Microfiltration and Ultrafiltration Membranes for Water Purification

$30.00

Microfiltration and Ultrafiltration Membranes for Water Purification

Priya Banerjee, Sandipan Bhattacharya, Rasel Das, Papita Das, Aniruddha Mukhopadhyay

Random and rampant urbanization have rendered one third of the global population vulnerable to water scarcity. For mitigating this problem, membrane technology has been widely investigated for desalination as well as reuse and reclamation of wastewater. Polymeric membranes have reportedly displayed significantly lower consumption of energy with potential self-cleansing and antifouling. Application of microporous and ultraporous polymeric membranes for water purification has been vividly discussed herein. The diverse facets of water treatment technologies using polymeric membranes compiled herein will facilitate all potential readers like academicians, environmentalists, industrialists and membrane technologists, and to address the water scarcity challenges of our society.

Keywords
Polymers, Biopolymers, Microfiltration, Ultrafiltration, Emerging Pollutants, Desalination

Published online , 36 pages

Citation: Priya Banerjee, Sandipan Bhattacharya, Rasel Das, Papita Das, Aniruddha Mukhopadhyay, Microfiltration and Ultrafiltration Membranes for Water Purification, Materials Research Foundations, Vol. 113, pp 33-68, 2021

DOI: https://doi.org/10.21741/9781644901632-3

Part of the book on Polymeric Membranes for Water Purification and Gas Separation

References
[1] Coping with water scarcity. A strategic issue and priority for system-wide action. UN-water (2006).
[2] R. Das, M.E. Ali, S.B.A. Hamid, S. Ramakrishna, Z.Z. Chowdhury, Carbon nanotube membranes for water purification: a bright future in water desalination, Desalination 336 (2014) 97–109. https://doi.org/10.1016/j.desal.2013.12.026
[3] P. Banerjee, R. Das, P. Das, A. Mukhopadhyay, Membrane Technology, in: R. Das (Ed.), Carbon Nanotubes for Clean Water, Springer, Cham, 2018, pp. 127-150. https://doi.org/10.1007/978-3-319-95603-9_6
[4] P.S. Goh, A.F. Ismail, B.C. Ng, Carbon nanotubes for desalination: performance evaluation and current hurdles, Desalination 308 (2013) 2–14. https://doi.org/10.1016/j.desal.2012.07.040
[5] Z. Zia, A. Hartland, M.R. Mucalo, Use of low‑cost biopolymers and biopolymeric composite systems for heavy metal removal from water, Int. J. Env. Sci. Technol. 17 (2020) 4389–4406. https://doi.org/10.1007/s13762-020-02764-3
[6] R. Das, Polymeric Materials for Clean Water, Springer, Berlin, Germany, 2019. https://doi.org/10.1007/978-3-030-00743-0
[7] L.Y. Ng, A.W. Mohammad, C.P. Leo, N. Hilal, Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review, Desalination 308 (2013) 15–33. https://doi.org/10.1016/j.desal.2010.11.033
[8] N.L. Le, S.P. Nunes, Materials and membrane technologies for water and energy sustainability, Sustain. Mater. Technol. 7 (2016) 1–28. https://doi.org/10.1016/j.susmat.2016.02.001
[9] A. Abdel-Karim, T.A. Gad-Allah, A.S. El-Kalliny, S.I.A. Ahmed, E.R. Souaya, M.I. Badawy, M. Ulbricht, Fabrication of modified polyethersulfone membranes for wastewater treatment by submerged membrane bioreactor, Sep. Purif. Technol. 175 (2017) 36–46. https://doi.org/10.1016/j.seppur.2016.10.060
[10] B.B. Ashoor, S. Mansour, A. Giwa, V. Dufour, S.W. Hasan, Principles and applications of direct contact membrane distillation (DCMD): a comprehensive review, Desalination 398 (2016) 222–246. https://doi.org/10.1016/j.desal.2016.07.043
[11] A. Giwa, S. Daer, I. Ahmed, P. Marpu, S. Hasan, Experimental investigation and artificial neural networks ANNs modeling of electrically-enhanced membrane bioreactor for wastewater treatment, J. Water Proc. Eng. 11 (2016) 88–97. https://doi.org/10.1016/j.jwpe.2016.03.011
[12] A. Giwa, S. Hasan, Theoretical investigation of the influence of operating conditions on the treatment performance of an electrically-induced membrane bioreactor, J. Water Proc. Eng. 6 (2015) 72–82. https://doi.org/10.1016/j.jwpe.2015.03.004
[13] X. Wang, C. Wang, C.Y. Tang, T. Hu, X. Li, Y. Ren, Development of a novel anaerobic membrane bioreactor simultaneously integrating microfiltration and forward osmosis membranes for low-strength wastewater treatment, J. Mem. Sci. 527 (2017) 1–7. https://doi.org/10.1016/j.memsci.2016.12.062
[14] B.B. Ashoor, H. Fath, W. Marquardt, A. Mhamdi, Dynamic modeling of direct contact membrane distillation processes, in: I.A. Karimi, R. Srinivasan (Eds.), Computer Aided Chemical Engineering, Elsevier, Netherlands, 2012, pp. 170–174. https://doi.org/10.1016/B978-0-444-59507-2.50026-3
[15] S.W. Hasan, M. Elektorowicz, J.A. Oleszkiewicz, Start-up period investigation of pilot-scale submerged membrane electro-bioreactor (SMEBR) treating raw municipal wastewater, Chemosphere 97 (2014) 71–77. https://doi.org/10.1016/j.chemosphere.2013.11.009
[16] C.H. Neoh, Z.Z. Noor, N.S.A. Mutamim, C.K. Lim, Green technology in wastewater treatment technologies: integration of membrane bioreactor with various wastewater treatment systems, Chem. Eng. J. 283 (2016) 582–594. https://doi.org/10.1016/j.cej.2015.07.060
[17] J. Lee, H.R. Chae, Y.J. Won, K. Lee, C.H. Lee, H.H. Lee, I.C. Kim, J.M. Lee, Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment, J. Mem. Sci. 448 (2013) 223–230. https://doi.org/10.1016/j.memsci.2013.08.017
[18] M. Aslam, A. Charfi, G. Lesage, M. Heran, J. Kim, Membrane bioreactors for wastewater treatment: a review of mechanical cleaning by scouring agents to control membrane fouling, Chem. Eng. J. 307 (2017) 897-913. https://doi.org/10.1016/j.cej.2016.08.144
[19] P. Krzeminski, L. Leverette, S. Malamis, E. Katsou, Membrane bioreactors—a review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects, J. Mem. Sci. 527 (2017) 207–227. https://doi.org/10.1016/j.memsci.2016.12.010
[20] W. Luo, H.V. Phan, M. Xie, F.I. Hai, W.E. Price, M. Elimelech, L.D. Nghiem, Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: biological stability, membrane fouling, and contaminant removal, Water Res. 109 (2017) 122–134. https://doi.org/10.1016/j.watres.2016.11.036
[21] X. Wang, V.W.C. Chang, C.Y. Tang, Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: advances, challenges, and prospects for the future, J. Mem. Sci. 504 (2016) 113-132. https://doi.org/10.1016/j.memsci.2016.01.010
[22] G. Qiu, Y.P. Ting, Short-term fouling propensity and flux behavior in an osmotic membrane bioreactor for wastewater treatment, Desalination 332 (2014) 91–99. https://doi.org/10.1016/j.desal.2013.11.010
[23] B. Díez, N. Roldán, A. Martín, A. Sotto, J.A. Perdigón-Melón, J. Arsuaga, R. Rosal, Fouling and biofouling resistance of metal-doped mesostructured silica/polyethersulfone ultrafiltration membranes, J. Mem. Sci. 526 (2017) 252–263. https://doi.org/10.1016/j.memsci.2016.12.051
[24] S. Mokhtari, A. Rahimpour, A.A. Shamsabadi, S. Habibzadeh, M. Soroush, Enhancing performance and surface antifouling properties of polysulfone ultrafiltration membranes with salicylate-alumoxane nanoparticles, Appl. Surf. Sci. 393 (2017) 93–102. https://doi.org/10.1016/j.apsusc.2016.10.005
[25] Y. Orooji, M. Faghih, A. Razmjou, J. Hou, P. Moazzam, N. Emami, M. Aghababaie, F. Nourisfa, V. Chen, W. Jin, Nanostructured mesoporous carbon polyethersulfone composite ultrafiltration membrane with significantly low protein adsorption and bacterial adhesion, Carbon 111 (2017) 689–704. https://doi.org/10.1016/j.carbon.2016.10.055
[26] N. Sharma, M.K. Purkait, Impact of synthesized amino alcohol plasticizer on the morphology and hydrophilicity of polysulfone ultrafiltration membrane, J. Mem. Sci. 522 (2017) 202–215. https://doi.org/10.1016/j.memsci.2016.08.068
[27] M. Son, H. Kim, J. Jung, S. Jo, H. Choi, Influence of extreme concentrations of hydrophilic pore-former on reinforced polyethersulfone ultrafiltration membranes for reduction of humic acid fouling, Chemosphere 179 (2017) 194–201. https://doi.org/10.1016/j.chemosphere.2017.03.101
[28] S. Velu, G. Arthanareeswaran, H. Lade, Removal of organic and inorganic substances from industry wastewaters using modified aluminosilicate-based polyethersulfone ultrafiltration membranes, Environ. Prog. Sustain. Energy 36 (2017) 1612-1620. https://doi.org/10.1002/ep.12614
[29] H. Wu, Y. Liu, L. Mao, C. Jiang, J. Ang, X. Lu, Doping polysulfone ultrafiltration membrane with TiO2-PDA nanohybrid for simultaneous self-cleaning and self-protection, J. Mem. Sci. 532 (2017) 20–29. https://doi.org/10.1016/j.memsci.2017.03.010
[30] A. Behboudi, Y. Jafarzadeh, R. Yegani, Polyvinyl chloride/polycarbonate blend ultrafiltration membranes for water treatment, J. Mem. Sci. 534 (2017) 18–24. https://doi.org/10.1016/j.memsci.2017.04.011
[31] Y.W. Huang, Z.M. Wang, X. Yan, J. Chen, Y.J. Guo, W.Z. Lang, Versatile polyvinylidene fluoride hybrid ultrafiltration membranes with superior antifouling, antibacterial and self-cleaning properties for water treatment, J Colloid Interf. Sci. 505 (2017) 38–48. https://doi.org/10.1016/j.jcis.2017.05.076
[32] Z. Maghsoud, M. Pakbaz, M.H.N. Famili, S.S. Madaeni, New polyvinyl chloride/thermoplastic polyurethane membranes with potential application in nanofiltration, J. Mem. Sci. 541 (2017) 271–280. https://doi.org/10.1016/j.memsci.2017.07.001
[33] H. Wang, Z.-M. Wang, X. Yan, J. Chen, W.-Z. Lang, Y.-J. Guo, Novel organic-inorganic hybrid polyvinylidene fluoride ultrafiltration membranes with antifouling and antibacterial properties by embedding N-halamine functionalized silica nanospheres, J. Ind. Eng. Chem. 52 (2017) 295–304. https://doi.org/10.1016/j.jiec.2017.03.059
[34] B. Yang, X. Yang, B. Liu, Z. Chen, C. Chen, S. Liang, L.-Y. Chu, J. Crittenden, PVDF blended PVDF-g-PMAA pH-responsive membrane: effect of additives and solvents on membrane properties and performance, J. Mem. Sci. 541 (2017) 558-566. https://doi.org/10.1016/j.memsci.2017.07.045
[35] C. Zhao, J. Lv, X. Xu, G. Zhang, Y. Yang, F. Yang, Highly antifouling and antibacterial performance of poly (vinylidene fluoride) ultrafiltration membranes blending with copper oxide and graphene oxide nanofillers for effective wastewater treatment, J. Colloid Interf. Sci. 505 (2017) 341–351. https://doi.org/10.1016/j.jcis.2017.05.074
[36] S. Daer, J. Kharraz, A. Giwa, S.W. Hasan, Recent applications of nanomaterials in water desalination: a critical review and future opportunities, Desalination 367 (2015) 37–48. https://doi.org/10.1016/j.desal.2015.03.030
[37] A. Giwa, N. Akther, A. Al Housani, S. Haris, S.W. Hasan, Recent advances in humidification dehumidification (HDH) desalination processes: improved designs and productivity, Renew. Sustain. Energy Rev. 57 (2016) 929–944. https://doi.org/10.1016/j.rser.2015.12.108
[38] D. Qadir, H. Mukhtar, L.K. Keong, Mixed matrix membranes for water purification applications, Sep. Purif. Rev. 46 (2017) 62–80. https://doi.org/10.1080/15422119.2016.1196460
[39] H. Rabiee, V. Vatanpour, M.H.D.A. Farahani, H. Zarrabi, Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles, Sep. Purif. Technol. 156 (2015) 299–310. https://doi.org/10.1016/j.seppur.2015.10.015
[40] A. Martín, J.M. Arsuaga, N. Roldán, J. de Abajo, A. Martínez, A. Sotto, Enhanced ultrafiltration PES membranes doped with mesostructured functionalized silica particles, Desalination 357 (2015)16–25. https://doi.org/10.1016/j.desal.2014.10.046
[41] K.L. Mercer, 2017 State of the water industry: strengthening our connections, J. American Water Works Assoc. 109 (2017) 56–65. https://doi.org/10.5942/jawwa.2017.109.0090
[42] J.A. Prince, S. Bhuvana, K.V.K. Boodhoo, V. Anbharasi, G. Singh, Synthesis and characterization of PEG-Ag immobilized PES hollow fiber ultrafiltration membranes with long lasting antifouling properties, J. Mem. Sci. 454 (2014) 538–548. https://doi.org/10.1016/j.memsci.2013.12.050
[43] H. Yu, Y. Zhang, X. Sun, J. Liu, H. Zhang, Improving the antifouling property of polyethersulfone ultrafiltration membrane by incorporation of dextran grafted halloysite nanotubes, Chem. Eng. J. 237 (2014) 322–328. https://doi.org/10.1016/j.cej.2013.09.094
[44] L. Shao, Z.X. Wang, Y.L. Zhang, Z.X. Jiang, Y.Y. Liu, A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate, J. Mem. Sci. 461 (2014) 10–21. https://doi.org/10.1016/j.memsci.2014.03.006
[45] P. Kanagaraj, A. Nagendran, D. Rana, T. Matsuura, S. Neelakandan, T. Karthikkumar, A. Muthumeenal, Influence of N-phthaloyl chitosan on poly (ether imide) ultrafiltration membranes and its application in biomolecules and toxic heavy metal ion separation and their antifouling properties, Appl. Surf. Sci. 329 (2015) 165–173. https://doi.org/10.1016/j.apsusc.2014.12.082
[46] C. Liu, H. Mao, J. Zheng, S. Zhang, Tight ultrafiltration membrane: preparation and characterization of thermally resistant carboxylated cardo poly (arylene ether ketone)s (PAEK-COOH) tight ultrafiltration membrane for dye removal, J. Mem. Sci. 530 (2017)1–10. https://doi.org/10.1016/j.memsci.2017.02.005
[47] F. Galiano, K. Briceno, T. Marino, A. Molino, K.V. Christensen, A. Figoli, Advances in biopolymer-based membrane preparation and applications, J. Mem. Sci. 564 (2018) 562-586. https://doi.org/10.1016/j.memsci.2018.07.059
[48] Y. Gu, J. François, Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry, Chem. Soc. Rev. 42 (2013) 9550-9570. https://doi.org/10.1039/c3cs60241a
[49] M. Niaounakis, Biopolymers: applications and trends, first ed., William Andrew, New York, 2015.
[50] T. Tanaka, M. Ueno, Y. Watanabe, T. Kouya, M. Taniguchi, D.R. Lloyd, Poly(l-lactic acid) microfiltration membrane formation via thermally induced phase separation with drying, J. Chem. Eng. Japan 44 (2011) 467–475. https://doi.org/10.1252/jcej.11we030
[51] S. Chitrattha, T. Phaechamud, Modifying poly(L-lactic acid) matrix film properties with high loaded poly(ethylene glycol), Key Eng. Mater. 545 (2013) 57–62. https://doi.org/10.4028/www.scientific.net/KEM.545.57
[52] T. Phaechamud, S. Chitrattha, Pore formation mechanism of porous poly(dl-lactic acid) matrix membrane, Mater. Sci. Eng. C 61 (2016) 744–752. https://doi.org/10.1016/j.msec.2016.01.014
[53] A. Moriya, P. Shen, Y. Ohmukai, T. Maruyama, H. Matsuyama, Reduction of fouling on poly(lactic acid) hollow fiber membranes by blending with poly(lactic acid)-polyethylene glycol-poly(lactic acid) triblock copolymers, J. Mem. Sci. 415–416 (2012) 712–717. https://doi.org/10.1016/j.memsci.2012.05.059
[54] H. Minbu, A. Ochiai, T. Kawase, M. Taniguchi, D.R. Lloyd, T. Tanaka, Preparation of poly(L-lactic acid) microfiltration membranes by a nonsolvent-induced phase separation method with the aid of surfactants, J. Mem. Sci. 479 (2015) 85–94. https://doi.org/10.1016/j.memsci.2015.01.021
[55] A.C. Chinyerenwa, W. Han, Q. Zhang, Y. Zhuang, K.H. Munna, C. Ying, H. Yang, W. Xu, Structure and thermal properties of porous polylactic acid membranes prepared via phase inversion induced by hot water droplets, Polymer 141 (2018): 62-69. https://doi.org/10.1016/j.polymer.2018.03.011
[56] M.M. Reddy, S. Vivekanandhan, M. Misra, S.K. Bhatia, A.K. Mohanty, Biobased plastics and bionanocomposites: current status and future opportunities, Prog. Polym. Sci. 38 (2013) 1653–1689. https://doi.org/10.1016/j.progpolymsci.2013.05.006
[57] H.C. Chang, T. Sun, N. Sultana, M.M. Lim, T.H. Khan, A.F. Ismail, Conductive PEDOT:PSS coated polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun membranes: Fabrication and characterization, Mater. Sci. Eng. C 61 (2016) 396–410. https://doi.org/10.1016/j.msec.2015.12.074
[58] K. Keawsupsak, A. Jaiyu, J. Pannoi, P. Somwongsa, N. Wanthausk, P. Sueprasita, C. Eamchotchawalit, Poly(lactic acid)/biodegradable polymer blend for the preparation of flat-sheet membrane, J. Teknol. Sci. Eng. 69 (2014) 99–102. https://doi.org/10.11113/jt.v69.3405
[59] M. Villegas, E.F. Castro Vidaurre, J.C. Gottifredi, Sorption and pervaporation of methanol/water mixtures with poly(3-hydroxybutyrate) membranes, Chem. Eng. Res. Des. 94 (2015) 254–265. https://doi.org/10.1016/j.cherd.2014.07.030
[60] M. Villegas, A.I. Romero, M.L. Parentis, E.F. Castro Vidaurre, J.C. Gottifredi, Acrylic acid plasma polymerized poly(3-hydroxybutyrate) membranes for methanol/MTBE separation by pervaporation, Chem. Eng. Res. Des. 109 (2016) 234–248. https://doi.org/10.1016/j.cherd.2016.01.018
[61] V. Ghaffarian, S.M. Mousavi, M. Bahreini, H. Jalaei, Polyethersulfone/poly (butylene succinate) membrane: effect of preparation conditions on properties and performance, J. Ind. Eng. Chem. 20 (2014) 1359–1366. https://doi.org/10.1016/j.jiec.2013.07.019
[62] V. Ghaffarian, S.M. Mousavi, M. Bahreini, Effect of blend ratio and coagulation bath temperature on the morphology, tensile strength and performance of cellulose acetate/poly(butylene succinate) membranes, Desalin. Water Treat. 54 (2015) 473–480. https://doi.org/10.1080/19443994.2014.883329
[63] V. Ghaffarian, S.M. Mousavi, M. Bahreini, M. Afifi, Preparation and characterization of biodegradable blend membranes of PBS/CA, J. Poly. Environ. 21 (2013) 1150-1157. https://doi.org/10.1007/s10924-012-0551-1
[64] M.A. El-Sheikh, S.M. El-Rafie, E.S. Abdel-Halim, M.H. El-Rafie, Green synthesis of hydroxyethyl cellulose-stabilized silver nanoparticles, J. Polym. 2013 (2013) 1–11. https://doi.org/10.1155/2013/650837
[65] A.K. Mishra, Smart Materials for Waste Water Applications, Scrivener Publishing, Wiley, 2016. https://doi.org/10.1002/9781119041214
[66] M.I. Baoxia, M. Elimelech, Gypsum scaling and cleaning in forward osmosis: measurements and mechanisms, Environ. Sci. Technol. 44 (2010) 2022–2028. https://doi.org/10.1021/es903623r
[67] L.A. Goetz, B. Jalvo, R. Rosal, A.P. Mathew, Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration, J. Membr. Sci. 510 (2016) 238–248. https://doi.org/10.1016/j.memsci.2016.02.069
[68] N. Naseri, A.P. Mathew, L. Girandon, M. Fröhlich, K. Oksman, Porous electrospun nanocomposite mats based on chitosan–cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals, Cellulose 22 (2015) 521–534. https://doi.org/10.1007/s10570-014-0493-y
[69] P. Kanagaraj, A. Nagendran, D. Rana, T. Matsuura, Separation of macromolecular proteins and removal of humic acid by cellulose acetate modified UF membranes, Int. J. Biol. Macromol. 89 (2016) 81–88. https://doi.org/10.1016/j.ijbiomac.2016.04.054
[70] S. Varanasi, Z.X. Low, W. Batchelor, Cellulose nanofibre composite membranes – biodegradable and recyclable UF membranes, Chem. Eng. J. 265 (2015) 138–146. https://doi.org/10.1016/j.cej.2014.11.085
[71] Y. Medina-Gonzalez, P. Aimar, J.F. Lahitte, J.C. Remigy, Towards green membranes: preparation of cellulose acetate ultrafiltration membranes using methyl lactate as a biosolvent, Int. J. Sustain. Eng. 4 (2011) 75–83. https://doi.org/10.1080/19397038.2010.497230
[72] F.M. Sukma, P.Z. Çulfaz-Emecen, Cellulose membranes for organic solvent nano filtration, J. Membr. Sci. 545 (2018) 329–336. https://doi.org/10.1016/j.memsci.2017.09.080
[73] K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications, Prog. Polym. Sci. 37 (2012) 106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003
[74] M. Agostini de Moraes, D.S. Cocenza, F. da Cruz Vasconcellos, L.F. Fraceto, M.M. Beppu, Chitosan and alginate biopolymer membranes for remediation of contaminated water with herbicides, J. Environ. Manag. 131 (2013) 222–227. https://doi.org/10.1016/j.jenvman.2013.09.028
[75] D.S. Cocenza, M.A. De Moraes, M.M. Beppu, L.F. Fraceto, Use of biopolymeric membranes for adsorption of paraquat herbicide from water, Water Air. Soil Pollut. 223 (2012) 3093–3104. https://doi.org/10.1007/s11270-012-1092-x
[76] R.G. de Paiva, M.A. de Moraes, F.C. de Godoi, M.M. Beppu, Multilayer biopolymer membranes containing copper for antibacterial applications, J. Appl. Polym. Sci. 126 (2012): E17-E24. https://doi.org/10.1002/app.36666
[77] A. Zarei, V. Ghaffarian, Preparation and characterization of biodegradable cellulose acetate-starch membrane, Polym. Plast. Technol. Eng. 52 (2013) 387–392. https://doi.org/10.1080/03602559.2012.752831
[78] H. Almasi, B. Ghanbarzadeh, A.A. Entezami, Physicochemical properties of starch-CMC-nanoclay biodegradable films, Int. J. Biol. Macromol. 46 (2010) 1–5. https://doi.org/10.1016/j.ijbiomac.2009.10.001
[79] P. Wu, M. Imai, Novel biopolymer composite membrane involved with selective mass transfer and excellent water permeability, in: R.Y. Ning (Ed.), Advancing Desalination, InTech, Rijeka, Croatia, 2012, pp. 57–81. https://doi.org/10.5772/50697
[80] H.D. Raval, P.S. Rana, S. Maiti, A novel high-flux, thin-film composite reverse osmosis membrane modified by chitosan for advanced water treatment, RSC Adv. 5 (2015) 6687–6694. https://doi.org/10.1039/C4RA12610F
[81] M. Egusa, R. Iwamoto, H. Izawa, M. Morimoto, H. Saimoto, H. Kaminaka, S. Ifuku, Characterization of chitosan nanofiber sheets for antifungal application, Int. J. Mol. Sci. 16 (2015) 26202–26210. https://doi.org/10.3390/ijms161125947
[82] A. Cooper, R. Oldinski, H. Ma, J.D. Bryers, M. Zhang, Chitosan-based nanofibrous membranes for antibacterial filter applications, Carbohydr. Polym. 92 (2013) 254–259. https://doi.org/10.1016/j.carbpol.2012.08.114
[83] Z. Wang, Y. Zhang, J. Zhang, L. Huang, J. Liu, Y. Li, G. Zhang, S.C. Kundu, L. Wang, Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel, Scientific Reports 4 (2014) 7064. https://doi.org/10.1038/srep07064
[84] M.M. Schmidt, R.C.P. Dornelles, R.O. Mello, E.H. Kubota, M.A. Mazutti, A.P. Kempka, I.M. Demiate, Collagen extraction process, Int. Food Res. J. 23 (2016) 913–922.
[85] B. Wu, Membrane-based technology in greywater reclamation: A review, Sci. Total Environ. 656 (2019) 184-200. https://doi.org/10.1016/j.scitotenv.2018.11.347
[86] R. Mulyanti, H. Susanto, Wastewater treatment by nanofiltration membranes, IOP Conf. Series: Earth Environ. Sci. 142 (2018) 012017. https://doi.org/10.1088/1755-1315/142/1/012017
[87] A. Rahimpour, B. Rajaeian, A. Hosienzadeh, S.S. Madaeni, F. Ghoreishi, Treatment of oily wastewater produced by washing of gasoline reserving tanks using self-made and commercial nanofiltration membranes, Desalination 265 (2011) 190-198. https://doi.org/10.1016/j.desal.2010.07.051
[88] Z. Gönder, S.A. Beril, B. Hulusi, Advanced treatment of pulp and paper mill wastewater by nanofiltration process: Effects of operating conditions on membrane fouling, Sep. Purif. Technol. 76 (2011) 292-302. https://doi.org/10.1016/j.seppur.2010.10.018
[89] A.M.F. Shaaban, A.I. Hafez, M.A. Abdel-Fatah, N.M. Abdel-Monem, M.H. Mahmoud, Process engineering optimization of nanofiltration unit for the treatment of textile plant effluent in view of solution diffusion model, Egyptian J. Pet. 25 (2016) 79-90. https://doi.org/10.1016/j.ejpe.2015.03.018
[90] V.M. Boddu, T. Paul, M.A. Page, C. Byl, L. Ward, J. Ruan, Gray water recycle: Effect of pretreatment technologies on low pressure reverse osmosis treatment, J. Environ. Chem. Eng. 4 (2016) 4435-4443. https://doi.org/10.1016/j.jece.2016.09.031
[91] H. Luo, K. Chang, K. Bahati, G.M. Geise, Engineering selective desalination membranes via molecular control of polymer functional groups, Environ. Sci. Technol. Lett. 6 (2019) 462-466. https://doi.org/10.1021/acs.estlett.9b00351
[92] A.E. Abdelhamid, A.M. Khalil, Polymeric membranes based on cellulose acetate loaded with candle soot nanoparticles for water desalination, J. Macromol. Sci. A 56 (2019) 153-161. https://doi.org/10.1080/10601325.2018.1559698
[93] Y. L. Thuyavan, N. Anantharaman, G. Arthanareeswaran, A.F. Ismail, R. V. Mangalaraja, Preparation and characterization of TiO2-sulfonated polymer embedded polyetherimide membranes for effective desalination application, Desalination 365 (2015) 355-364. https://doi.org/10.1016/j.desal.2015.03.004
[94] R. Mukherjee, R. Sharma, P. Saini, S. De., Nanostructured polyaniline incorporated ultrafiltration membrane for desalination of brackish water, Environ. Sci. Water Res. Technol. 1 (2015) 893-904. https://doi.org/10.1039/C5EW00163C
[95] H. Chang, T. Li, B. Liu, C. Chen, Q. He, J.C. Crittenden, Smart ultrafiltration membrane fouling control as desalination pretreatment of shale gas fracturing wastewater: The effects of backwash water, Environ. Int. 130 (2019) 104869. https://doi.org/10.1016/j.envint.2019.05.063
[96] S. Zhao, Z. Wang, A loose nano-filtration membrane prepared by coating HPAN UF membrane with modified PEI for dye reuse and desalination, J. Mem. Sci. 524 (2017) 214-224. https://doi.org/10.1016/j.memsci.2016.11.035
[97] A.A., Saif, C.J. Wright, N. Hilal, Investigation of UF membranes fouling and potentials as pre-treatment step in desalination and surface water applications, Desalination 432 (2018) 115-127. https://doi.org/10.1016/j.desal.2018.01.017
[98] F.M. Kafiah, Z. Khan, A. Ibrahim, R. Karnik, M. Atieh, T. Laoui, Monolayer graphene transfer onto polypropylene and polyvinylidene difluoride microfiltration membranes for water desalination, Desalination 388 (2016) 29-37. https://doi.org/10.1016/j.desal.2016.02.027
[99] Y. Ibrahim, F. Banat, A.F. Yousef, D. Bahamon, L.F. Vega, S.W. Hasan, Surface modification of anti‐fouling novel cellulose/graphene oxide (GO) nanosheets (NS) microfiltration membranes for seawater desalination applications, J. Chem. Technol. Biotechnol. 95 (2020) 1915-1925. https://doi.org/10.1002/jctb.6341
[100] J. Shi, W. Wu, Y. Xia, Z. Li, W. Li, Confined interfacial polymerization of polyamide-graphene oxide composite membranes for water desalination, Desalination 441 (2018) 77-86. https://doi.org/10.1016/j.desal.2018.04.030
[101] Z. Wan, Y. Jiang, Synthesis-structure-performance relationships of nanocomposite polymeric ultrafiltration membranes: A comparative study of two carbon nanofillers, J. Mem. Sci. (2020) 118847. https://doi.org/10.1016/j.memsci.2020.118847
[102] Y. Orooji, F. Liang, A. Razmjou, G. Liu, W. Jin, Preparation of anti-adhesion and bacterial destructive polymeric ultrafiltration membranes using modified mesoporous carbon, Sep. Purif. Technol. 205 (2018) 273-283. https://doi.org/10.1016/j.seppur.2018.05.006
[103] C.E. Lin, J. Wang, M.-Y. Zhou, B.-K. Zhu, L.-P. Zhu, C.-J. Gao, Poly (m-phenylene isophthalamide) (PMIA): A potential polymer for breaking through the selectivity-permeability trade-off for ultrafiltration membranes, J. Mem. Sci. 518 (2016) 72-78. https://doi.org/10.1016/j.memsci.2016.06.042
[104] X. Fang, J. Li, X. Li, S. Pan, X. Zhang, X. Sun, J. Shen, W. Han, L. Wang, Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal, Chem. Eng. J. 314 (2017) 38-49. https://doi.org/10.1016/j.cej.2016.12.125
[105] N. Ghaemi, A new approach to copper ion removal from water by polymeric nanocomposite membrane embedded with γ-alumina nanoparticles, Appl. Surf. Sci. 364 (2016) 221-228. https://doi.org/10.1016/j.apsusc.2015.12.109
[106] F.S. Dehkordi, M. Pakizeh, M. Namvar-Mahboub, Properties and ultrafiltration efficiency of cellulose acetate/organically modified Mt (CA/OMMt) nanocomposite membrane for humic acid removal, Appl. Clay Sci. 105 (2015) 178-185. https://doi.org/10.1016/j.clay.2014.11.042
[107] S. Khezli, M. Zandi, J. Barzin, Fabrication of electrospun nanocomposite polyethersulfone membrane for microfiltration, Polym. Bull. 73 (2016) 2265-2286. https://doi.org/10.1007/s00289-016-1607-5
[108] Z. Li, W. Kang, H. Zhao, M. Hu, N. Wei, J. Qiu, B. Cheng, A novel polyvinylidene fluoride tree-like nanofiber membrane for microfiltration, Nanomaterials 6 (2016) 152. https://doi.org/10.3390/nano6080152
[109] K. Fischer, M. Grimm, J. Meyers, C. Dietrich, R. Gläser, A. Schulze, Photoactive microfiltration membranes via directed synthesis of TiO2 nanoparticles on the polymer surface for removal of drugs from water, J. Mem. Sci. 478 (2015) 49-57. https://doi.org/10.1016/j.memsci.2015.01.009
[110] A.K. Shukla, J. Alam, M. Rahaman, A. Alrehaili, M. Alhoshan, Ali Aldalbahi, A facile approach for elimination of electroneutral/anionic organic dyes from water using a developed carbon-based polymer nanocomposite membrane, Water Air Soil Pollut. 231 (2020) 1-16. https://doi.org/10.1007/s11270-020-04483-4