrix membranes using SAPO-34/polyetherimide for carbon dioxide/methane separation, Sep. Purif. Technol. 148 (2015) 38-48. https://doi.org/10.1016/j.seppur.2015.04.017
[43] M.Y. Khan, A. Khan, J.K. Adewole, M. Naim, S.I. Basha, M.A. Aziz, Biomass derived carboxylated carbon nanosheets blended polyetherimide membranes for enhanced CO2/CH4 separation, J. Nat. Gas Sci. Eng. 75 (2020) 103156. https://doi.org/10.1016/j.jngse.2020.103156
[44] S. Saimani, M.M. Dal-Cin, A. Kumar, D.M. Kingston, Separation performance of asymmetric membranes based on PEGDa/PEI semi-interpenetrating polymer network in pure and binary gas mixtures of CO2, N2 and CH4, J. Membr. Sci. 362 (2010) 353-359. https://doi.org/10.1016/j.memsci.2010.06.045
[45] N. Azizi, T. Mohammadi, R.M. Behbahani, Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4, J. Nat. Gas Sci. Eng. 37 (2017) 39-51. https://doi.org/10.1016/j.jngse.2016.11.038
[46] Z. Noroozi, O. Bakhtiari, Preparation of amino functionalized titanium oxide nanotubes and their incorporation within Pebax/PEG blended matrix for CO2/CH4 separation, Chem. Eng. Res. Des. 152 (2019) 149-164. https://doi.org/10.1016/j.cherd.2019.09.030
[47] R. Gharibi, A. Ghadimi, H. Yeganeh, B. Sadatnia, M. Gharedaghi, Preparation and evaluation of hybrid organic-inorganic poly(urethane-siloxane) membranes with build-in poly(ethylene glycol) segments for efficient separation of CO2/CH4 and CO2/H2, J. Membr. Sci. 548 (2018) 572-582. https://doi.org/10.1016/j.memsci.2017.11.058
[48] S. Roy, S. Ragunath, Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges, Energies 11 (2018) 2997. https://doi.org/10.3390/en11112997
[49] C. Zhang, L. Fu, Z. Tian, B. Cao, P. Li, Post-crosslinking of triptycene-based Tröger’s base polymers with enhanced natural gas separation performance, J. Membr. Sci. 556 (2018) 277-284. https://doi.org/10.1016/j.memsci.2018.04.013
[50] R. Swaidan, B. Ghanem, E. Litwiller, I. Pinnau, Physical Aging, Plasticization and Their Effects on Gas Permeation in “Rigid” Polymers of Intrinsic Microporosity, Macromolecules 48 (2015) 6553-6561. https://doi.org/10.1021/acs.macromol.5b01581
[51] W. Qiu, C.-C. Chen, L. Xu, L. Cui, D.R. Paul, W.J. Koros, Sub-Tg Cross-Linking of a Polyimide Membrane for Enhanced CO2 Plasticization Resistance for Natural Gas Separation, Macromolecules 44 (2011) 6046-6056. https://doi.org/10.1021/ma201033j
[52] M. Klähn, R. Krishnan, J.M. Phang, F.C.H. Lim, A.M. van Herk, S. Jana, Effect of external and internal plasticization on the glass transition temperature of (Meth)acrylate polymers studied with molecular dynamics simulations and calorimetry, Polymer 179 (2019) 121635. https://doi.org/10.1016/j.polymer.2019.121635
[53] S.A. Stern, Y. Mi, H. Yamamoto, A.K.S. Clair, Structure/permeability relationships of polyimide membranes. Applications to the separation of gas mixtures, J. Polym. Sci., Part B: Polym. Phys. 27 (1989) 1887-1909. https://doi.org/10.1002/polb.1989.090270908
[54] Z. Ahmad, N.A. Al-Awadi, F. Al-Sagheer, Thermal degradation studies in poly(vinyl chloride)/poly(methyl methacrylate) blends, Polym. Degrad. Stab. 93 (2008) 456-465. https://doi.org/10.1016/j.polymdegradstab.2007.11.019
[55] A. Choudhury, A. Balmurulikrishnan, G. Sarkhel, Polyamide 66/EPR-g-MA blends: mechanical modeling and kinetic analysis of thermal degradation, Polym. Adv. Technol., 19 (2008) 1226-1235. https://doi.org/10.1002/pat.1116
[56] P.R. Couchman, Compositional Variation of Glass-Transition Temperatures. 2. Application of the Thermodynamic Theory to Compatible Polymer Blends, Macromolecules 11 (1978) 1156-1161. https://doi.org/10.1021/ma60066a018
[57] Y. Li, X. Yu, H. Li, Q. Guo, Z. Dai, G. Yu, F. Wang, Detailed kinetic modeling of homogeneous H2S-CH4 oxidation under ultra-rich condition for H2 production, Appl. Energy 208 (2017) 905-919. https://doi.org/10.1016/j.apenergy.2017.09.059
[58] L. Yaning, K. Xinting, T. Huiping, W. Jian, Synthesis of Pd-Ag Membranes by Electroless Plating for H2 Separation, Rare Met. Mater. Eng. 46 (2017) 3688-3692. https://doi.org/10.1016/S1875-5372(18)30058-4
[59] E. Lasseuguette, M.C. Ferrari, Polymer Membranes for Sustainable Gas Separation, in: G. Szekely, A. Livingston (Eds.), Sustainable Nanoscale Eng., Elsevier Inc., 2020, pp. 265-296. https://doi.org/10.1016/B978-0-12-814681-1.00010-2
[60] A. Mondal, B. Mandal, Synthesis and characterization of crosslinked poly(vinylalcohol)/poly(allylamine)/2-amino-2-hydroxymethyl-1,3-propanediol/polysulfone composite membrane for CO2/N2 separation, J. Membr. Sci. 446 (2013) 383-394. https://doi.org/10.1016/j.memsci.2013.06.052
[61] J.B. Faisant, A. Aït-Kadi, M. Bousmina, L. Descheˆnes, Morphology, thermomechanical and barrier properties of polypropylene-ethylene vinyl alcohol blends, Polymer, 39 (1998) 533-545. https://doi.org/10.1016/S0032-3861(97)00313-3
[62] M.G. Kamath, S. Fu, A.K. Itta, W. Qiu, G. Liu, R. Swaidan, W.J. Koros, 6FDA-DETDA: DABE polyimide-derived carbon molecular sieve hollow fiber membranes: Circumventing unusual aging phenomena, J. Membr. Sci. 546 (2018) 197-205. https://doi.org/10.1016/j.memsci.2017.10.020
[63] N.H. Ismail, W.N.W. Salleh, N. Sazali, A.F. Ismail, Development and characterization of disk supported carbon membrane prepared by one-step coating-carbonization cycle, J. Ind. Eng. Chem. 57 (2018) 313-321. https://doi.org/10.1016/j.jiec.2017.08.038
[64] N. Sazali, W.N.W. Salleh, N.I. Mahyoun, Z. Harun, K. Kadirgama, Precursor Selection for Carbon Membrane Fabrication: A Review, J. Appl. Membr. Sci. Technol. 22 (2018) 131-144. https://doi.org/10.11113/amst.v22n2.122
[65] N. Sazali, W.N.W. Salleh, A.F. Ismail, N.H. Ismail, K. Kadirgama, A brief review on carbon selective membranes from polymer blends for gas separation performance, Rev. Chem. Eng. 37 (2019) 339-362. https://doi.org/10.1515/revce-2018-0086
[66] W.F. Yong, F.Y. Li, T.S. Chung, Y.W. Tong, Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification, J. Mater. Chem. A 1 (2013) 13914-13925. https://doi.org/10.1039/c3ta13308g
[67] D. Popov, K. Fikiin, B. Stankov, G. Alvarez, M. Youbi-Idrissi, A. Damas, J. Evans, T. Brown, Cryogenic heat exchangers for process cooling and renewable energy storage: A review, Appl. Therm. Eng. 153 (2019) 275-290. https://doi.org/10.1016/j.applthermaleng.2019.02.106
[68] M. Inagaki, N. Ohta, Y. Hishiyama, Aromatic polyimides as carbon precursors, Carbon 61 (2013) 1-21. https://doi.org/10.1016/j.carbon.2013.05.035
[69] O. Salinas, X. Ma, E. Litwiller, I. Pinnau, Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1), J. Membr. Sci. 504 (2016) 133-140. https://doi.org/10.1016/j.memsci.2015.12.052
[70] R.J. Lee, Z.A. Jawad, A.L. Ahmad, J.Q. Ngo, H.B. Chua, Improvement of CO2/N2 separation performance by polymer matrix cellulose acetate butyrate, IOP Conf. Ser.: Mater. Sci. Eng. 206 (2017) 012072. https://doi.org/10.1088/1757-899X/206/1/012072
[71] A. Kaboorani, B. Riedl, P. Blanchet, M. Fellin, O. Hosseinaei, S. Wang, Nanocrystalline cellulose (NCC): A renewable nano-material for polyvinyl acetate (PVA) adhesive, Eur. Polym. J. 48 (2012) 1829-1837. https://doi.org/10.1016/j.eurpolymj.2012.08.008
[72] W.N.W. Salleh, A.F. Ismail, T. Matsuura, M.S. Abdullah, Precursor Selection and Process Conditions in the Preparation of Carbon Membrane for Gas Separation: A Review, Sep. Purif. Rev. 40 (2011) 261-311. https://doi.org/10.1080/15422119.2011.555648
[73] N. Sazali, W.N.W. Salleh, N.A.H.M. Nordin, A.F. Ismail, Matrimid-based carbon tubular membrane: Effect of carbonization environment, J. Ind. Eng. Chem. 32 (2015) 167-171. https://doi.org/10.1016/j.jiec.2015.08.014
[74] W.N.W. Salleh, A.F. Ismail, Fabrication and characterization of PEI/PVP-based carbon hollow fiber membranes for CO2/CH4 and CO2/N2 separation, AIChE J. 58 (2012) 3167-3175. https://doi.org/10.1002/aic.13711
[75] N. Sazali, W.N.W. Salleh, A.F. Ismail, K. Kadirgama, F.E.C. Othman, N.H. Ismail, Impact of stabilization environment and heating rates on P84 co-polyimide/nanocrystaline cellulose carbon membrane for hydrogen enrichment, Int. J. Hydrogen Energy 44 (2018) 20924-20932. https://doi.org/10.1016/j.ijhydene.2018.06.039
[76] M. Hong, E.Y.X. Chen, Chemically recyclable polymers: a circular economy approach to sustainability, Green Chem. 19 (2017) 3692-3706. https://doi.org/10.1039/C7GC01496A
[77] S. Saeidi, N.A.S. Amin, M.R. Rahimpour, Hydrogenation of CO2 to value-added products—A review and potential future developments, J. CO2 Util. 5 (2014) 66-81. https://doi.org/10.1016/j.jcou.2013.12.005
[78] P. Sjöholm, D. Ingham, M. Lehtimäki, L. Perttu-Roiha, H. Goodfellow, H. Torvela, Gas-Cleaning Technology, in: H. Goodfellow, E. Tähti (Eds.), Ind. Vent. Des. Guideb., Academic Press, 2001, pp. 1197-1316. https://doi.org/10.1016/B978-012289676-7/50016-3
[79] H.H. Tseng, C.-T. Wang, G.-L. Zhuang, P. Uchytil, J. Reznickova, K. Setnickova, Enhanced H2/CH4 and H2/CO2 separation by carbon molecular sieve membrane coated on titania modified alumina support: Effects of TiO2 intermediate layer preparation variables on interfacial adhesion, J. Membr. Sci. 510 (2016) 391-404. https://doi.org/10.1016/j.memsci.2016.02.036
[80] A. Jha, A.K. Bhowmick, Thermal degradation and ageing behaviour of novel thermoplastic elastomeric nylon-6/acrylate rubber reactive blends, Polym. Degrad. Stab. 62 (1998) 575-586. https://doi.org/10.1016/S0141-3910(98)00044-5
[81] C. Wang, L. Ling, Y. Huang, Y. Yao, Q. Song, Decoration of porous ceramic substrate with pencil for enhanced gas separation performance of carbon membrane, Carbon 84 (2015) 151-159. https://doi.org/10.1016/j.carbon.2014.12.003
[82] M. Aguilar-Vega, D.R. Paul, Gas transport properties of polycarbonates and polysulfones with aromatic substitutions on the bisphenol connector group, J. Polym. Sci., Part B: Polym. Phys. 31 (1993) 1599-1610. https://doi.org/10.1002/polb.1993.090311116
[83] M. Kiyono, P.J. Williams, W.J. Koros, Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes, J. Membr. Sci. 359 (2010) 2-10. https://doi.org/10.1016/j.memsci.2009.10.019
[84] S.S. Stivala, L. Reich, Structure vs stability in polymer degradation, Polym. Eng. Sci. 20 (1980) 654-661. https://doi.org/10.1002/pen.760201003
[85] D.S. Achilias, C. Roupakias, P. Megalokonomos, A.A. Lappas, Ε.V. Antonakou, Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP), J. Hazard. Mater. 149 (2007) 536-542. https://doi.org/10.1016/j.jhazmat.2007.06.076
[86] S. Matteucci, Y. Yampolskii, B.D. Freeman, I. Pinnau, Transport of Gases and Vapors in Glassy and Rubbery Polymers, in: Y. Yampolskii, I. Pinnau, B.D. Freeman (Eds.), Mater. Sci. Membr. Gas Vap. Sep., John Wiley & Sons, Ltd., 2006, pp. 1-47. https://doi.org/10.1002/047002903X.ch1
[87] J.R. Khurma, D.R. Rohindra, R. Devi, Miscibility study of solution cast blends of poly(lactic acid) and poly(vinyl butyral), South Pac. J. Nat. Appl. Sci. 23 (2005) 22-25. https://doi.org/10.1071/SP05004
[88] M.M. Reddy, S. Vivekanandhan, M. Misra, S.K. Bhatia, A.K. Mohanty, Biobased plastics and bionanocomposites: Current status and future opportunities, Prog. Polym. Sci. 38 (2013) 1653-1689. https://doi.org/10.1016/j.progpolymsci.2013.05.006
[89] M.A. Zamiri, A. Kargari, H. Sanaeepur, Ethylene vinyl acetate/poly(ethylene glycol) blend membranes for CO2/N2 separation, Greenhouse Gases Sci. Technol. 5 (2015) 668-681. https://doi.org/10.1002/ghg.1513
[90] C.J. Anderson, W. Tao, C.A. Scholes, G.W. Stevens, S.E. Kentish, The performance of carbon membranes in the presence of condensable and non-condensable impurities, J. Membr. Sci. 378 (2011) 117-127. https://doi.org/10.1016/j.memsci.2011.04.058
[91] S. Kanehashi, G.Q. Chen, D. Danaci, P.A. Webley, S.E. Kentish, Can the addition of carbon nanoparticles to a polyimide membrane reduce plasticization?, Sep. Purif. Technol. 183 (2017) 333-340. https://doi.org/10.1016/j.seppur.2017.04.013
[92] J.H. Petropoulos, A comparative study of approaches applied to the permeability of binary composite polymeric materials, J. Polym. Sci., Part B: Polym. Phys. 23 (1985) 1309-1324. https://doi.org/10.1002/pol.1985.180230703
[93] R.J. Swaidan, X. Ma, I. Pinnau, Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation, J. Membr. Sci. 520 (2016) 983-989. https://doi.org/10.1016/j.memsci.2016.08.057
[94] M. Naffakh, G. Ellis, M.A. Gómez, C. Marco, Thermal decomposition of technological polymer blends 1. Poly(aryl ether ether ketone) with a thermotropic liquid crystalline polymer, Polym. Degrad. Stab. 66 (1999) 405-413. https://doi.org/10.1016/S0141-3910(99)00093-2
[95] D.R. Paul, J.W. Barlow, A binary interaction model for miscibility of copolymers in blends, Polymer 25 (1984) 487-494. https://doi.org/10.1016/0032-3861(84)90207-6
[96] P. Pötschke, D.R. Paul, Formation of Co-continuous Structures in Melt-Mixed Immiscible Polymer Blends, J. Macromol. Sci., Polym. Rev. 43 (2003) 87-141. https://doi.org/10.1081/MC-120018022
[97] L. Botta, M.C. Mistretta, S. Palermo, M. Fragalà, F. Pappalardo, Characterization and Processability of Blends of Polylactide Acid with a New Biodegradable Medium-Chain-Length Polyhydroxyalkanoate, J. Polym. Environ. 23 (2015) 478-486. https://doi.org/10.1007/s10924-015-0729-4
[98] B. Singh, N. Sharma, Mechanistic implications of plastic degradation, Polym. Degrad. Stab. 93 (2008) 561-584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008
[99] C.S.K. Achoundong, N. Bhuwania, S.K. Burgess, O. Karvan, J.R. Johnson, W.J. Koros, Silane Modification of Cellulose Acetate Dense Films as Materials for Acid Gas Removal, Macromolecules 46 (2013) 5584-5594. https://doi.org/10.1021/ma4010583
[100] V. Siracusa, P. Rocculi, S. Romani, M.D. Rosa, Biodegradable polymers for food packaging: a review, Trends Food Sci. Technol. 19 (2008) 634-643. https://doi.org/10.1016/j.tifs.2008.07.003
[101] C. Ma, J. Yu, B. Wang, Z. Song, J. Xiang, S. Hu, S. Su, L. Sun, Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: A review, Renewable Sustainable Energy Rev. 61 (2016) 433-450. https://doi.org/10.1016/j.rser.2016.04.020
[102] C.T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Maré, S. Boucher, H. Angue Mintsa, Temperature and particle-size dependent viscosity data for water-based nanofluids – Hysteresis phenomenon, Int. J. Heat Fluid Flow 28 (2007) 1492-1506. https://doi.org/10.1016/j.ijheatfluidflow.2007.02.004
[103] N. Wang, F. Niu, S. Wang, Y. Huang, Catalytic activity of flame-synthesized Pd/TiO2 for the methane oxidation following hydrogen pretreatments, Particuology 41 (2018) 58-64. https://doi.org/10.1016/j.partic.2018.01.005
[104] Z. Said, R. Saidur, A. Hepbasli, N.A. Rahim, New thermophysical properties of water based TiO2 nanofluid—The hysteresis phenomenon revisited, Int. Commun. Heat Mass Transfer 58 (2014) 85-95. https://doi.org/10.1016/j.icheatmasstransfer.2014.08.034
[105] N. Sazali, W.N.W. Salleh, A.F. Ismail, N.H. Ismail, CO2/CH4 Separation by Using Carbon Membranes, in: A. Basile, E.P. Favvas (Eds.), Curr. Trends Future Dev. (Bio-) Membr., Elsevier Inc., 2018, pp. 209-234. https://doi.org/10.1016/B978-0-12-813645-4.00007-6
[106] M.R. Rahimpour, F. Samimi, A. Babapoor, T. Tohidian, S. Mohebi, Palladium membranes applications in reaction systems for hydrogen separation and purification: A review, Chem. Eng. Process. 121 (2017) 24-49. https://doi.org/10.1016/j.cep.2017.07.021
[107] C.Z. Liang, T.S. Chung, J.Y. Lai, A review of polymeric composite membranes for gas separation and energy production, Prog. Polym. Sci. 97 (2019) 101141. https://doi.org/10.1016/j.progpolymsci.2019.06.001
[108] L. Li, R. Xu, C. Song, B. Zhang, Q. Liu, T. Wang, A Review on the Progress in Nanoparticle/C Hybrid CMS Membranes for Gas Separation, Membranes 8 (2018) 134. https://doi.org/10.3390/membranes8040134
[109] Z. Dai, L. Ansaloni, L. Deng, Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review, Green Energy Environ. 1 (2016) 102-128. https://doi.org/10.1016/j.gee.2016.08.001
[110] T.S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Prog. Polym. Sci. 32 (2007) 483-507. https://doi.org/10.1016/j.progpolymsci.2007.01.008
[111] C.E. Powell, G.G. Qiao, Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases, J. Membr. Sci. 279 (2006) 1-49. https://doi.org/10.1016/j.memsci.2005.12.062
[112] T. Higuchi, Some physical chemical aspects of suspension formulation, J. Am. Pharm. Assoc. 47 (1958) 657-660. https://doi.org/10.1002/jps.3030470913
[113] W.J. Koros, R. Mahajan, Pushing the limits on possibilities for large scale gas separation: which strategies?, J. Membr. Sci. 175 (2000) 181-196. https://doi.org/10.1016/S0376-7388(00)00418-X
[114] Y. Zhao, D. Zhao, C. Kong, F. Zhou, T. Jiang, L. Chen, Design of thin and tubular MOFs-polymer mixed matrix membranes for highly selective separation of H2 and CO2, Sep. Purif. Technol. 220 (2019) 197-205. https://doi.org/10.1016/j.seppur.2019.03.037
[115] A. Mundstock, S. Friebe, J. Caro, On comparing permeation through Matrimid®-based mixed matrix and multilayer sandwich FAU membranes: H2/CO2 separation, support functionalization and ion exchange, Int. J. Hydrogen Energy 42 (2017) 279-288. https://doi.org/10.1016/j.ijhydene.2016.10.161
[116] C. Feng, K.C. Khulbe, T. Matsuura, R. Farnood, A.F. Ismail, Recent Progress in Zeolite/Zeotype Membranes, J. Membr. Sci. Res. 1 (2015) 49-72.
[117] M.J.C. Ordoñez, K.J. Balkus, J.P. Ferraris, I.H. Musselman, Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes, J. Membr. Sci. 361 (2010) 28-37. https://doi.org/10.1016/j.memsci.2010.06.017
[118] L.Y. Jiang, T.-S. Chung, S. Kulprathipanja, Fabrication of mixed matrix hollow fibers with intimate polymer-zeolite interface for gas separation, AIChE J. 52 (2006) 2898-2908. https://doi.org/10.1002/aic.10909
[119] N. Sazali, W.N.W. Salleh, N.A.H.M. Nordin, Z. Harun, A.F. Ismail, Matrimid-based carbon tubular membranes: The effect of the polymer composition, J. Appl. Polym. Sci. 132 (2015). https://doi.org/10.1002/app.42394
[120] J.N. Barsema, S.D. Klijnstra, J.H. Balster, N.F.A. van der Vegt, G.H. Koops, M. Wessling, Intermediate polymer to carbon gas separation membranes based on Matrimid PI, J. Membr. Sci. 238 (2004) 93-102. https://doi.org/10.1016/j.memsci.2004.03.024
[121] C.C. Hu, Y.-J. Fu, S.-W. Hsiao, K.-R. Lee, J.-Y. Lai, Effect of physical aging on the gas transport properties of poly(methyl methacrylate) membranes, J. Membr. Sci. 303 (2007) 29-36. https://doi.org/10.1016/j.memsci.2007.06.004
[122] S.S. Hosseini, M.M. Teoh, T.S. Chung, Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks, Polymer 49 (2008) 1594-1603. https://doi.org/10.1016/j.polymer.2008.01.052
[123] S. Friebe, B. Geppert, F. Steinbach, J. Caro, Metal–Organic Framework UiO-66 Layer: A Highly Oriented Membrane with Good Selectivity and Hydrogen Permeance, ACS Appl. Mater. Interfaces 9 (2017) 12878-12885. https://doi.org/10.1021/acsami.7b02105
[124] X. Gong, Y. Wang, T. Kuang, ZIF-8-Based Membranes for Carbon Dioxide Capture and Separation, ACS Sustainable Chem. Eng. 5 (2017) 11204-11214. https://doi.org/10.1021/acssuschemeng.7b03613
[125] S.N.A. Shafie, W. X. Liew, N.A.H. Md. Nordin, M. Roil Bilad, N. Sazali, Z. Adi Putra, M.D.H. Wirzal, CO2-Philic [EMIM][Tf2N] Modified Silica in Mixed Matrix Membrane for High Performance CO/CH4 Separation, Adv. Polym. Technol. 2019 (2019). https://doi.org/10.1155/2019/2924961
[126] G.L. Zhuang, M.-Y. Wey, H.-H. Tseng, The density and crystallinity properties of PPO-silica mixed-matrix membranes produced via the in situ sol-gel method for H2/CO2 separation. II: Effect of thermal annealing treatment, Chem. Eng. Res. Des. 104 (2015) 319-332. https://doi.org/10.1016/j.cherd.2015.08.020
[127] M. Sadeghi, M.A. Semsarzadeh, H. Moadel, Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles, J. Membr. Sci. 331 (2009) 21-30. https://doi.org/10.1016/j.memsci.2008.12.073
[128] Z. Yang, X.-H. Ma, C.Y. Tang, Recent development of novel membranes for desalination, Desalination 434 (2018) 37-59. https://doi.org/10.1016/j.desal.2017.11.046
[129] W. Li, H. Wang, X. Jiang, J. Zhu, Z. Liu, X. Guo, C. Song, A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts, RSC Adv. 8 (2018) 7651-7669. https://doi.org/10.1039/C7RA13546G
[130] V. Dindore, W. Brilman, F. Geuzebroek, G. Versteeg, Membrane–solvent selection for CO2 removal using membrane gas–liquid contactors, Sep. Purif. Technol. 40 (2004) 133-145. https://doi.org/10.1016/j.seppur.2004.01.014
[131] S. Marzouk, M. Al-Marzouqi, M. El-Naas, N. Abdullatif, Z. Ismail, Removal of carbon dioxide from pressurized CO2–CH4 gas mixture using hollow fiber membrane contactors, J. Membr. Sci. 351 (2010) 21-27. https://doi.org/10.1016/j.memsci.2010.01.023
[132] J. Lee, J. Kim, H. Kim, K.S. Lee, W. Won, A new modeling approach for a CO2 capture process based on a blended amine solvent, J. Nat. Gas Sci. Eng. 61 (2019) 206-214. https://doi.org/10.1016/j.jngse.2018.11.020
[133] Q. He, G. Yu, S. Yan, L.F. Dumée, Y. Zhang, V. Strezov, S. Zhao, Renewable CO2 absorbent for carbon capture and biogas upgrading by membrane contactor, Sep. Purif. Technol. 194 (2018) 207-215. https://doi.org/10.1016/j.seppur.2017.11.043
[134] S.A. Wassie, S. Cloete, V. Spallina, F. Gallucci, S. Amini, M. van Sint Annaland, Techno-economic assessment of membrane-assisted gas switching reforming for pure H2 production with CO2 capture, Int. J. Greenhouse Gas Control 72 (2018) 163-174. https://doi.org/10.1016/j.ijggc.2018.03.021
[135] I.M. Bernhardsen, H.K. Knuutila, A review of potential amine solvents for CO2 absorption process: Absorption capacity, cyclic capacity and pKa, Int. J. Greenhouse Gas Control 61 (2017) 27-48. https://doi.org/10.1016/j.ijggc.2017.03.021
[136] C. Castel, E. Favre, Membrane separations and energy efficiency, J. Membr. Sci. 548 (2018) 345-357. https://doi.org/10.1016/j.memsci.2017.11.035
[137] W.F. Yong, T.S. Chung, M. Weber, C. Maletzko, New Polyethersulfone (PESU) Hollow Fiber Membranes for CO2 Capture, J. Membr. Sci. 552 (2018) 305-314. https://doi.org/10.1016/j.memsci.2018.02.008
[138] A. Makaruk, M. Miltner, M. Harasek, Biogas desulfurization and biogas upgrading using a hybrid membrane system – modeling study, Water Sci. Technol. 67 (2013) 326-332. https://doi.org/10.2166/wst.2012.566
[139] N. Thomas, M.O. Mavukkandy, S. Loutatidou, H.A. Arafat, Membrane distillation research & implementation: Lessons from the past five decades, Sep. Purif. Technol. 189 (2017) 108-127. https://doi.org/10.1016/j.seppur.2017.07.069
[140] S. Ayadi, I. Jedidi, S. Lacour, S. Cerneaux, M. Cretin, R.B. Amar, Preparation and characterization of carbon microfiltration membrane applied to the treatment of textile industry effluents, Sep. Sci. Technol. 51 (2016) 1022-1029. https://doi.org/10.1080/01496395.2016.1140201
[141] S. Loeb, L. Titelman, E. Korngold, J. Freiman, Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane, J. Membr. Sci. 129 (1997) 243-249. https://doi.org/10.1016/S0376-7388(96)00354-7