Spinel Ferrite Based Nanomaterials for Water Remediation Application


Spinel Ferrite Based Nanomaterials for Water Remediation Application

Rohit Jasrotia, Jyoti Prakash

The decreasing levels of consumable water on earth have been a serious issue and this issue makes the researchers and scientists develop new technologies for the purification of polluted water. Several reports have been carried on wastewater remediation by utilizing spinel ferrite-based nanoparticles and their composites. The spinel ferrites-based nanoparticles utilized for wastewater treatment was cost effective, chemically stable, easily retrieved and reusable. The present work addresses the various fabrication techniques for the preparation of spinel ferrite-based nanoparticles and their utilization for the removal of organic and inorganic pollutants through the adsorption paths.

Spinel Ferrites, Fabrication Techniques, Adsorption Mechanism, Organic and Inorganic Pollutants, Wastewater Remediation

Published online , 28 pages

Citation: Rohit Jasrotia, Jyoti Prakash, Spinel Ferrite Based Nanomaterials for Water Remediation Application, Materials Research Foundations, Vol. 112, pp 218-245, 2021

DOI: https://doi.org/10.21741/9781644901595-6

Part of the book on Ferrite

[1] J. Theron, J.A. Walker, T.E. Cloete, Nanotechnology and water treatment: applications and emerging opportunities, Crit. Rev. Microbiol. 34 (2008) 43–69. https://doi.org/10.1080/10408410701710442
[2] M. Anjum, R. Miandad, M. Waqas, Remediation of wastewater using various nanomaterials. Arabian J of Chem 12: 4897–4919, 2016. https://doi.org/10.1016/j.arabjc.2016.10.004
[3] S. Sharma, A. Bhattacharya, Drinking water contamination and treatment techniques, Appl. Water Sci. 7 (2017) 1043–1067. https://doi.org/10.1007/s13201-016-0455-7
[4] A. Kumar, A. Rana, G. Sharma, M. Naushad, A.H. Al-Muhtaseb, C. Guo, A. Iglesias-Juez, F.J. Stadler, High-performance photocatalytic hydrogen production and degradation of levofloxacin by wide spectrum-responsive Ag/Fe3O4 bridged SrTiO3/g-C3N4 plasmonic nanojunctions: joint effect of Ag and Fe3O4, ACS Appl. Mater. Interfaces. 10 (2018) 40474–40490. https://doi.org/10.1021/acsami.8b12753
[5] A. Verma, S. Thakur, G. Goel, J. Raj, V.K. Gupta, D. Roberts, V.K. Thakur, Bio-based Sustainable Aerogels: New Sensation in CO2 Capture, Curr. Res. Green Sustain. Chem. (2020) 100027. https://doi.org/10.1016/j.crgsc.2020.100027
[6] R. Jasrotia, N. Kumari, R. Kumar, M. Naushad, P. Dhiman, G. Sharma, Photocatalytic degradation of environmental pollutant using nickel and cerium ions substituted Co 0.6 Zn 0.4 Fe 2 O 4 nanoferrites, Earth Syst. Environ. (2021) 1–19. https://doi.org/10.1007/s41748-021-00214-9
[7] S. Kour, R. Jasrotia, P. Puri, A. Verma, B. Sharma, V.P. Singh, R. Kumar, S. Kalia, Improving photocatalytic efficiency of MnFe 2 O 4 ferrites via doping with Zn 2+/La 3+ ions: photocatalytic dye degradation for water remediation, Environ. Sci. Pollut. Res. (2021) 1–16. https://doi.org/10.1007/s11356-021-13147-7
[8] R. Jasrotia, V.P. Singh, R. Kumar, M. Singh, Raman spectra of sol-gel auto-combustion synthesized Mg-Ag-Mn and Ba-Nd-Cd-In ferrite based nanomaterials, Ceram. Int. 46 (2020) 618–621. https://doi.org/10.1016/j.ceramint.2019.09.012
[9] R. Jasrotia, S. Kour, P. Puri, A.D. Jara, B. Singh, C. Bhardwaj, V.P. Singh, R. Kumar, Structural and magnetic investigation of Al3+ and Cr3+ substituted Ni–Co–Cu nanoferrites for potential applications, Solid State Sci. 110 (2020) 106445. https://doi.org/10.1016/j.solidstatesciences.2020.106445
[10] R. Jasrotia, G. Kumar, K.M. Batoo, S.F. Adil, M. Khan, R. Sharma, A. Kumar, V.P. Singh, Synthesis and characterization of Mg-Ag-Mn nano-ferrites for electromagnet applications, Phys. B Condens. Matter. 569 (2019) 1–7. https://doi.org/10.1016/j.physb.2019.05.033
[11] R. Jasrotia, P. Puri, A. Verma, V.P. Singh, Magnetic and electrical traits of sol-gel synthesized Ni-Cu-Zn nanosized spinel ferrites for multi-layer chip inductors application, J. Solid State Chem. (2020) 121462. https://doi.org/10.1016/j.jssc.2020.121462
[12] K. Dulta, G.K. Ağçeli, P. Chauhan, R. Jasrotia, P.K. Chauhan, Ecofriendly Synthesis of Zinc Oxide Nanoparticles by Carica papaya Leaf Extract and Their Applications, J. Clust. Sci. (2021) 1–15. https://doi.org/10.1007/s10876-020-01962-w
[13] N. Murali, S.J. Margarette, G.P. Kumar, B. Sailaja, S.Y. Mulushoa, P. Himakar, B.K. Babu, V. Veeraiah, Effect of Al substitution on the structural and magnetic properties of Co-Zn ferrites, Phys. B Condens. Matter. 522 (2017) 1–6. https://doi.org/10.1016/j.physb.2017.07.043
[14] R. Jasrotia, V.P. Singh, R.K. Sharma, M. Singh, Analysis of optical and magnetic study of silver substituted SrW hexagonal ferrites, in: AIP Conf. Proc., AIP Publishing LLC, 2019: p. 090004. https://doi.org/10.1063/1.5122448
[15] R.D. Ambashta, M. Sillanpää, Water purification using magnetic assistance: a review, J. Hazard. Mater. 180 (2010) 38–49. https://doi.org/10.1016/j.jhazmat.2010.04.105
[16] S. Zeng, S. Duan, R. Tang, L. Li, C. Liu, D. Sun, Magnetically separable Ni0. 6Fe2. 4O4 nanoparticles as an effective adsorbent for dye removal: Synthesis and study on the kinetic and thermodynamic behaviors for dye adsorption, Chem. Eng. J. 258 (2014) 218–228. https://doi.org/10.1016/j.cej.2014.07.093
[17] W. Konicki, D. Sibera, E. Mijowska, Z. Lendzion-Bieluń, U. Narkiewicz, Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles, J. Colloid Interface Sci. 398 (2013) 152–160. https://doi.org/10.1016/j.jcis.2013.02.021
[18] X. Zhang, P. Zhang, Z. Wu, L. Zhang, G. Zeng, C. Zhou, Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles, Colloids Surf. Physicochem. Eng. Asp. 435 (2013) 85–90. https://doi.org/10.1016/j.colsurfa.2012.12.056
[19] R. Jasrotia, V.P. Singh, B. Sharma, A. Verma, P. Puri, R. Sharma, M. Singh, Sol-gel synthesized Ba-Nd-Cd-In nanohexaferrites for high frequency and microwave devices applications, J. Alloys Compd. 830 (2020) 154687. https://doi.org/10.1016/j.jallcom.2020.154687
[20] R. Sivashankar, A.B. Sathya, K. Vasantharaj, V. Sivasubramanian, Magnetic composite an environmental super adsorbent for dye sequestration–A review, Environ. Nanotechnol. Monit. Manag. 1 (2014) 36–49. https://doi.org/10.1016/j.enmm.2014.06.001
[21] S.K. Giri, N.N. Das, G.C. Pradhan, Synthesis and characterization of magnetite nanoparticles using waste iron ore tailings for adsorptive removal of dyes from aqueous solution, Colloids Surf. Physicochem. Eng. Asp. 389 (2011) 43–49. https://doi.org/10.1016/j.colsurfa.2011.08.052
[22] P. Roonasi, A.Y. Nezhad, A comparative study of a series of ferrite nanoparticles as heterogeneous catalysts for phenol removal at neutral pH, Mater. Chem. Phys. 172 (2016) 143–149. https://doi.org/10.1016/j.matchemphys.2016.01.054
[23] Y.-J. Tu, C.-F. You, C.-K. Chang, S.-L. Wang, T.-S. Chan, Arsenate adsorption from water using a novel fabricated copper ferrite, Chem. Eng. J. 198 (2012) 440–448. https://doi.org/10.1016/j.cej.2012.06.006
[24] R.N. Baig, M.N. Nadagouda, R.S. Varma, Magnetically retrievable catalysts for asymmetric synthesis, Coord. Chem. Rev. 287 (2015) 137–156. https://doi.org/10.1016/j.ccr.2014.12.017
[25] R. Jasrotia, V.P. Singh, R. Kumar, R. Verma, A. Chauhan, Effect of Y3+, Sm3+ and Dy3+ ions on the microstructure, morphology, optical and magnetic properties NiCoZn magnetic nanoparticles, Results Phys. 15 (2019) 102544. https://doi.org/10.1016/j.rinp.2019.102544
[26] S. Kour, R.K. Sharma, R. Jasrotia, V.P. Singh, A brief review on the synthesis of maghemite (γ-Fe2O3) for medical diagnostic and solar energy applications, in: AIP Conf. Proc., AIP Publishing LLC, 2019: p. 090007. https://doi.org/10.1063/1.5122451
[27] M. Chandel, V.P. Singh, R. Jasrotia, K. Singha, R. Kumar, A review on structural, electrical and magnetic properties of Y-type hexaferrites synthesized by different techniques for antenna applications and microwave absorbing characteristic materials [J], AIMS Mater. Sci. 7 (2020) 244–268. https://doi.org/10.3934/matersci.2020.3.244
[28] R. Jasrotia, P. Puri, V.P. Singh, R. Kumar, Sol–gel synthesized Mg–Ag–Mn nanoferrites for Power Applications, J. Sol-Gel Sci. Technol. 97 (2021) 205–212. https://doi.org/10.1007/s10971-020-05428-3
[29] Y.-P. Fu, Electrical conductivity and magnetic properties of Li0. 5Fe2. 5- xCrxO4 ferrite, Mater. Chem. Phys. 115 (2009) 334–338. https://doi.org/10.1016/j.matchemphys.2008.12.023
[30] R. Jasrotia, V.P. Singh, R. Kumar, K. Singha, M. Chandel, M. Singh, Analysis of Cd2+ and In3+ ions doping on microstructure, optical, magnetic and mo\” ssbauer spectral properties of sol-gel synthesized BaM hexagonal ferrite based nanomaterials, Results Phys. 12 (2019) 1933–1941. https://doi.org/10.1016/j.rinp.2019.01.088
[31] A. Gatelytė, D. Jasaitis, A. Beganskienė, A. Kareiva, Sol-gel synthesis and characterization of selected transition metal nano-ferrites, Mater. Sci. 17 (2011) 302–307. https://doi.org/10.5755/j01.ms.17.3.598
[32] Z. Yue, J. Zhou, L. Li, X. Wang, Z. Gui, Effect of copper on the electromagnetic properties of Mg–Zn–Cu ferrites prepared by sol–gel auto-combustion method, Mater. Sci. Eng. B. 86 (2001) 64–69. https://doi.org/10.1016/S0921-5107(01)00660-2
[33] G.B. Teh, S. Nagalingam, D.A. Jefferson, Preparation and studies of Co (II) and Co (III)-substituted barium ferrite prepared by sol–gel method, Mater. Chem. Phys. 101 (2007) 158–162. https://doi.org/10.1016/j.matchemphys.2006.03.008
[34] Z. Wang, Y. Xie, P. Wang, Y. Ma, S. Jin, X. Liu, Microwave anneal effect on magnetic properties of Ni0. 6Zn0. 4Fe2O4 nano-particles prepared by conventional hydrothermal method, J. Magn. Magn. Mater. 323 (2011) 3121–3125. https://doi.org/10.1016/j.jmmm.2011.06.068
[35] T. Strachowski, E. Grzanka, W. Lojkowski, A. Presz, M. Godlewski, S. Yatsunenko, H. Matysiak, R.R. Piticescu, C.J. Monty, Morphology and luminescence properties of zinc oxide nanopowders doped with aluminum ions obtained by hydrothermal and vapor condensation methods, J. Appl. Phys. 102 (2007) 073513. https://doi.org/10.1063/1.2786707
[36] K.K. Kefeni, B.B. Mamba, T.A. Msagati, Application of spinel ferrite nanoparticles in water and wastewater treatment: a review, Sep. Purif. Technol. 188 (2017) 399–422. https://doi.org/10.1016/j.seppur.2017.07.015
[37] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interfac 209: 172–184, 2014. https://doi.org/10.1016/j.cis.2014.04.002
[38] A. Verma, S. Thakur, G. Mamba, R.K. Gupta, P. Thakur, V.K. Thakur, Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye, Int. J. Biol. Macromol. 148 (2020) 1130–1139. https://doi.org/10.1016/j.ijbiomac.2020.01.142
[39] G. Lofrano, M. Carotenuto, G. Libralato, R.F. Domingos, A. Markus, L. Dini, R.K. Gautam, D. Baldantoni, M. Rossi, S.K. Sharma, Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview, Water Res. 92 (2016) 22–37. https://doi.org/10.1016/j.watres.2016.01.033
[40] S. Duan, R. Tang, Z. Xue, X. Zhang, Y. Zhao, W. Zhang, J. Zhang, B. Wang, S. Zeng, D. Sun, Effective removal of Pb (II) using magnetic Co0. 6Fe2. 4O4 micro-particles as the adsorbent: synthesis and study on the kinetic and thermodynamic behaviors for its adsorption, Colloids Surf. Physicochem. Eng. Asp. 469 (2015) 211–223. https://doi.org/10.1016/j.colsurfa.2015.01.029
[41] R. Jasrotia, V.P. Singh, R.K. Sharma, P. Kumar, M. Singh, Analysis of effect of Ag+ ion on microstructure and elemental distribution of strontium W-type hexaferrites, in: AIP Conf. Proc., AIP Publishing LLC, 2019: p. 140004. https://doi.org/10.1063/1.5122517
[42] M. Auffan, J. Rose, O. Proux, D. Borschneck, A. Masion, P. Chaurand, J.-L. Hazemann, C. Chaneac, J.-P. Jolivet, M.R. Wiesner, Enhanced adsorption of arsenic onto maghemites nanoparticles: As (III) as a probe of the surface structure and heterogeneity, Langmuir. 24 (2008) 3215–3222. https://doi.org/10.1021/la702998x
[43] B.J. Kong, A. Kim, S.N. Park, Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin, Carbohydr. Polym. 147 (2016) 473–481. https://doi.org/10.1016/j.carbpol.2016.04.021
[44] M. Chandel, V.P. Singh, R. Jasrotia, K. Singha, M. Singh, P. Thakur, S. Kalia, Fabrication of Ni2+ and Dy3+ substituted Y-Type nanohexaferrites: a study of structural and magnetic properties, Phys. B Condens. Matter. 595 (2020) 412378. https://doi.org/10.1016/j.physb.2020.412378
[45] T. Tatarchuk, M. Bououdina, J.J. Vijaya, L.J. Kennedy, Spinel ferrite nanoparticles: synthesis, crystal structure, properties, and perspective applications, in: Int. Conf. Nanotechnol. Nanomater., Springer, 2016: pp. 305–325. https://doi.org/10.1007/978-3-319-56422-7_22
[46] W.A. Khoso, N. Haleem, M.A. Baig, Y. Jamal, Synthesis, characterization and heavy metal removal efficiency of nickel ferrite nanoparticles (NFN’s), Sci. Rep. 11 (2021) 1–10. https://doi.org/10.1038/s41598-021-83363-1
[47] A. Ivanets, V. Prozorovich, T. Kouznetsova, T. Dontsova, O. Yanushevska, A. Hosseini-Bandegharaei, V. Srivastava, M. Sillanpää, Effect of Mg2+ ions on competitive metal ions adsorption/desorption on magnesium ferrite: Mechanism, reusability and stability studies, J. Hazard. Mater. 411 (2021) 124902. https://doi.org/10.1016/j.jhazmat.2020.124902
[48] K. Dulta, G.K. Ağçeli, P. Chauhan, R. Jasrotia, P.K. Chauhan, A novel approach of synthesis zinc oxide nanoparticles by bergenia ciliata rhizome extract: antibacterial and anticancer potential, J. Inorg. Organomet. Polym. Mater. 31 (2021) 180–190. https://doi.org/10.1007/s10904-020-01684-6
[49] S. Thakur, B. Sharma, A. Verma, J. Chaudhary, S. Tamulevicius, V.K. Thakur, Recent approaches in guar gum hydrogel synthesis for water purification, Int. J. Polym. Anal. Charact. 23 (2018) 621–632. https://doi.org/10.1080/1023666X.2018.1488661
[50] S.S. Fiyadh, M.A. AlSaadi, W.Z. Jaafar, M.K. AlOmar, S.S. Fayaed, N.S. Mohd, L.S. Hin, A. El-Shafie, Review on heavy metal adsorption processes by carbon nanotubes, J. Clean. Prod. 230 (2019) 783–793. https://doi.org/10.1016/j.jclepro.2019.05.154
[51] W. Sun, W. Pan, F. Wang, N. Xu, Removal of Se (IV) and Se (VI) by MFe2O4 nanoparticles from aqueous solution, Chem. Eng. J. 273 (2015) 353–362. https://doi.org/10.1016/j.cej.2015.03.061
[52] S. Vijayalakshmi, E. Elaiyappillai, P.M. Johnson, I.S. Lydia, Multifunctional magnetic CoFe 2 O 4 nanoparticles for the photocatalytic discoloration of aqueous methyl violet dye and energy storage applications, J. Mater. Sci. Mater. Electron. 31 (2020) 10738–10749. https://doi.org/10.1007/s10854-020-03624-z
[53] S. Duan, R. Tang, Z. Xue, X. Zhang, Y. Zhao, W. Zhang, J. Zhang, B. Wang, S. Zeng, D. Sun, Effective removal of Pb (II) using magnetic Co0. 6Fe2. 4O4 micro-particles as the adsorbent: synthesis and study on the kinetic and thermodynamic behaviors for its adsorption, Colloids Surf. Physicochem. Eng. Asp. 469 (2015) 211–223. https://doi.org/10.1016/j.colsurfa.2015.01.029
[54] N. Neyaz, W.A. Siddiqui, Removal of Cu (II) by modified magnetite nanocomposite as a nanosorbent, Int J Sci Res. 4 (2015) 1868–1873.
[55] C. Vîrlan, R.G. Ciocârlan, T. Roman, D. Gherca, N. Cornei, A. Pui, Studies on adsorption capacity of cationic dyes on several magnetic nanoparticles, Acta Chem. Iasi. 21 (2013) 19–30. https://doi.org/10.2478/achi-2013-0003
[56] K. Singha, R. Jasrotia, V.P. Singh, M. Chandel, R. Kumar, S. Kalia, A study of magnetic properties of Y–Ni–Mn substituted Co 2 Z-type nanohexaferrites via vibrating sample magnetometry, J. Sol-Gel Sci. Technol. (2020) 1–9. https://doi.org/10.1007/s10971-020-05412-x
[57] L. Yang, Y. Zhang, X. Liu, X. Jiang, Z. Zhang, T. Zhang, L. Zhang, The investigation of synergistic and competitive interaction between dye Congo red and methyl blue on magnetic MnFe2O4, Chem. Eng. J. 246 (2014) 88–96. https://doi.org/10.1016/j.cej.2014.02.044
[58] T. Tuutijärvi, J. Lu, M. Sillanpää, G. Chen, Adsorption mechanism of arsenate on crystal γ-Fe 2 O 3 nanoparticles, J. Environ. Eng. 136 (2010) 897–905. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000233
[59] D.H.K. Reddy, Y.-S. Yun, Spinel ferrite magnetic adsorbents: alternative future materials for water purification?, Coord. Chem. Rev. 315 (2016) 90–111. https://doi.org/10.1016/j.ccr.2016.01.012
[60] M. Auffan, J. Rose, O. Proux, D. Borschneck, A. Masion, P. Chaurand, J.-L. Hazemann, C. Chaneac, J.-P. Jolivet, M.R. Wiesner, Enhanced adsorption of arsenic onto maghemites nanoparticles: As (III) as a probe of the surface structure and heterogeneity, Langmuir. 24 (2008) 3215–3222. https://doi.org/10.1021/la702998x
[61] B. Sharma, S. Thakur, D. Trache, H. Yazdani Nezhad, V.K. Thakur, Microwave-assisted rapid synthesis of reduced graphene oxide-based gum tragacanth hydrogel nanocomposite for heavy metal ions adsorption, Nanomaterials. 10 (2020) 1616. https://doi.org/10.3390/nano10081616
[62] A. Afkhami, R. Norooz-Asl, Removal, preconcentration and determination of Mo (VI) from water and wastewater samples using maghemite nanoparticles, Colloids Surf. Physicochem. Eng. Asp. 346 (2009) 52–57. https://doi.org/10.1016/j.colsurfa.2009.05.024
[63] R. Davarnejad, P. Panahi, Cu (II) removal from aqueous wastewaters by adsorption on the modified Henna with Fe3O4 nanoparticles using response surface methodology, Sep. Purif. Technol. 158 (2016) 286–292. https://doi.org/10.1016/j.seppur.2015.12.018
[64] B. Sharma, S. Thakur, G. Mamba, R.K. Gupta, V.K. Gupta, V.K. Thakur, Titania modified gum tragacanth based hydrogel nanocomposite for water remediation, J. Environ. Chem. Eng. (2020) 104608. https://doi.org/10.1016/j.jece.2020.104608
[65] C. Kong, J. Li, F. Liu, Y. Song, P. Song, Synthesis of NiFe2O4 using degreasing cotton as template and its adsorption capacity for Congo Red, Desalination Water Treat. 57 (2016) 11337–11347. https://doi.org/10.1080/19443994.2015.1043589
[66] P.A. Vinosha, A. Manikandan, A.S.J. Ceicilia, A. Dinesh, G.F. Nirmala, A.C. Preetha, Y. Slimani, M.A. Almessiere, A. Baykal, B. Xavier, Review on recent advances of zinc substituted cobalt ferrite nanoparticles: Synthesis characterization and diverse applications, Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2020.12.289
[67] A.B. Naik, P.P. Naik, S.S. Hasolkar, D. Naik, Structural, magnetic and electrical properties along with antifungal activity & adsorption ability of cobalt doped manganese ferrite nanoparticles synthesized using combustion route, Ceram. Int. 46 (2020) 21046–21055. https://doi.org/10.1016/j.ceramint.2020.05.177
[68] S.C.W. Sakti, R.N. Laily, S. Aliyah, N. Indrasari, M.Z. Fahmi, H.V. Lee, Y. Akemoto, S. Tanaka, Re-collectable and recyclable epichlorohydrin-crosslinked humic acid with spinel cobalt ferrite core for simple magnetic removal of cationic triarylmethane dyes in polluted water, J. Environ. Chem. Eng. 8 (2020) 104004. https://doi.org/10.1016/j.jece.2020.104004
[69] S. Yavari, N.M. Mahmodi, P. Teymouri, B. Shahmoradi, A. Maleki, Cobalt ferrite nanoparticles: preparation, characterization and anionic dye removal capability, J. Taiwan Inst. Chem. Eng. 59 (2016) 320–329. https://doi.org/10.1016/j.jtice.2015.08.011
[70] T. Tatarchuk, I. Mironyuk, V. Kotsyubynsky, A. Shyichuk, M. Myslin, V. Boychuk, Structure, morphology and adsorption properties of titania shell immobilized onto cobalt ferrite nanoparticle core, J. Mol. Liq. 297 (2020) 111757. https://doi.org/10.1016/j.molliq.2019.111757
[71] X. Wu, Z. Ding, N. Song, L. Li, W. Wang, Effect of the rare-earth substitution on the structural, magnetic and adsorption properties in cobalt ferrite nanoparticles, Ceram. Int. 42 (2016) 4246–4255. https://doi.org/10.1016/j.ceramint.2015.11.100
[72] A. Afkhami, M. Saber-Tehrani, H. Bagheri, Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution, Desalination. 263 (2010) 240–248. https://doi.org/10.1016/j.desal.2010.06.065
[73] F.B. Shahri, A. Niazi, Synthesis of modified maghemite nanoparticles and its application for removal of acridine orange from aqueous solutions by using Box-Behnken design, J. Magn. Magn. Mater. 396 (2015) 318–326. https://doi.org/10.1016/j.jmmm.2015.08.054
[74] T. Jiang, Y. Liang, Y. He, Q. Wang, Activated carbon/NiFe2O4 magnetic composite: a magnetic adsorbent for the adsorption of methyl orange, J. Environ. Chem. Eng. 3 (2015) 1740–1751. https://doi.org/10.1016/j.jece.2015.06.020
[75] M. Gao, Z. Wang, C. Yang, J. Ning, Z. Zhou, G. Li, Novel magnetic graphene oxide decorated with persimmon tannins for efficient adsorption of malachite green from aqueous solutions, Colloids Surf. Physicochem. Eng. Asp. 566 (2019) 48–57. https://doi.org/10.1016/j.colsurfa.2019.01.016
[76] M.A. Khan, M. Otero, M. Kazi, A.A. Alqadami, S.M. Wabaidur, M.R. Siddiqui, Z.A. Alothman, S. Sumbul, Unary and binary adsorption studies of lead and malachite green onto a nanomagnetic copper ferrite/drumstick pod biomass composite, J. Hazard. Mater. 365 (2019) 759–770. https://doi.org/10.1016/j.jhazmat.2018.11.072
[77] R. Asadi, H. Abdollahi, M. Gharabaghi, Z. Boroumand, Effective removal of Zn (II) ions from aqueous solution by the magnetic MnFe2O4 and CoFe2O4 spinel ferrite nanoparticles with focuses on synthesis, characterization, adsorption, and desorption, Adv. Powder Technol. 31 (2020) 1480–1489. https://doi.org/10.1016/j.apt.2020.01.028
[78] D.S. Tavares, C.B. Lopes, J.C. Almeida, C. Vale, E. Pereira, T. Trindade, Spinel-type ferrite nanoparticles for removal of arsenic (V) from water, Environ. Sci. Pollut. Res. 27 (2020) 22523–22534. https://doi.org/10.1007/s11356-020-08673-9
[79] Y.-J. Tu, C.-F. You, C.-K. Chang, S.-L. Wang, T.-S. Chan, Arsenate adsorption from water using a novel fabricated copper ferrite, Chem. Eng. J. 198 (2012) 440–448. https://doi.org/10.1016/j.cej.2012.06.006
[80] G. Sreekala, A.F. Beevi, R. Resmi, B. Beena, Removal of lead (II) ions from water using copper ferrite nanoparticles synthesized by green method, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.09.087
[81] W.B.K. Putri, E.A. Setiadi, V. Herika, A.P. Tetuko, P. Sebayang, Natural iron sand-based Mg1-xNixFe2O4 nanoparticles as potential adsorbents for heavy metal removal synthesized by co-precipitation method, in: IOP Conf. Ser. Earth Environ. Sci., IOP Publishing, 2019: p. 012031. https://doi.org/10.1088/1755-1315/277/1/012031
[82] A.E. Alia, W.M. Salema, S.M. Younes, A.Z. Elabdeen, Ferrite Nanocomposite (Rice Straw-CoFe2O4) as New Chemical Modified of for Treatment of Heavy Metal from Waste Water, Hydrol Curr. Res. 10 (2018) 2.
[83] A. Roy, J. Bhattacharya, Removal of Cu (II), Zn (II) and Pb (II) from water using microwave-assisted synthesized maghemite nanotubes, Chem. Eng. J. 211 (2012) 493–500. https://doi.org/10.1016/j.cej.2012.09.097