Comprehensive Study on Piezo-Phototronic Effect: Way Forward for Ferrite Based Solar Cells


Comprehensive Study on Piezo-Phototronic Effect: Way Forward for Ferrite Based Solar Cells

Ritesh Verma, Ankush Chauhan, Rajesh Kumar

The wurtzite structured materials possess the inner-crystal piezopotential which comprehensively tune or control the charge carrier generation, separation, transportation, and recombination in optoelectronic devices. The piezo-phototronic effect provides a new working principle to the current traditional devices. Its effect on solar cells progresses made by the eminent scientists, and researchers in the field of piezo-phototronic modulated solar cells such as semiconductor-based, perovskite-based, multiple quantum-well (MQW) based and core/shell based. It has been described that the piezo-phototronic effect has improved the power conversion efficiency (PCE) of the solar cells, and the effect of temperature on the piezo-phototronic devices. Ferrite-based materials have emerged as a viable candidate for use in solar cells. As a result of this research, ferrite-based nanomaterials can now be used in solar cell applications, as well as the piezophototronic effect on these materials can be investigated. The piezo-phototronic effect is a novel subject that offers a new platform for material science and electronics to investigate.

Wurtzite, Piezopotential, Piezo-Phototronic Effect, Multiple Quantum-Well, Power Conversion Efficiency

Published online , 32 pages

Citation: Ritesh Verma, Ankush Chauhan, Rajesh Kumar, Comprehensive Study on Piezo-Phototronic Effect: Way Forward for Ferrite Based Solar Cells, Materials Research Foundations, Vol. 112, pp 279-310, 2021


Part of the book on Ferrite

[1] C. N. Kumar, Energy collection via Piezoelectricity, IOP Conference Series J. Phys. 1 (2015) 012031.
[2] A. I. Kingon, S. Srinivasan, Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications, Nat. Mater. 4(3) (2005) 233.
[3] R. Ferren, Advances in polymeric piezoelectric transducers, Nature. 350(6319) (1991) 26-27.
[4] Q. Yang, W. Wang, S. Xu, Z. L. Wang, Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect, Nano Lett. 11(9) (2011) 4012-4017.
[5] Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, Z. L. Wang, Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect, ACS Nano 4(10) (2010) 6285-6291.
[6] J. M. Wu, C. Xu, Y. Zhang, Z. L. Wang, Lead-free nanogenerator made from single ZnSnO3 microbelt, ACS Nano 6(5) (2012) 4335-4340.
[7] J. M. Wu, C. Xu, Y. Zhang, Y. Yang, Y. Zhou, Z. L. Wang, Flexible and transparent nanogenerators based on a composite of lead‐free ZnSnO3 triangular‐belts, Adv. Mater. 24(45) (2012) 6094-6099.
[8] J. M. Wu, Y. Chen, Y. Zhang, K. H. Chen, Y. Yang, Y. Hu, J. H. He, Z. L. Wang, Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire, ACS Nano 6(5) (2012) 4369-4374.
[9] Z. L. Wang, Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics, Nano Today 5(6) (2010) 540-552.
[10] J. Sun, Q. Hua, R. Zhou, D. Li, W. Guo, X. Li, G. Hu, C. Shan, Q. Meng, L. Dong, Piezo-Phototronic Effect Enhanced Efficient Flexible Perovskite Solar Cells, ACS Nano 13 (2019) 4507-4513.
[11] Y. Peng, M. Que, H. E. Lee, R. Bao, X. Wang, J. Lu, Z. Yuan, X. Li, J. Tao, J. Sun, Achieving High-resolution Pressure Mapping via Flexible GaN/ZnO Nanowire LEDs Array by Piezo-phototronic Effect. Nano Energy 58 (2019) 633-640.
[12] Jiang, J., Wang, Q., Wang, B., Dong, J., Li, Z., Li, X., Zi, Y., Li, S., Wang, X.: Direct lift-off and the piezo-phototronic study of InGaN/GaN heterostructure membrane. Nano Ener. 59 (2019) 545-552.
[13] W. Zhang, D. Jiang, M. Zhao, Y. Duan, X. Zhou, X. Yang, C. Shan, J. Qin, S. Gao, Q. Liang, Piezo-phototronic effect for enhanced sensitivity and response range of ZnO thin film flexible UV photodetectors, J. Appl. Phys. 125(2) (2019) 024502.
[14] J. Guo, R. Wen, J. Zhai, Z. L. Wang, Enhanced NO2 gas sensing of a single-layer MoS2 by photogating and piezo-phototronic effects, Sci. Bull. 64(2) (2019) 128-135.
[15] D. J. Lee, G. Mohan Kumar, P. Ilanchezhiyan, F. Xiao, S. U. Yuldashev, Y. D. Woo, D. Y. Kim, T. W. Kang, Arrayed CdTeMicrodots and Their Enhanced Photodetectivity via Piezo-Phototronic Effect, Nanomater. 9(2) (2019) 178.
[16] X. Wang, G. Dai, Y. Chen, X. Mo, X. Li, W. Huang, J. Sun, J. Yang, Piezo-phototronic enhanced photoresponsivity based on single CdTe nanowire photodetector, J. Appl. Phys. 125(9) (2019) 094505.
[17] S. Qiao, J. Liu, X. Niu, B. Liang, G. Fu, Z. Li, S. Wang, K. Ren, C. Pan, Piezophototronic Effect Enhanced Photoresponse of the Flexible Cu (In, Ga) Se2 (CIGS) Heterojunction Photodetectors, Adv. Funct. Mater. 28(19) (2018) 1707311.
[18] F. Li, W. Peng, Z. Pan, Y. He, Optimization of Si/ZnO/PEDOT: PSS tri-layer heterojunction photodetector by piezo-phototronic effect using both positive and negative piezoelectric charges, Nano Ener. 48 (2018) 27-34.
[19] P. Lin, L. Zhu, D. Li, L. Xu, Z. L. Wang, Tunable WSe2-CdS mixed-dimensional van der Waals heterojunction with a piezo-phototronic effect for an enhanced flexible photodetector, Nanoscale 10(30) (2018) 14472-14479.
[20] Q. Lai, L. Zhu, Y. Pang, L. Xu, J. Chen, Z. Ren, J. Luo, L. Wang, L. Chen, K. Han, Piezo-phototronic Effect Enhanced Photodetector Based on CH3NH3PbI3 Single Crystals, ACS Nano 12(10) (2018) 10501-10508.
[21] M. Chen, B. Zhao, G. Hu, X. Fang, H. Wang, L. Wang, J. Luo, X. Han, X. Wang, C. Pan, Piezo‐Phototronic Effect Modulated Deep UV Photodetector Based on ZnO‐Ga2O3 Heterojuction Microwire, Adv. Funct. Mater. 28(14) (2018) 1706379.
[22] P. Lin, L. Zhu, D. Li, L. Xu, C. Pan, Z. Wang, Piezo‐Phototronic Effect for Enhanced Flexible MoS2/WSe2 van der Waals Photodiodes, Adv. Funct. Mater. 28(35) (2018) 1802849.
[23] S. Qiao, J. Liu, G. Fu, K. Ren, Z. Li, S. Wang, C. Pan, ZnO nanowire based CIGS solar cell and its efficiency enhancement by the piezo-phototronic effect, Nano Ener. 49 (2018) 508-514.
[24] Y. Dai, X. Wang, W. Peng, C. Wu, Y. Ding, K. Dong, Z. L. Wang, Enhanced performances of Si/CdS heterojunction near-infrared photodetector by the piezo-phototronic effect, Nano Ener. 44 (2018) 311-318.
[25] L. Zhang, D. Zhu, H. He, Q. Wang, L. Xing, X. Xue, Enhanced piezo/solar-photocatalytic activity of Ag/ZnO nanotetrapods arising from the coupling of surface plasmon resonance and piezophototronic effect, J. Phys. Chem. Solids 102 (2017) 27-33.
[26] X. Li, R. Liang, J. Tao, Z. Peng, Q. Xu, X. Han, X. Wang, C. Wang, J. Zhu, C. Pan, Flexible light emission diode arrays made of transferred Si microwires-ZnO nanofilm with piezo-phototronic effect enhanced lighting, ACS Nano 11(4) (2017) 3883-3889.
[27] J. Sun, P. Li, R. Gao, X. Lu, C. Li, Y. Lang, X. Zhang, J. Bian, Piezo-phototronic effect enhanced photo-detector based on ZnO nano-arrays/NiO structure, Appl. Surf. Sci. 427 (2018) 613-619.
[28] X. Wang, W. Peng, R. Yu, H. Zou, Y. Dai, Y. Zi, C. Wu, S. Li, Z. L. Wang, Simultaneously enhancing light emission and suppressing efficiency droop in GaN microwire-based ultraviolet light-emitting diode by the piezo-phototronic effect, Nano Lett. 17(6) (2017) 3718-3724.
[29] H. Zou, X. Li, W. Peng, W. Wu, R. Yu, C. Wu, W. Ding, F. Hu, R. Liu, Y. Zi, Piezo‐Phototronic Effect on Selective Electron or Hole Transport through Depletion Region of Vis-NIR Broadband Photodiode, Adv. Mater. 29(29) (2017) 1701412.
[30] G. Dai, H. Zou, X. Wang, Y. Zhou, P. Wang, Y. Ding, Y. Zhang, J. Yang, Z. L. Wang, Piezo-phototronic Effect Enhanced Responsivity of Photon Sensor Based on Composition-Tunable Ternary CdSxSe1-x Nanowires, ACS Photo. 4(10) (2017) 2495-2503.
[31] C. Takahashi, N. Matsubara, Y. Akachi, N. Ogawa, G. Kalita, T. Asaka, M. Tanemura, Y. Kawashima, H. Yamamoto, Visualization of silver-decorated poly (DL-lactide-co-glycolide) nanoparticles and their efficacy against Staphylococcus epidermidis, Mater. Sci. Eng. C 72 (2017) 143-149.
[32] S. Jeong, M. W. Kim, Y. R. Jo, T. Y. Kim, Y. C. Leem, S. W. Kim, B. J. Kim, S. J. Park, Crystal-Structure-Dependent Piezotronic and Piezo-Phototronic Effects of ZnO/ZnS Core/Shell Nanowires for Enhanced Electrical Transport and Photosensing Performance, ACS Appl. Mater. Inter. 10(34) (2018) 28736-28744.
[33] K. Zhang, M. Peng, W. Wu, J. Guo, G. Gao, Y. Liu, J. Kou, R. Wen, Y. Lei, A. Yu, A flexible p-CuO/n-MoS 2 heterojunction photodetector with enhanced photoresponse by the piezo-phototronic effect, Mater. Hor. 4(2) (2017) 274-280.
[34] X. Wen, W. Wu, Z. L. Wang, Effective piezo-phototronic enhancement of solar cell performance by tuning material properties, Nano Ener. 2(6) (2013) 1093-1100.
[35] L. Dong, S. Niu, C. Pan, R. Yu, Y. Zhang, Z. L. Wang, Piezo‐Phototronic Effect of CdSe Nanowires, Adv. Mater. 24(40) (2012) 5470-5475.
[36] Y. Zhang, L. Yang, Y. Zhang, Z. Dig, M. Wu, Y. Zhou, C. Diao, H. Zhang, X. Wang, Z. L. Wang, Enhanced photovoltaic performances of La-doped Bismuth ferrite/zinc oxide heterojunction by coupling piezo-phototronic effect and ferroelectricity, ASC Nano 14 (2020) 10723-10732.
[37] Y. L. Liu, J. M. Wu, Synergistically catalytic activities of BiFeO3/TiO2 core shell nanocomposites for degredation of roganic dye molecule through piezophototronic effect, Nano Ener. 56 (2019) 74-81.
[38] Y. H. Hsu, P. Y. Chen, C. S. Tu, Anthoniappen, Polarization enhanced potovoltaic response and mehanism in Ni-doped (Ba0.93Gd0.07)FeO3 ceramics for self-powered photodetector, J. Eur. Ceram. Soc. 41 (2021) 1934-1944.
[39] H. Morkoç, U. Özgür, Zinc oxide: fundamentals, materials and device technology, John Wiley & Sons, 2008.
[40] Z. L. Wang, Nanopiezotronics, Adv. Mater. 19(6) (2007) 889-892.
[41] Z. L. Wang, Piezotronic and piezophototronic effects, J. Phys. Chem. Lett. 1(9) (2010) 1388-1393.
[42] J. G. Webster, Wiley encyclopedia of electrical and electronics engineering, John Wiley New York, 1999.
[43] Y. Gao, Z. L. Wang, Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics, Nano Lett. 7(8) (2007) 2499-2505.
[44] H. Hao, K. Jenkins, X. Huang, Y. Xu, J. Huang, R. Yang, Piezoelectric potential in single-crystalline ZnO nanohelices based on finite element analysis, Nanomater. 7(12) (2017) 430.
[45] Z. L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Sci. 312(5771) (2006) 242-246.
[46] J. Zhou, P. Fei, Y. Gu, W. Mai, Y. Gao, R. Yang, G. Bao, Z. L. Wang, Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires, Nano Lett. 8(11) (2008) 3973-3977.
[47] S. M. Sze, K. K. Ng, Physics of semiconductor devices, John wiley & Sons, 2006.
[48] T. Ikeda, Fundamentals of piezoelectricity, Oxford university press, 1996.
[49] U. Muhammad, U. Mushtaq, D. Zheng, D. P. Han, N. Muhammad, Investigation of optoelectronic characteristics of indium composition in InGaN-based light-emitting diodes, Mater. Res. Express 6 (2019) 045909.
[50] S. O. Kasap, R. K. Sinha, Optoelectronics and photonics: principles and practices, Prentice Hall New Jersey, 2001.
[51] Z. L. Wang, Progress in piezotronics and piezo‐phototronics, Adv. Mater. 24(34) (2012) 4632-4646.
[52] Z. L. Wang, W. Wu, Piezotronics and piezo-phototronics: fundamentals and applications, Nat. Sci. Rev. 1(1) (2013) 62-90.
[53] S. Sze, Physics of Semiconductor Devices. John Wiley, New York (1981) 122-129.
[54] Z. L. Wang, Introduction of Piezotronics and Piezo-Phototronics. In: Piezotronics and Piezo-Phototronics, Springer, (2012) 1-17.
[55] Y. Zhang, Y. Liu, Z. L. Wang, Fundamental theory of piezotronics, Adv. Mater. 23(27) (2011) 3004-3013.
[56] R. T. Tung, Recent advances in Schottky barrier concepts, Mater. Sci. Eng. R. 35 (2001) 1-138.
[57] E. H. Rhoderick, R. H. Williams, MS Contacts, Clarendon, Oxford, (1988) 1-70.
[58] L. J. Brillson, Y. Lu, ZnO Schottky barriers and Ohmic contacts, J. Appl. Phys. 109(12) (2011) 8.
[59] Z. L. Wang, Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics, Nano Today 5 (2010) 540-552.
[60] Z. L. Wang, Preface to the special section on piezotronics, Adv. Mater. 24(34) (2012) 4630-4631.
[61] J. H. He, C. L. Hsin, J. Liu, L. J. Chen, Z. L. Wang, Piezoelectric gated diode of a single ZnO nanowire, Adv. Mater. 19(6) (2007) 781-784.
[62] Z. Gao, J. Zhou, Y. Gu, P. Fei, Y. Hao, G. Bao, Z. L. Wang, Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor, J. Appl. Phys. 105(11) (2009) 113707.
[63] Z. L. Wang, The new field of nanopiezotronics, Mater. Today 10(5) (2007) 20-28.
[64] J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, Z. L. Wang, Flexible piezotronic strain sensor, Nano Lett. 8(9) (2008) 3035-3040.
[65] Y. Hu, Y. Chang, P. Fei, R. L Snyder, Z. L. Wang, Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects, ACS Nano 4(2) (2010) 1234-1240.
[66] D. Xiong, W. Deng, G. Tian, Y. Gao, X. Chu, C. Yan, L. Jin, Y. Su, W. Yan, W. Yang, Piezo-phototronic Enhanced Serrate-structured ZnO-based Heterojunction Photodetector for Optical Communication, Nanoscale 11 (2019) 3021-3027.
[67] S. M. Lélé, Sustainable development: a critical review, World Devp. 19(6) (1991) 607-621.
[68] H. Meyar-Naimi, S. Vaez-Zadeh, Sustainable development based energy policy making frameworks, a critical review, Energy Policy 43 (2012) 351-361.
[69] L. Zheng, Z. H. Lin, G. Cheng, W. Wu, X. Wen, S. Lee, Z. L. Wang, Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy, Nano Ener. 9 (2014) 291-300.
[70] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature 449(7164) (2007) 885.
[71] P. Devine‐Wright, Beyond NIMBYism: towards an integrated framework for understanding public perceptions of wind energy, Wind Ener. 8(2) (2005) 125-139.
[72] M. Hoogwijk, A. Faaij, R. Van Den Broek, G. Berndes, D. Gielen, W. Turkenburg, Exploration of the ranges of the global potential of biomass for energy, Biomass and Bioener.25(2) (2003) 119-133.
[73] Y. Yang, W. Guo, K. C. Pradel, G. Zhu, Y. Zhou, Y. Zhang, Y. Hu, L. Lin, Z. L. Wang, Pyroelectric nanogenerators for harvesting thermoelectric energy, Nano Lett. 12(6) (2012) 2833-2838.
[74] W. Liu, X. Yan, G. Chen, Z. Ren, Recent advances in thermoelectric nanocomposites, Nano Ener. 1(1) (2012) 42-56.
[75] M. A. Green, The path to 25% silicon solar cell efficiency: history of silicon cell evolution, Progress in Photovoltaics: Res. Appl. 17(3) (2009) 183-189.
[76] A. Polman, M. Knight, E. C. Garnett, B. Ehrler, W. C. Sinke, Photovoltaic materials: Present efficiencies and future challenges, Sci. 352(6283) (2016) aad4424.
[77] A. Rohatgi, D. Meier, Developing novel low-cost, high-throughput processing techniques for 20%-efficient monocrystalline silicon solar cells, Photovol. Int. 10 (2010) 87-93.
[78] M. L. Brongersma, Y. Cui, S. Fan, Light management for photovoltaics using high-index nanostructures, Nat. Mater. 13(5) (2014) 451.
[79] M. Girtan, New Trends in Solar Cells Research: Future Solar Energy Devices, Springer, (2018) 45-47.
[80] T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications, Proceedings of the National Academy of Sciences of the USA 101(27) (2004) 9966-9970.
[81] A. Bykhovski, V. Kaminski, M. Shur, Q. Chen, M. A. Khan, Piezoresistive effect in wurtzite n‐type GaN. Applied physics letters 68(6) (1996) 818-819.
[82] R. Gaska, M. Shur, A. Bykhovski, J. Yang, M. Khan, V. Kaminski, S. Soloviov, Piezoresistive effect in metal-semiconductor-metal structures on p-type GaN, Appl. Phys. Lett. 76(26) (2000) 3956-3958.
[83] K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J. V. Manca, On the origin of the open-circuit voltage of polymer-fullerene solar cells, Nat. Mater. 8(11) (2009) 904.
[84] C. Chen, Y. Shi, Y. S. Zhang, J. Zhu, Y. Yan, Size dependence of Young’s modulus in ZnO nanowires, Phys. Rev. Chem. 96(7) (2006) 075505.
[85] Y. Zhang, Y. Yang, Z. L. Wang, Piezo-phototronics effect on nano/microwire solar cells, Ener. Environm. Sci. 5(5) (2012) 6850-6856.
[86] F. Boxberg, N. Søndergaard, H. Xu, Photovoltaics with piezoelectric core− shell nanowires, Nano Lett. 10(4) (2010) 1108-1112.
[87] A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, C. T. Black, Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells, Nat. Comm. 6 (2015) 5963.
[88] J. Oh, H. C. Yuan, H. M. Branz, An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures, Nat. Nanotech. 7(11) ( 2012) 743.
[89] C. Battaglia, C. M. Hsu, K. Söderström, J. Escarre, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Light trapping in solar cells: can periodic beat random, ACS Nano 6(3) (2012) 2790-2797.
[90] P. H. Wang, R. E. Nowak, S. Geißendörfer, M. Vehse, N. Reininghaus, O. Sergeev, K. von Maydell, A. G. Brolo, C, Agert, Cost-effective nanostructured thin-film solar cell with enhanced absorption, Appl. Phys. Lett. 105(18) (2014) 183106.
[91] L. Aé, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, M. C. Lux‐Steiner, ZnO nanorod arrays as an antireflective coating for Cu (In, Ga) Se2 thin film solar cells, Progress in Photovoltaics: Res. Appl. 18(3) (2010) 209-213.
[92] Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, J. W. Hsu, ZnO nanostructures as efficient antireflection layers in solar cells, Nano Lett. 8(5) (2008) 1501-1505.
[93] R. E. Nowak, M. Vehse, O. Sergeev, K. von Maydell, C. Agert, ZnO nanorod arrays as light trapping structures in amorphous silicon thin-film solar cells, Solar Ener. Mater. Solar Cells 125 (2014) 305-309.
[94] R. E. Nowak, M. Vehse, O. Sergeev, T. Voss, M. Seyfried, K. von Maydell, C. Agert, ZnO Nanorods with Broadband Antireflective Properties for Improved Light Management in Silicon Thin‐Film Solar Cells, Adv. Opt. Mater. 2(1) (2014) 94-99.
[95] L. Zhu, L. Wang, C. Pan, L. Chen, F. Xue, B. Chen, L. Yang, L. Su, Z. L. Wang, Enhancing the efficiency of silicon-based solar cells by the piezo-phototronic effect, ACS Nano 11(2) (2017) 1894-1900.
[96] W. Metzger, I. Repins, M. Romero, P. Dippo, M. Contreras, R. Noufi, D. Levi, Recombination kinetics and stability in polycrystalline Cu (In, Ga) Se2 solar cells, Thin Solid Films 517(7) (2009) 2360-2364.
[97] C. Xu, H. Zhang, J. Parry, S. Perera, G. Long, H. Zeng, A single source three-stage evaporation approach to CIGS absorber layer for thin film solar cells, Solar Ener. Mater. Solar Cells 117 (2013) 357-362.
[98] C. Persson, Anisotropic hole-mass tensor of CuIn 1− x Ga x (S, Se) 2: Presence of free carriers narrows the energy gap, Appl. Phys. Lett. 93(7) (2008) 072106.
[99] O. Jani, C. Honsberg, Y. Huang, J. O. Song, I. Ferguson, G. Namkoong, E. Trybus, A. Doolittle, S. Kurtz, Design, growth, fabrication and characterization of high-band gap InGaN/GaN solar cells, IEEE 4th World Conference on Photovoltaic Energy Conference (2006) 20-25.
[100] R. Dahal, J. Li, K. Aryal, J. Lin, H. Jiang, InGaN/GaN multiple quantum well concentrator solar cells, Appl. Phys. Lett. 97(7) (2010) 073115.
[101] S. Lee, Y. Honda, H. Amano, Effect of piezoelectric field on carrier dynamics in InGaN-based solar cells, J. Phys. D: Appl. Phys. 49(2) (2015) 025103.
[102] R. Dahal, B. Pantha, J. Li, J. Lin, H. Jiang, InGaN/GaN multiple quantum well solar cells with long operating wavelengths, Appl. Phys. Lett. 94(6) (2009) 063505.
[103] C. Jiang, L. Jing, X. Huang, M. Liu, C. Du, T. Liu, X. Pu, W. Hu, Z. L. Wang, Enhanced Solar Cell Conversion Efficiency of InGaN/GaN Multiple Quantum Wells by Piezo-Phototronic Effect, ACS Nano 11(9) (2017) 9405-9412.
[104] K. Nakayama, K. Tanabe, H. A. Atwater, Plasmonic nanoparticle enhanced light absorption in GaAs solar cells, Appl. Phys. Lett. 93(12) (2008) 121904.
[105] S. Albrecht, B. Rech, Perovskite solar cells: On top of commercial photovoltaics, Nat. Ener. 2(1) (2017) 16196.
[106] G. E. Eperon, M. T. Hörantner, H. J. Snaith, Metal halide perovskite tandem and multiple-junction photovoltaics, Nat. Rev. Chem. 1(12) (2017) 0095.
[107] Y. Yang, J. You, Make perovskite solar cells stable, Nat. News 544(7649) (2017) 155.
[108] J. Huang, Y. Yuan, Y. Shao, Y. Yan, Understanding the physical properties of hybrid perovskites for photovoltaic applications, Nat. Rev. Mater. 2(7) (2017) 17042.
[109] T. Jiang, W. Fu, Improved performance and stability of perovskite solar cells with bilayer electron-transporting layers, RSC Adv. 8(11) (2018) 5897-5901.
[110] K. Gu, D. Zheng, L. Li, Y. Zhang, High-efficiency and stable piezo-phototronic organic perovskite solar cell, RSC Adv. 8(16) (2018) 8694-8698.
[111] Y. Wang, D. Zheng, L. Li, Y. Zhang, Enhanced Efficiency of Flexible GaN/Perovskite Solar Cells Based on the Piezo-Phototronic Effect, ACS Appl. Ener. Mater. 1(7) (2018) 3063-3069.
[112] D. R. Kim, C. H. Lee, P. M. Rao, I. S. Cho, X. Zheng, Hybrid Si microwire and planar solar cells: passivation and characterization, Nano Lett. 11(7) (2011) 2704-2708.
[113] J. A. Czaban, D. A. Thompson, R. R. LaPierre, GaAs core− shell nanowires for photovoltaic applications, Nano Lett. 9(1) (2008) 148-154.
[114] N. Sköld, L. S. Karlsson, M. W. Larsson, M.E. Pistol, W. Seifert, J. Trägårdh, L. Samuelson, Growth and Optical Properties of Strained GaAs− Ga x In1-x P Core− Shell Nanowires, Nano Lett. 5(10) (2005) 1943-1947.
[115] B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, T. Fukui, Single GaAs/GaAsP coaxial core− shell nanowire lasers, Nano Lett. 9(1) (2008) 112-116.
[116] L. Zhu, L. Wang, F. Xue, L. Chen, J. Fu, X. Feng, T. Li, Z. L. Wang, Piezo‐Phototronic Effect Enhanced Flexible Solar Cells Based on n‐ZnO/p‐SnS Core-Shell Nanowire Array, Adv. Sci. 4(1) (2017) 1600185.
[117] J. Vidal, S. Lany, M. d’Avezac, A. Zunger, A. Zakutayev, J. Francis, J. Tate, Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS, Appl. Phys. Lett. 100(3) (2012) 032104.
[118] H. Noguchi, A. Setiyadi, H. Tanamura, T. Nagatomo, O. Omoto, Characterization of vacuum-evaporated tin sulfide film for solar cell materials, Solar Ener. Mater. Solar Cells 35 (1994) 325-331.
[119] W. Albers, C. Haas, H. Vink, J. Wasscher, Investigations on SnS, J. Appl. Phys. 32(10) (1961) 2220-2225.
[120] A. Bosman, E. Havinga, Temperature dependence of dielectric constants of cubic ionic compounds, Phys. Rev. 129(4) (1963) 1593.
[121] Y. P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica 34(1) (1967) 149-154.
[122] C. de Julián Fernández, Influence of the temperature dependence of anisotropy on the magnetic behavior of nanoparticles, Phys. Rev. B 72(5) (2005) 054438.
[123] T. Sjostrom, F. E. Harris, S. Trickey, Temperature-dependent behavior of confined many-electron systems in the Hartree-Fock approximation, Phys. Rev. B 85(4) (2012) 045125.
[124] Y. Hu, B. D. Klein, Y. Su, S. Niu, Y. Liu, Z. L. Wang, Temperature dependence of the piezotronic effect in ZnO nanowires, Nano Lett. 13(11) (2013) 5026-5032.
[125] X. Wang, W. Peng, C. Pan, Z. L. Wang, Piezotronics and piezo-phototronics based on a-axis nano/microwires: fundamentals and applications, Semicond. Sci. Tech. 32(4) (2017) 043005.
[126] X. Wang, R. Yu, W. Peng, W. Wu, S. Li, Z. L. Wang, Temperature dependence of the piezotronic and piezophototronic effects in a‐axis GaN nanobelts, Adv. Mater. 27(48) (2015) 8067-8074.
[127] W. Sha, J. Zhang, S. Tan, X. Luo, W. Hu, III-Nitrides piezotronic/piezo-phototronic materials and devices, J. Phys. D: Appl. Phys. 52 (2019) 213003.
[128] G. A. Slack, L. J. Schowalter, D. Morelli, J. A. Freitas Jr, Some effects of oxygen impurities on AlN and GaN, J. Cryst. Grow. 246 (2002), 287-298.
[129] W. Moore, J. Jr. Freitas G. Braga, R. Molnar, S. Lee, K. Lee, I. Song, Identification of Si and O donors in hydride-vapor-phase epitaxial GaN, Appl. Phys. Lett. 79(16) (2001) 570-2572.
[130] R. Molnar, T. Lei, T. Moustakas, Electron transport mechanism in gallium nitride, Appl. Phys. Lett. 62(1) (1993) 72-74.
[131] W. Mönch, Semiconductor surfaces and interfaces, Vol. 26, Springer Science & Business Media, 2013.
[132] S. Chevtchenko, X. Ni, Q. Fan, A. Baski, H. Morkoç, Surface band bending of a-plane GaN studied by scanning Kelvin probe microscopy, Appl. Phys. Lett. 88(12) (2006) 122104.