Thin Film Nanocomposite of Nanofiltration Membrane for Water Softening and Desalination

$30.00

Thin Film Nanocomposite of Nanofiltration Membrane for Water Softening and Desalination

Muhammad Hanis Tajuddin, Muhammad Faris Hamid, Norhaniza Yusof, Ahmad Fauzi Ismail

This chapter discusses about nanofiltration (NF) membrane for water softening and desalination. The NF membrane system and thin film composite (TFC) membranes are discussed in general followed by their drawbacks. Next, recent trend of nanofillers in thin film nanocomposite (TFN) membrane is critically discussed and highlighted. The advantages and challenges of TFN membrane for water softening and desalination application are thoroughly analyzed. Lastly, the future directions of the TFN membrane for practical application are addressed.

Keywords
Thin Film Nanocomposite, Nanofiltration, Desalination, Water Softening, Membrane Fouling

Published online , 44 pages

Citation: Muhammad Hanis Tajuddin, Muhammad Faris Hamid, Norhaniza Yusof, Ahmad Fauzi Ismail, Thin Film Nanocomposite of Nanofiltration Membrane for Water Softening and Desalination, Materials Research Foundations, Vol. 113, pp 69-112, 2021

DOI: https://doi.org/10.21741/9781644901632-4

Part of the book on Polymeric Membranes for Water Purification and Gas Separation

References
[1] Y. Song, T. Li, J. Zhou, Z. Li, C. Gao, Analysis of nanofiltration membrane performance during softening process of simulated brackish groundwater, Desalination. 399 (2016) 159–164. https://doi.org/0.1016/j.desal.2016.09.004
[2] N.A. Ahmad, P.S. Goh, K.C. Wong, A.K. Zulhairun, A.F. Ismail, Enhancing desalination performance of thin film composite membrane through layer by layer assembly of oppositely charged titania nanosheet, Desalination. 476 (2020) 114167. https://doi.org/0.1016/j.desal.2019.114167
[3] A.R. Anim-Mensah, W.B. Krantz, R. Govind, Studies on polymeric nanofiltration-based water softening and the effect of anion properties on the softening process, Eur. Polym. J. 44 (2008) 2244–2252. https://doi.org/0.1016/j.eurpolymj.2008.04.036
[4] Z.S. Tai, M.H.A. Aziz, M.H.D. Othman, A.F. Ismail, M.A. Rahman, J. Jaafar, Chapter 8 – An Overview of Membrane Distillation, in: A.F. Ismail, M.A. Rahman, M.H.D. Othman, T. Matsuura (Eds.), Membr. Sep. Princ. Appl., Elsevier, 2019: pp. 251–281. https://doi.org/10.1016/B978-0-12-812815-2.00008-9
[5] S. Al-Amshawee, M.Y.B.M. Yunus, A.A.M. Azoddein, D.G. Hassell, I.H. Dakhil, H.A. Hasan, Electrodialysis desalination for water and wastewater: A review, Chem. Eng. J. 380 (2020) 122231. https://doi.org/10.1016/j.cej.2019.122231
[6] F.A. AlMarzooqi, A.A. [Al Ghaferi], I. Saadat, N. Hilal, Application of Capacitive Deionisation in water desalination: A review, Desalination. 342 (2014) 3–15. https://doi.org/10.1016/j.desal.2014.02.031
[7] M.A. Eltawil, Z. Zhengming, L. Yuan, A review of renewable energy technologies integrated with desalination systems, Renew. Sustain. Energy Rev. 13 (2009) 2245–2262. https://doi.org/0.1016/j.rser.2009.06.011
[8] T.N. Tuan, S. Chung, J.K. Lee, J. Lee, Improvement of water softening efficiency in capacitive deionization by ultra purification process of reduced graphene oxide, Curr. Appl. Phys. 15 (2015) 1397–1401. https://doi.org/0.1016/j.cap.2015.08.001
[9] N.N.A. Kadir, M. Shahadat, S. Ismail, Formulation study for softening of hard water using surfactant modified bentonite adsorbent coating, Appl. Clay Sci. 137 (2017) 168–175. https://doi.org/0.1016/j.clay.2016.12.025
[10] L. Setiawan, L. Shi, R. Wang, Dual layer composite nanofiltration hollow fiber membranes for low-pressure water softening, Polym. (United Kingdom). 55 (2014) 1367–1374. https://doi.org/0.1016/j.polymer.2013.12.032
[11] W. Fang, L. Shi, R. Wang, Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability, J. Memb. Sci. 468 (2014) 52–61. https://doi.org/0.1016/j.memsci.2014.05.047
[12] N. Ghaffour, J. Bundschuh, H. Mahmoudi, M.F.A. Goosen, Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems, Desalination. 356 (2015) 94–114. https://doi.org/10.1016/j.desal.2014.10.024
[13] Y.-N. Wang, R. Wang, Chapter 1 – Reverse Osmosis Membrane Separation Technology, in: A.F. Ismail, M.A. Rahman, M.H.D. Othman, T. Matsuura (Eds.), Membr. Sep. Princ. Appl., Elsevier, 2019: pp. 1–45. https://doi.org/10.1016/B978-0-12-812815-2.00001-6
[14] N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability, Desalination. 309 (2013) 197–207. https://doi.org/0.1016/j.desal.2012.10.015
[15] A. Sharjeel, S. Anwar, A. Nasir, H. Rashid, Design, Development and Performance of Optimum Water Softener, Earth Sci. Pakistan. 3 (2019) 23–28. https://doi.org/0.26480/esp.01.2019.23.28
[16] C. Liu, L. Shi, R. Wang, Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO42- in feed water, J. Memb. Sci. 486 (2015) 169–176. https://doi.org/0.1016/j.memsci.2015.03.050
[17] M.A. Arugula, K.S. Brastad, S.D. Minteer, Z. He, Enzyme catalyzed electricity-driven water softening system, Enzyme Microb. Technol. 51 (2012) 396–401. https://doi.org/0.1016/j.enzmictec.2012.08.009
[18] K.S. Brastad, Z. He, Water softening using microbial desalination cell technology, Desalination. 309 (2013) 32–37. https://doi.org/0.1016/j.desal.2012.09.015
[19] Y. Chen, R. Fan, D. An, Y. Cheng, H. Tan, Water softening by induced crystallization in fluidized bed, J. Environ. Sci. (2016) 2–9. https://doi.org/0.1016/j.jes.2016.08.014
[20] B. Van der Bruggen, H. Goossens, P.A. Everard, K. Stemgée, W. Rogge, Cost-benefit analysis of central softening for production of drinking water, J. Environ. Manage. 91 (2009) 541–549. https://doi.org/0.1016/j.jenvman.2009.09.024
[21] S.J. Seo, H. Jeon, J.K. Lee, G.Y. Kim, D. Park, H. Nojima, J. Lee, S.H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res. 44 (2010) 2267–2275. https://doi.org/0.1016/j.watres.2009.10.020
[22] T.-H. Yu, H.-Y. Shiu, M. Lee, P.-T. Chiueh, C.-H. Hou, Life cycle assessment of environmental impacts and energy demand for capacitive deionization technology, Desalination. 399 (2016) 53–60. https://doi.org/0.1016/j.desal.2016.08.007
[23] Y.J. Kim, J.H. Choi, Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer, Water Res. 44 (2010) 990–996. https://doi.org/0.1016/j.watres.2009.10.017
[24] J. Yin, B. Deng, Polymer-matrix nanocomposite membranes for water treatment, J. Memb. Sci. 479 (2015) 256–275. https://doi.org/0.1016/j.memsci.2014.11.019
[25] P. Wu, M. Imai, Novel Biopolymer Composite Membrane Involved with Selective Mass Transfer and Excellent Water Permeability, in: Adv. Desalin., InTech, 2012. https://doi.org/0.5772/50697
[26] S. Cumming, Global Nanofiltration Membranes Market to Reach $445.1 Million in 2019; Water and Wastewater Claim 74.6% Market Share, BCC Res. (2014)
[27] L. Lin, T.M. Weigand, M.W. Farthing, P. Jutaporn, C.T. Miller, O. Coronell, Relative importance of geometrical and intrinsic water transport properties of active layers in the water permeability of polyamide thin-film composite membranes, J. Memb. Sci. (2018) 1–36. https://doi.org/0.1016/j.memsci.2018.08.002
[28] J. Xiang, Z. Xie, M. Hoang, K. Zhang, Effect of amine salt surfactants on the performance of thin film composite poly(piperazine-amide) nanofiltration membranes, Desalination. 315 (2013) 156–163. https://doi.org/0.1016/j.desal.2012.10.038
[29] S.Y. Lee, H.J. Kim, R. Patel, S.J. Im, J.H. Kim, B.R. Min, Silver nanoparticles immobilized on thin film composite polyamide membrane : characterization , nanofiltration , antifouling properties, Polym. Adv. Technol. 18 (2007) 562–568. https://doi.org/0.1002/pat
[30] M.J. Park, S. Phuntsho, T. He, G.M. Nisola, L.D. Tijing, X.M. Li, G. Chen, W.J. Chung, H.K. Shon, Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes, J. Memb. Sci. 493 (2015). https://doi.org/0.1016/j.memsci.2015.06.053
[31] S. Morales-Torres, C.M.P. Esteves, J.L. Figueiredo, A.M.T. Silva, Thin-film composite forward osmosis membranes based on polysulfone supports blended with nanostructured carbon materials, J. Memb. Sci. 520 (2016) 326–336. https://doi.org/0.1016/j.memsci.2016.07.009
[32] Q. Li, Y. Wang, J. Song, Y. Guan, H. Yu, X. Pan, F. Wu, M. Zhang, Influence of silica nanospheres on the separation performance of thin film composite poly(piperazine-amide) nanofiltration membranes, Appl. Surf. Sci. 324 (2015) 757–764. https://doi.org/0.1016/j.apsusc.2014.11.031
[33] D. Emadzadeh, M. Ghanbari, W.J. Lau, M. Rahbari-Sisakht, D. Rana, T. Matsuura, B. Kruczek, A.F. Ismail, Surface modification of thin film composite membrane by nanoporous titanate nanoparticles for improving combined organic and inorganic antifouling properties, Mater. Sci. Eng. C. 75 (2017) 463–470. https://doi.org/0.1016/j.msec.2017.02.079
[34] T. Ormanci-Acar, F. Celebi, B. Keskin, O. Mutlu-Salmanlı, M. Agtas, T. Turken, A. Tufani, D.Y. Imer, G.O. Ince, T.U. Demir, Y.Z. Menceloglu, S. Unal, I. Koyuncu, Fabrication and characterization of temperature and pH resistant thin film nanocomposite membranes embedded with halloysite nanotubes for dye rejection, Desalination. 429 (2018) 20–32. https://doi.org/0.1016/j.desal.2017.12.005
[35] N. Hilal, H. Al-Zoubi, N.A. Darwish, A.W. Mohammad, M. Abu Arabi, A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy, Desalination. 170 (2004) 281–308. https://doi.org/0.1016/j.desal.2004.01.007
[36] A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review: Recent advances and future prospects, Desalination. 356 (2015) 226–254. https://doi.org/0.1016/j.desal.2014.10.043
[37] B. Van der Bruggen, M. Mänttäri, M. Nyström, Drawbacks of applying nanofiltration and how to avoid them: A review, Sep. Purif. Technol. 63 (2008) 251–263. https://doi.org/0.1016/j.seppur.2008.05.010
[38] W.J. Lau, A.F. Ismail, P.S. Goh, N. Hilal, B.S. Ooi, Characterization Methods of Thin Film Composite Nanofiltration Membranes, Sep. Purif. Rev. 44 (2014) 135–156. https://doi.org/0.1080/15422119.2014.882355
[39] W.J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J. Paul Chen, A.F. Ismail, A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches, Water Res. 80 (2015) 306–324. https://doi.org/0.1016/j.watres.2015.04.037
[40] D. Li, Y. Yan, H. Wang, Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes, Prog. Polym. Sci. 61 (2015) 104–155. https://doi.org/0.1016/j.progpolymsci.2016.03.003
[41] S. Al Aani, C.J. Wright, M.A. Atieh, N. Hilal, Engineering nanocomposite membranes: Addressing current challenges and future opportunities, Desalination. (2016). https://doi.org/0.1016/j.desal.2016.08.001
[42] M. Paul, S.D. Jons, Chemistry and fabrication of polymeric nanofiltration membranes: A review, Polymer (Guildf). 103 (2016) 417–456. https://doi.org/0.1016/j.polymer.2016.07.085
[43] M.B.M.Y. Ang, Y.L. Ji, S.H. Huang, H.A. Tsai, W.S. Hung, C.C. Hu, K.R. Lee, J.Y. Lai, Incorporation of carboxylic monoamines into thin-film composite polyamide membranes to enhance nanofiltration performance, J. Memb. Sci. 539 (2017) 52–64. https://doi.org/0.1016/j.memsci.2017.05.062
[44] W. Ye, J. Lin, R. Borrego, D. Chen, A. Sotto, P. Luis, M. Liu, S. Zhao, C.Y. Tang, B. Van der Bruggen, Advanced desalination of dye/NaCl mixures by a loose nanofiltration membrane for digital ink-jet printing, Sep. Purif. Technol. 197 (2018) 27–35. https://doi.org/0.1016/j.seppur.2017.12.045
[45] J. Zhu, S. Yuan, A. Uliana, J. Hou, J. Li, X. Li, M. Tian, Y. Chen, A. Volodin, B. Van der Bruggen, High-flux thin film composite membranes for nanofiltration mediated by a rapid co-deposition of polydopamine/piperazine, J. Memb. Sci. 554 (2018) 97–108. https://doi.org/0.1016/j.memsci.2018.03.004
[46] A.F. Ismail, M. Padaki, N. Hilal, T. Matsuura, W.J. Lau, Thin film composite membrane – Recent development and future potential, Desalination. 356 (2015) 140–148. https://doi.org/0.1016/j.desal.2014.10.042
[47] Y. Ji, W. Qian, Y. Yu, Q. An, L. Liu, Y. Zhou, C. Gao, Recent developments in nanofiltration membranes based on nanomaterials, Chinese J. Chem. Eng. 25 (2017) 1639–1652. https://doi.org/0.1016/j.cjche.2017.04.014
[48] N.K. Saha, S. V. Joshi, Performance evaluation of thin film composite polyamide nanofiltration membrane with variation in monomer type, J. Memb. Sci. 342 (2009) 60–69. https://doi.org/0.1016/j.memsci.2009.06.025
[49] S. Yu, Q. Zhou, S. Shuai, G. Yao, M. Ma, C. Gao, Thin-film composite nanofiltration membranes with improved acid stability prepared from naphthalene-1,3,6-trisulfonylchloride (NTSC) and trimesoyl chloride (TMC), Desalination. 315 (2013) 164–172. https://doi.org/0.1016/j.desal.2012.09.011
[50] Y. Mansourpanah, H. Shahebrahimi, E. Kolvari, PEG-modified GO nanosheets, a desired additive to increase the rejection and antifouling characteristics of polyamide thin layer membranes, Chem. Eng. Res. Des. 104 (2015) 530–540. https://doi.org/0.1016/j.cherd.2015.09.002
[51] S.Y. Kwak, S.H. Kim, S.S. Kim, Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane, Environ. Sci. Technol. 35 (2001) 2388–2394. https://doi.org/0.1021/es0017099
[52] W.J. Lau, A.F. Ismail, N. Misdan, M.A. Kassim, A recent progress in thin film composite membrane: A review, Desalination. 287 (2012) 190–199. https://doi.org/0.1016/j.desal.2011.04.004
[53] M. Liu, Y. Zheng, S. Shuai, Q. Zhou, S. Yu, C. Gao, Thin-film composite membrane formed by interfacial polymerization of polyvinylamine (PVAm) and trimesoyl chloride (TMC) for nanofiltration, Desalination. 288 (2012) 98–107. https://doi.org/0.1016/j.desal.2011.12.018
[54] M. Dalwani, N.E. Benes, G. Bargeman, D. Stamatialis, M. Wessling, Effect of pH on the performance of polyamide/polyacrylonitrile based thin film composite membranes, J. Memb. Sci. 372 (2011) 228–238. https://doi.org/0.1016/j.memsci.2011.02.012
[55] Y.-F. Mi, Q. Zhao, Y.-L. Ji, Q.-F. An, C.-J. Gao, A novel route for surface zwitterionic functionalization of polyamide nanofiltration membranes with improved performance, J. Memb. Sci. 490 (2015) 311–320. https://doi.org/0.1016/j.memsci.2015.04.072
[56] L. Lin, R. Lopez, G.Z. Ramon, O. Coronell, Investigating the void structure of the polyamide active layers of thin-film composite membranes, J. Memb. Sci. 497 (2016) 365–376. https://doi.org/0.1016/j.memsci.2015.09.020
[57] N. Misdan, W.J. Lau, C.S. Ong, A.F. Ismail, T. Matsuura, Study on the thin film composite poly(piperazine-amide) nanofiltration membranes made of different polymeric substrates: Effect of operating conditions, Korean J. Chem. Eng. 32 (2015) 753–760. https://doi.org/0.1007/s11814-014-0261-6
[58] A.K. Ghosh, B.H. Jeong, X. Huang, E.M. V Hoek, Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties, J. Memb. Sci. 311 (2008) 34–45. https://doi.org/0.1016/j.memsci.2007.11.038
[59] S. Hermans, R. Bernstein, A. Volodin, I.F.J. Vankelecom, Study of synthesis parameters and active layer morphology of interfacially polymerized polyamide-polysulfone membranes, React. Funct. Polym. 86 (2015) 199–208. https://doi.org/0.1016/j.reactfunctpolym.2014.09.013
[60] X. lei Wang, J. fu Wei, Z. Dai, K. yin Zhao, H. Zhang, Preparation and characterization of negatively charged hollow fiber nanofiltration membrane by plasma-induced graft polymerization, Desalination. 286 (2012) 138–144. https://doi.org/0.1016/j.desal.2011.11.014
[61] H. Deng, Y. Xu, Q. Chen, X. Wei, B. Zhu, High flux positively charged nanofiltration membranes prepared by UV-initiated graft polymerization of methacrylatoethyl trimethyl ammonium chloride (DMC) onto polysulfone membranes, J. Memb. Sci. 366 (2011) 363–372. doi:https://doi.org/10.1016/j.memsci.2010.10.029
[62] R.H. Li, T.A. Barbari, Performance of poly(vinyl alcohol) thin-gel composite ultrafiltration membranes, J. Memb. Sci. 105 (1995) 71–78. https://doi.org/0.1016/0376-7388(95)00048-H
[63] H.R. Chae, J. Lee, C.H. Lee, I.C. Kim, P.K. Park, Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance, J. Memb. Sci. 483 (2015) 128–135. https://doi.org/0.1016/j.memsci.2015.02.045
[64] F. Yan, H. Chen, Y. Lü, Z. Lü, S. Yu, M. Liu, C. Gao, Improving the water permeability and antifouling property of thin-film composite polyamide nanofiltration membrane by modifying the active layer with triethanolamine, J. Memb. Sci. 513 (2016) 108–116. https://doi.org/0.1016/j.memsci.2016.04.049
[65] J.H. Lee, J.Y. Chung, E.P. Chan, C.M. Stafford, Correlating chlorine-induced changes in mechanical properties to performance in polyamide-based thin film composite membranes, J. Memb. Sci. 433 (2013) 72–79. https://doi.org/0.1016/j.memsci.2013.01.026
[66] D. Zhao, S. Yu, A review of recent advance in fouling mitigation of NF/RO membranes in water treatment: pretreatment, membrane modification, and chemical cleaning, Desalin. Water Treat. 55 (2014) 1–22. https://doi.org/0.1080/19443994.2014.928804
[67] S. Zhu, S. Zhao, Z. Wang, X. Tian, M. Shi, J. Wang, S. Wang, Improved performance of polyamide thin-film composite nanofiltration membrane by using polyetersulfone/polyaniline membrane as the substrate, J. Memb. Sci. 493 (2015) 263–274. https://doi.org/0.1016/j.memsci.2015.07.013
[68] M. Fathizadeh, A. Aroujalian, A. Raisi, Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process, J. Memb. Sci. 375 (2011) 88–95. https://doi.org/0.1016/j.memsci.2011.03.017
[69] N. Ma, J. Wei, R. Liao, C.Y. Tang, Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis, J. Memb. Sci. 405–406 (2012) 149–157. https://doi.org/0.1016/j.memsci.2012.03.002
[70] L.X. Dong, X.C. Huang, Z. Wang, Z. Yang, X.M. Wang, C.Y. Tang, A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles, Sep. Purif. Technol. 166 (2016) 230–239. https://doi.org/0.1016/j.seppur.2016.04.043
[71] E. Bet-moushoul, Y. Mansourpanah, K. Farhadi, M. Tabatabaei, TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes, Chem. Eng. J. 283 (2015) 29–46. https://doi.org/0.1016/j.cej.2015.06.124
[72] A.L. Ahmad, A.A. Abdulkarim, B.S. Ooi, S. Ismail, Recent development in additives modifications of polyethersulfone membrane for flux enhancement, Chem. Eng. J. 223 (2013) 246–267. https://doi.org/0.1016/j.cej.2013.02.130
[73] S. Hermans, H. Mariën, C. Van Goethem, I.F. Vankelecom, Recent developments in thin film (nano)composite membranes for solvent resistant nanofiltration, Curr. Opin. Chem. Eng. 8 (2015) 45–54. https://doi.org/0.1016/j.coche.2015.01.009
[74] E.S. Kim, G. Hwang, M. Gamal El-Din, Y. Liu, Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment, J. Memb. Sci. 394–395 (2012) 37–48. https://doi.org/0.1016/j.memsci.2011.11.041
[75] M. Ben-Sasson, X. Lu, E. Bar-Zeev, K.R. Zodrow, S. Nejati, G. Qi, E.P. Giannelis, M. Elimelech, In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation, Water Res. 62 (2014) 260–270. https://doi.org/0.1016/j.watres.2014.05.049
[76] J. Yin, Y. Yang, Z. Hu, B. Deng, Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling, J. Memb. Sci. 441 (2013) 73–82. https://doi.org/0.1016/j.memsci.2013.03.060
[77] H.S. Lee, S.J. Im, J.H. Kim, H.J. Kim, J.P. Kim, B.R. Min, Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles, Desalination. 219 (2008) 48–56. https://doi.org/0.1016/j.desal.2007.06.003
[78] S. Pourjafar, A. Rahimpour, M. Jahanshahi, Synthesis and characterization of PVA/PES thin film composite nanofiltration membrane modified with TiO 2 nanoparticles for better performance and surface properties, J. Ind. Eng. Chem. 18 (2012) 1398–1405. https://doi.org/0.1016/j.jiec.2012.01.041
[79] B. Rajaeian, A. Rahimpour, M.O. Tade, S. Liu, Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles, Desalination. 313 (2013) 176–188. https://doi.org/0.1016/j.desal.2012.12.012
[80] L.Y. Ng, A.W. Mohammad, C.P. Leo, N. Hilal, Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review, Desalination. 308 (2013) 15–33. https://doi.org/0.1016/j.desal.2010.11.033
[81] M. Safarpour, A. Khataee, V. Vatanpour, Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance, J. Memb. Sci. 489 (2015) 43–54. doi:https://doi.org/10.1016/j.memsci.2015.04.010
[82] G.L. Jadav, P.S. Singh, Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties, 328 (2009) 257–267. https://doi.org/0.1016/j.memsci.2008.12.014
[83] N. Ghaemi, Novel antifouling nano-enhanced thin-film composite membrane containing cross-linkable acrylate-alumoxane nanoparticles for water softening, J. Colloid Interface Sci. 485 (2017) 81–90. https://doi.org/0.1016/j.jcis.2016.09.035
[84] H. Wu, B. Tang, P. Wu, Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles, J. Memb. Sci. 428 (2013) 341–348. https://doi.org/0.1016/j.memsci.2012.10.053
[85] M. Bao, G. Zhu, L. Wang, M. Wang, C. Gao, Preparation of monodispersed spherical mesoporous nanosilica-polyamide thin film composite reverse osmosis membranes via interfacial polymerization, Desalination. 309 (2013) 261–266. https://doi.org/0.1016/j.desal.2012.10.028
[86] D. Hu, Z.-L. Xu, C. Chen, Polypiperazine-amide nanofiltration membrane containing silica nanoparticles prepared by interfacial polymerization, Des. 301 (2012) 75–81. https://doi.org/0.1016/j.desal.2012.06.015
[87] Y. Zhang, B. Wu, H. Xu, H. Liu, M. Wang, Y. He, B. Pan, Nanomaterials-enabled water and wastewater treatment, NanoImpact. 3–4 (2016) 22–39. https://doi.org/0.1016/j.impact.2016.09.004
[88] J.N. Shen, C.C. Yu, H.M. Ruan, C.J. Gao, B. Van der Bruggen, Preparation and characterization of thin-film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization, J. Memb. Sci. 442 (2013) 18–26. https://doi.org/0.1016/j.memsci.2013.04.018
[89] H. Zarrabi, M.E. Yekavalangi, V. Vatanpour, A. Shockravi, M. Safarpour, Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube, Desalination. 394 (2016) 83–90. https://doi.org/0.1016/j.desal.2016.05.002
[90] M.B. Wu, Y. Lv, H.C. Yang, L.F. Liu, X. Zhang, Z.K. Xu, Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances, J. Memb. Sci. 515 (2016) 238–244. https://doi.org/0.1016/j.memsci.2016.05.056
[91] J. Zheng, M. Li, K. Yu, J. Hu, X. Zhang, L. Wang, Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property, J. Memb. Sci. 524 (2017) 344–353. https://doi.org/0.1016/j.memsci.2016.11.032
[92] S. Roy, S.A. Ntim, S. Mitra, K.K. Sirkar, Facile fabrication of superior nanofiltration membranes from interfacially polymerized CNT-polymer composites, J. Memb. Sci. 375 (2011) 81–87. https://doi.org/0.1016/j.memsci.2011.03.012
[93] M.E.A. Ali, L. Wang, X. Wang, X. Feng, Thin film composite membranes embedded with graphene oxide for water desalination, Desalination. 386 (2016) 67–76. https://doi.org/0.1016/j.desal.2016.02.034
[94] G.S. Lai, W.J. Lau, P.S. Goh, A.F. Ismail, N. Yusof, Y.H. Tan, Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance, Desalination. 387 (2016) 14–24. https://doi.org/0.1016/j.desal.2016.03.007
[95] M. Safarpour, V. Vatanpour, A. Khataee, M. Esmaeili, Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2, Sep. Purif. Technol. 154 (2015) 96–107. https://doi.org/10.1016/j.seppur.2015.09.039
[96] A. Ammar, A.M. Al-Enizi, M.A. AlMaadeed, A. Karim, Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes, Arab. J. Chem. 9 (2016) 274–286. https://doi.org/0.1016/j.arabjc.2015.07.006
[97] X. Wang, B.S. Hsiao, Electrospun nanofiber membranes, Curr. Opin. Chem. Eng. 12 (2016) 62–81. https://doi.org/0.1016/j.coche.2016.03.001
[98] S. Subramanian, R. Seeram, New directions in nano fi ltration applications — Are nano fi bers the right materials as membranes in desalination ?, 308 (2013) 198–208. https://doi.org/0.1016/j.desal.2012.08.014
[99] K. Yoon, B.S. Hsiao, B. Chu, High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds, J. Memb. Sci. 326 (2009) 484–492. https://doi.org/0.1016/j.memsci.2008.10.023
[100] S. Kaur, S. Sundarrajan, D. Rana, T. Matsuura, S. Ramakrishna, Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane, J. Memb. Sci. 392–393 (2012) 101–111. https://doi.org/0.1016/j.memsci.2011.12.005
[101] Y. Li, L.H. Wee, J.A. Martens, I.F.J. Vankelecom, Interfacial synthesis of ZIF-8 membranes with improved nanofiltration performance, J. Memb. Sci. (2016). https://doi.org/10.1016/j.memsci.2016.09.065
[102] S. Sorribas, P. Gorgojo, C. Téllez, J. Coronas, A.G. Livingston, High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration, J. Am. Chem. Soc. 135 (2013) 15201–15208. https://doi.org/0.1021/ja407665w
[103] Y. Lin, Metal organic framework membranes for separation applications, Curr. Opin. Chem. Eng. 8 (2015) 21–28. https://doi.org/0.1016/j.coche.2015.01.006
[104] J. Duan, Y. Pan, F. Pacheco, E. Litwiller, Z. Lai, I. Pinnau, High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8, J. Memb. Sci. 476 (2015) 303–310. https://doi.org/0.1016/j.memsci.2014.11.038
[105] T.A. Saleh, V.K. Gupta, Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance, Sep. Purif. Technol. 89 (2012) 245–251. https://doi.org/0.1016/j.seppur.2012.01.039
[106] H. Dong, L. Wu, L. Zhang, H. Chen, C. Gao, Clay nanosheets as charged filler materials for high-performance and fouling-resistant thin film nanocomposite membranes, J. Memb. Sci. 494 (2015) 92–103. https://doi.org/0.1016/j.memsci.2015.07.049
[107] H. Li, W. Shi, Y. Zhang, Q. Du, X. Qin, Y. Su, Improved performance of poly(piperazine amide) composite nanofiltration membranes by adding aluminum hydroxide nanospheres, Sep. Purif. Technol. 166 (2016) 240–251. https://doi.org/0.1016/j.seppur.2016.04.024
[108] S.B. Tyagi, A. Kharkwal, Nitu, M. Kharkwal, R. Sharma, Synthesis and Characterization of Layered Double Hydroxides Containing Optically Active Transition Metal Ion, Solid State Sci. 63 (2017) 93–102. https://doi.org/0.1016/j.solidstatesciences.2016.11.012
[109] M.H. Tajuddin, N. Yusof, W. Norharyati, W. Salleh, Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal, E3S Web Conf. 02003 (2018) 0–7. https://doi.org/10.1051/e3sconf/20183402003
[110] Z. Meng, Y. Zhang, Q. Zhang, X. Chen, L. Liu, Novel synthesis of layered double hydroxides ( LDHs ) from zinc hydroxide, Appl. Surf. Sci. 396 (2017) 799–803. https://doi.org/0.1016/j.apsusc.2016.11.032
[111] M.A. Djebbi, M. Braiek, P. Namour, A. Ben Haj Amara, N. Jaffrezic-Renault, Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices, Appl. Surf. Sci. 386 (2016) 352–363. https://doi.org/0.1016/j.apsusc.2016.06.032
[112] D. Zhao, G. Sheng, J. Hu, C. Chen, X. Wang, The adsorption of Pb(II) on Mg2Al layered double hydroxide, Chem. Eng. J. 171 (2011) 167–174. https://doi.org/0.1016/j.cej.2011.03.082
[113] F.Z. Mahjoubi, A. Khalidi, M. Abdennouri, N. Barka, Zn–Al layered double hydroxides intercalated with carbonate, nitrate, chloride and sulfate ions: Synthesis, characterization and dyes removal properties, J. Taibah Univ. Sci. 11 (2015) 90–100. https://doi.org/0.1016/j.jtusci.2015.10.007
[114] X. Meng, M. Feng, H. Zhang, Z. Ma, C. Zhang, Solvothermal synthesis of cobalt/nickel layered double hydroxides for energy storage devices, J. Alloys Compd. 695 (2016) 3522–3529. https://doi.org/0.1016/j.jallcom.2016.11.419
[115] S.S.L. Sobhana, D.R. Bogati, M. Reza, J. Gustafsson, P. Fardim, Cellulose biotemplates for layered double hydroxides networks, Microporous Mesoporous Mater. 225 (2016) 66–73. https://doi.org/0.1016/j.micromeso.2015.12.009
[116] F.L. Theiss, G.A. Ayoko, R.L. Frost, Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods – A review, Appl. Surf. Sci. 383 (2016) 200–213. https://doi.org/0.1016/j.apsusc.2016.04.150
[117] Y.R. Chang, Y.J. Lee, D.J. Lee, Membrane fouling during water or wastewater treatments: Current research updated, J. Taiwan Inst. Chem. Eng. 94 (2019) 88–96. https://doi.org/0.1016/j.jtice.2017.12.019
[118] A. Tiraferri, Membrane-based water treatment to increase water supply, (2014) 1–13. http://www.colloid.ch/index.php?name=membranes
[119] P.S. Goh, W.J. Lau, M.H.D. Othman, A.F. Ismail, Membrane fouling in desalination and its mitigation strategies, Desalination. 425 (2018) 130–155. https://doi.org/0.1016/j.desal.2017.10.018
[120] J. Ayyavoo, T.P.N. Nguyen, B.M. Jun, I.C. Kim, Y.N. Kwon, Protection of polymeric membranes with antifouling surfacing via surface modifications, Colloids Surfaces A Physicochem. Eng. Asp. 506 (2016) 190–201. https://doi.org/0.1016/j.colsurfa.2016.06.026
[121] C. Piyadasa, H.F. Ridgway, T.R. Yeager, M.B. Stewart, C. Pelekani, S.R. Gray, J.D. Orbell, The application of electromagnetic fields to the control of the scaling and biofouling of reverse osmosis membranes – A review, Desalination. 418 (2017) 19–34. doi:https://doi.org/10.1016/j.desal.2017.05.017
[122] J. Kim, M. Jun, M. Park, H. Kyong, S. Kim, J. Ha, Influence of colloidal fouling on pressure retarded osmosis, Desalination. 389 (2016) 207–214
[123] A. Mollahosseini, A. Rahimpour, A new concept in polymeric thin-film composite nanofiltration membranes with antibacterial properties, Biofouling. 29 (2013) 537–548. https://doi.org/0.1080/08927014.2013.777953
[124] C.S. Ong, P.S. Goh, W.J. Lau, N. Misdan, A.F. Ismail, Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: A review, Desalination. 393 (2016) 2–15. https://doi.org/0.1016/j.desal.2016.01.007
[125] J.H. Jhaveri, Z.V.P. Murthy, A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes, Desalination. 379 (2016) 137–154. https://doi.org/0.1016/j.desal.2015.11.009
[126] G. Kang, Y. Cao, Development of antifouling reverse osmosis membranes for water treatment: A review, Water Res. 46 (2012) 584–600. doi:https://doi.org/10.1016/j.watres.2011.11.041