Bio-Mediated Synthesis of Nanomaterials for Electrochemical Sensor Applications


Bio-Mediated Synthesis of Nanomaterials for Electrochemical Sensor Applications

Ponnaiah Sathish Kumar, Vellaichamy Balakumar and Ramalingam Manivannan

The bio-mediated nanomaterials have expected growing responsiveness due to an increasing requirement to develop naturally nonthreatening technologies in nanomaterial synthesis. Biotic ways to prepare nanomaterials through extracts from the plant (includes stems, leaves, flowers, and roots) and microorganisms were recommended as likely replacements for physical and chemical routes due to their solvent medium and environment eco-friendliness and nontoxicity. This chapter focuses on electrocatalyst prepared by various bio-mediated synthetic ways and used as a green and eco-friendly electrocatalyst to recognize extensive chemical and biologically essential molecules with improved selectivity and sensitivity with low detection limit. The bio-mediated nanocomposite formation processes and their unique properties surface functionalization and electron transfer mechanism discussed in connection with the design and fabrication of sensors. As a final point, the encounters and prospects in developing bio-mediated nanomaterials-based electrochemical sensing technology was outlined.

Bio-Mediated Synthesis, Nanomaterials, Electrochemical Sensor, Electron Transfer Mechanism, Chemical and Biological Molecules

Published online 8/10/2021, 39 pages

Citation: Ponnaiah Sathish Kumar, Vellaichamy Balakumar and Ramalingam Manivannan, Bio-Mediated Synthesis of Nanomaterials for Electrochemical Sensor Applications, Materials Research Foundations, Vol. 111, pp 224-262, 2021


Part of the book on Bioinspired Nanomaterials

[1] G. Maduraiveeran, M. Sasidharan, W. Jin, Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications, Prog. Mater Sci. 106 (2019) 100574-100624.
[2] O.P. Bolade, A.B. Williams, N.U. Benson, Green synthesis of iron-based nanomaterials for environmental remediation: A review, Environ. Nanotechnol. Monit. Manage. 13(2020)100279-100346.
[3] S. Kargozar, M. Mozafari,Nanotechnology and nanomedicine: Start small, think big, Mater. Today:. Proc.5(7) (2018) 15492-15500.
[4] R. Purohit, A.Mittal, S. Dalela, V. Warudkar, K. Purohit, S. Purohit, Social, Environmental and ethical impacts of nanotechnology, Mater. Today:. Proc. 4(4) (2017) 5461-5467.
[5] P.D. Sia, Nanotechnology among innovation, health and risks, ProcediaSocial and Behav.Sci.237 (2017) 1076-1080.
[6] J.C. Glenn, Nanotechnology: Future military environmental health considerations, Technol. Forecasting Social Change73(2) (2006) 128-137.
[7] P.S. Reddy, A.J. Chamkha, Influence of size, shape, type of nanoparticles, type and temperature of the base fluid on natural convection MHD of nanofluids, Alexandria Eng. J. 55(1)(2016) 331-341.
[8] Y. Liu, Z. Liu, D. Huang, M. Cheng, G. Zeng, C. Lai, C. Zhang, C. Zhou, W. Wang, D. Jiang, H. Wang, B. Shao, Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst, Coord. Chem. Rev. 388(2019) 63-78.
[9] L. Chen, J. Liang, An overview of functional nanoparticles as novel emerging antiviral therapeutic agents, Mater. Sci. Eng., C (2020) 110924-110969.
[10] P. Nayar, S. Waghmare, P. Singh, M. Najar, S. Puttewar, A. Agnihotri, Comparative study of phase transformation of Al2O3 nanoparticles prepared by chemical precipitation and sol-gel auto combustion methods, Mater. Today:. Proc. (2019).
[11] F. Huang, Y. Guo, S. Wang, S. Zhang, M. Cui, Solgel-hydrothermal synthesis of Tb/Tourmaline/TiO2nano tubes and enhanced photocatalytic activity, Solid State Sci. 64(2017) 62-68.
[12] T. Jahanbin, M. Hashim, K.A. Mantori, Comparative studies on the structure and electromagnetic properties of Ni−Zn ferrites prepared via co-precipitation and conventional ceramic processing routes, J. Magn. Magn. Mater. 322(18)(2010) 2684-2689.
[13] Q. He, Y. Zhang, X. Chen, Z. Wang, H. Ji, M. Ding, B. Xie, P. Yu, The effects of substrate temperatures on the electrical properties of CaZrO3 thin films prepared by RF magnetron sputtering, Curr. Appl Phys. 20(4) (2020) 557-561.
[14] Y. Liu, H. Wan, N. Jiang, W. Zhang, H. Zhang, B. Chang, Q. Wang, Y. Zhang, Z. Wang, S. Luo, H. Sun, Chemical reduction-induced oxygen deficiency in Co3O4nanocubes as advanced anodes for lithium ion batteries, Solid State Ionics 334(2019) 117-124.
[15] M. Akbari, A.A. Mirzaei, M. Arsalanfar, Microemulsion based synthesis of promoted Fe–Co/MgOnanocatalyst: Influence of calcination atmosphere on the physicochemical properties, activity and light olefins selectivity for hydrogenation of carbon monoxide, Mater. Chem. Phys. 249 (2020) 123003.
[16] J. Jeoung-Ho, C. Min-Cheol, C. Seong-Jai, B. Dong-Sik, Synthesis and characterization of metallic Pd embedded TiO2 nanoparticles by reverse micelle and sol-gel processing, Trans. Nonferrous Met. Soc. China 19(2009) s96-s99.
[17] M. Lüsi, H. Erikson, M. Merisalu, M. Rähn, V. Sammelselg, K. Tammeveski, Electrochemical reduction of oxygen in alkaline solution on Pd/C catalysts prepared by electrodeposition on various carbon nanomaterials, J. Electroanal. Chem. 834 (2019) 223-232.
[18] L. Kang, H.L. An, S. Jung, S. Kim, S. Nahm, D.-G. Kim, C.G. Lee, Low-voltage operating solution-processed CdS thin-film transistor with Ca2Nb3O10nanosheets deposited using Langmuir–Blodgett method for a gate insulator, Appl. Surf. Sci. 476 (2019) 374-377.
[19] S. Kundu, L. Ma, Y. Chen, H. Liang, Microwave assisted swift synthesis of ZnWO4 nanomaterials: material for enhanced photo-catalytic activity, J. Photochem. Photobiol. A 346 (2017) 249-264.
[20] X.-P. Li, Y.-L. Sun, C.-W. Luo, Z.-S. Chao, UV-resistant hydrophobic CeO2 nanomaterial with photocatalytic depollution performance, Ceram. Int. 44(11) (2018) 13439-13443.
[21] W. Shang, T. Cai, Y. Zhang, D. Liu, S. Liu, Facile one pot pyrolysis synthesis of carbon quantum dots and graphene oxide nanomaterials: All carbon hybrids as eco-environmental lubricants for low friction and remarkable wear-resistance, Tribol. Int. 118 (2018) 373-380.
[22] M. Mahmoodian, H. Hajihoseini, S. Mohajerzadeh, M. Fathipour, Nano patterning and fabrication of single polypyrrole nanowires by electron beam lithography, Synth. Met. 249(2019) 14-24.
[23] A.V. Kabashin, M. Meunier, Laser ablation-based synthesis of functionalized colloidal nanomaterials in biocompatible solutions, J. Photochem. Photobiol. A 182(3) (2006) 330-334.
[24] G. Shruthi, K.S. Prasad, T. P. Vinod, V. Balamurugan, and C. Shivamallu, Green synthesis of biologically active silver nanoparticles through a phyto-mediated approach using areca catechu leaf extract, Chem.Select 2 (2017) 10354 –10359.
[25] R.M. Tripathi, S.J. Chung, Biogenic nanomaterials: Synthesis, characterization, growth mechanism, and biomedical applications, J. Microbiol. Methods 157 (2019) 65–80.
[26] R.K. Das, S.K. Brar, Plant mediated green synthesis: modified approaches, Nanoscale 5 (2013) 10155–10162.
[27] S. Ullah, A. Ahmad, H. Ri, A.U. Khan, U.A. Khan, Q. Yuan, Green synthesis of catalytic zinc oxide nano‐flowers and their bacterial infection therapy, Appl. Organometal. Chem. 34(1)(2020) e5298-e5309.
[28] S.G. Patra, K. Sathiyan, M. Meistelman, and T. Zidki, Green synthesis of M0 nanoparticles (M=Pd, Pt, and Ru) for electrocatalytic hydrogen evolution, Isr. J. Chem. 60 (2020) 1 – 9.
[29] X. Yang, K. Fu, L. Mao, W. Peng, J. Jin, S. Yang, G. Li,Bio-mediated synthesis of a-Ni(OH)2nanobristles on hollow porous carbon nanofibers for rechargeable alkaline batteries, Chem. Eng. Sci. 205 (2019) 269–277.
[30] Y. Zhang, W. Xu, X.Wang, S. Ni, E. Rosqvist, J.-H. Smått, J. Peltonen, Q. Hou, M. Qin, S. Willför, C. Xu,From biomass to nanomaterials: A green procedure for preparation of holistic bamboo multifunctional nanocomposites based on formic acid rapid fractionation, ACS Sustainable Chem. Eng. 7(7)(2019) 6592-6600.
[31] J. Iqbal, B.A. Abbasi, A. Munir, S. Uddin, S. Kanwal, T. Mahmood, Facile green synthesis approach for the production of chromium oxide nanoparticles and their different in vitro biological activities, Microsc. Res. Tech. (2020) 1–14.
[32] M. Qasem, R.E. Kurdi, and D. Patra, Green synthesis of curcumin conjugated CuO nanoparticles for catalytic reduction of methylene blue, Chem.Select 5 (2020) 1694 –1704.
[33] A. Chandra, A. Bhattarai, A.K. Yadav, J. Adhikari, M. Singh, and B. Giri, Green Synthesis of Silver Nanoparticles Using Tea Leaves from Three Different Elevations, Chem.Select 15 (2000) 1–9
[34] C. Bartolucci, A. Antonacci, F. Arduini, D. Moscone, L. Fraceto, E. Campos, R. Attaallah, A. Amine, C. Zanardi, L. Cubillana, J.M. Palacios Santander, V. Scognamiglio, Green nanomaterials fostering agrifood sustainability, Trends Anal. Chem. 125 (2020)115840–115884.
[35] R.M. Tripathi, S.J. Chung,Biogenic nanomaterials: Synthesis, characterization, growth mechanism, and biomedical applications, J. Microbiol. Methods 157 (2019) 65–80.
[36] J. Han, L. Xiong, X. Jiang, X. Yuan, Y. Zhao, D. Yang, Bio-functional electrospun nanomaterials: From topology design to biological applications, Prog. Polym. Sci. 91 (2019) 1-28.
[37] L.Zeng, J. Gao, Y. Liu, J. Gao, L.Yao, X. Yang, X. Liu, B. He, L. Hu, J. Shi, M. Song G. Qu, G. Jiang, Role of protein corona in the biological effect of nanomaterials: Investigating methods, Trends Anal. Chem. 118 (2019) 303-314.
[38] L. García-Carmona, M. C. González, A. Escarpa, Nanomaterial-based electrochemical (bio)-sensing: One step ahead in diagnostic and monitoring of metabolic rare diseases, Trends Anal. Chem.118 (2019) 29-42.
[39] R. Eivazzadeh-Keihan, P. Pashazadeh, M. Hejazi, M.D.L. Guardia, A. Mokhtarzadeh, Recent advances in Nanomaterial-mediated Bio and immune sensors for detection of aflatoxin in food products, Trends Anal. Chem. 87 (2017) 112-128.
[40] W. Dudefoi, A. Villares, S. Peyron, C. Moreau, M.-H. Ropers, N. Gontard, B. Cathala , Nanoscience and nanotechnologies for biobased materials, packaging and food applications: Newopportunities and concerns, Innovative Food Sci. Emerg. Technol. 46 (2018) 107-121.
[41] T.A. Saleh, G. Fadillah, Recent trends in the design of chemical sensors based on graphene–metal oxide nanocomposites for the analysis of toxic species and biomolecules, Trends Anal. Chem.120 (2019) 115660.
[42] A. Sabarwal, K. Kumar, R. P.Singh, Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders, Environ. Toxicol. Pharmacol. 63 (2018) 103-114.
[43] P. Chowdhary, A. Raj, R.N. Bharagava, Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: A review, Chemosphere 194(2018) 229-246.
[44] S.S. Chandel, T. Agarwal, Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials, Renewable Sustainable Energy Rev. 67(2017) 581-596.
[45] Z. Peng, X. Liu, W. Zhang, Z. Zeng, Z. Liu, C. Zhang, Y. Liu, B. Shao, Q. Liang, W. Tang, X. Yuan, Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review, Environ. Int.134 (2020) 105298.
[46] E. Mahmoud, M. Ibrahim, N. Ali, H. Ali, Spectroscopic analyses to study the effect of biochar and compost on dry mass of canola and heavy metal immobilization in soil, Commun. Soil Sci. Plant Anal. 49 (2018) 1990-2001.
[47] J.F. Ping, J. Wu, Y.B. Ying, M.H. Wang, G. Liu, M. Zhang, Evaluation of trace heavy metal levels in soil samples using an ionic liquid modified carbon paste electrode, J. Agric. Food Chem., 59 (2011) 4418-4423.
[48] S. Zhang, J. Li, M. Zeng, J. Xu, X. Wang, W. Hu, Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ ions, Nanoscale 6 (2014) 4157-4162.
[49] M. Rong, L. Lin, X. Song, Y. Wang, Y. Zhong, J. Yan, Y. Feng, X. Zeng, X. Chen, Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent switch, Biosens. Bioelectron. 68 (2015) 210-217.
[50] Z. Koudelkova, T. Syrovy, P. Ambrozova, Z. Moravec, L. Kubac, D. Hynek, L. Richtera, V. Adam, Determination of zinc, cadmium, lead, copper and silver using a carbon paste electrode and a screen printed electrode modified with chromium(III) oxide, Sensors 17 (2017) 1832-1846.
[51] T.A. Ali, G.G. Mohamed, A.R. Othman, Design and construction of new potentiometric sensors for determination of copper(II) ion based on copper oxide nanoparticles, Int. J. Electrochem. Sci., 10 (2015) 8041-8057.
[52] R. Ramachandran, T.W. Chen, S.M. Chen, T. Baskar, R. Kannan, P. Elumalai, P. Raja, T. Jeyapragasam, K. Dinakaran, G. Gnanakumar, A review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules, Inorg. Chem. Front. 6 (2019) 3418-3439.
[53] K.D. Roy, M. Debiprosad, Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection, Anal. Biochem. 586 (2019) 113415-113432.
[54] F. Laghrib, M. Bakasse, S. Lahrich, M.A. El Mhammedi, Electrochemical sensors for improved detection of paraquat in food samples: A review, Mater. Sci.Eng. C, 107 (2020) 110349-110399.
[55] Y.M. Díaz-González, M. Gutiérrez-Capitán, P. Niu, A. Baldi, C. Jiménez-Jorquera, C. Fernández-Sánchez, Electrochemical devices for the detection of priority pollutants listed in the EU water framework directive, Trends Anal. Chem., 77 (2016) 186-202.
[56] S. Cinti, F. Arduini, Graphene-based screen-printed electrochemical (bio)sensorsand their applications: efforts and criticisms, Biosens. Bioelectron. 89 (2016) 107-122.
[57] L. Rassaei, F. Marken, M. Sillanpää, M. Amiri, C.M. Cirtiu, M. Sillanpää, Nanoparticles in electrochemical sensors for environmental monitoring, Trends Anal. Chem., 30 (2011) 1704-1715.
[58] K. Murtada, V. Moreno, Nanomaterials-based electrochemical sensors for the detection of aroma compounds – towards analytical approach, J. Electroanal. Chem.861 (2020) 113988-114036.
[59] M.A. Beluomini, J.L. Silva, A.C.D Sá, E. Buffon, T.C. Pereira, N.R. Stradiotto, Electrochemical sensors based on molecularly imprinted polymer on nanostructured carbon materials: A review, J. Electroanal. Chem., 840(2019) 343-366.
[60] L. Shang, J. Xu, G.U. Nienhaus, Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis, Nano Today 28(2019) 100767.
[61] F.C. Adams, C. Barbante, Nanoscience, nanotechnology and spectrometry, Spectrochim. Acta, Part B 86 (2013) 3–13.
[62] M. Bandeira, M. Giovanela, M. Roesch-Ely, D.M. Devine, J.D.S. Crespo,Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation, Sustainable Chem. Pharm. 15 (2020) 100223-1002333.
[63] A. Roy, O. Bulut, S. Some, A.K. Mandal and M. D. Yilmaz, Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targetingantimicrobial activity, RSC Adv. 9 (2019) 2673–2702.
[64] M. Gericke,A. Pinches, Microbial production of gold nanoparticles. Gold Bull. 39 (2006) 22–28.
[65] S. Iravani Bacteria in nanoparticle synthesis: current status and future prospects. IntSch Res Not. 2014 (2014) 1–18.
[66] F. D. Pooley, Bacteria accumulate silver during leaching of sulphide ore minerals, Nature 296 (1982) 642–643.
[67] T. Klaus, R. Joerger, E. Olsson and C.-G. Granqvist, Silverbased crystalline NPs, microbially fabricated, Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 13611–13614.
[68] J. Singh, T. Dutta, K.‑H. Kim, M. Rawat, P. Samddar, P. Kumar, ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation, J.Nanobiotechnol. 16 (2018) 84-108.
[69] K. Kalimuthu, R. S. Babu, D. Venkataraman, M. Bilal and S. Gurunathan, Biosynthesis of silver nanocrystals by Bacillus licheniformis, Colloids Surf. B 65(1)(2008) 150–153.
[70] N. Mokhtari, S. Daneshpajouh, S. Seyedbagheri, R. Atashdehghan, K. Abdi, S. Sarkar, S. Minaian, H. R. Shahverdi, A. R. Shahverdi, Biological synthesis of very small silver NPs by culture supernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process, Mater. Res. Bull.44(6)(2009) 1415–1421.
[71] O.V. Kharissova, H.R. Dias, B.I. Kharisov, B.O. P´erez, V.M. P´erez, The greener synthesis of NPs, Trends Biotechnol. 31(4)(2013) 240–248.
[72] Y-L. Chen, H-Y. Tuan, C-W. Tien, W.H. Lo, H.C. Liang, Y.C. Hu, Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. BiotechnolProg. 25(2009) 1260–1266.
[73] P.Mohanpuria, N.K. Rana, S.K. Yadav. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanoparticle Res. 10 (2008) 507–517.
[74] K.S. Siddiqi, A. Husen, Fabrication of metal NPs from fungi and metal salts: scope and application, Nanoscale Res. Lett., 11(1)(2016) 98-.
[75] B.K. Ravindra, A.H. Rajasab, A comparative study on biosynthesis of silver nanoparticles using four different fungal species, Int J Pharm Pharm Sci. 6(1) (2014) 372–376.
[76] R.Raliya, P. Biswas, J.C.Tarafdar, TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vignaradiata L.). Biotechnol Rep. 5 (2015) 22–26.
[77] K. S. Siddiqi, A. Husen, Fabrication of metal NPs from fungi and metal salts: scope and application, Nanoscale Res. Lett., 11(1) (2016) 98-113.
[78] B. Xue, D. He, S. Gao, D. Wang, K. Yokoyama, L. Wang, Biosynthesis of silver NPs by the fungus Arthrodermafulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium, Int. J. Nanomed., 11 (2016) 1899-1906.
[79] S.V. Otari, R.M. Patil, N.H. Nadaf, S.J. Ghosh, S.H. Pawar, Green synthesis of silver NPs by microorganism using organic pollutant: its antimicrobial and catalytic application, Environ. Sci. Pollut. Res. 21(2) (2014) 1503–1513.
[80] M. Eugenio, N. M¨uller, S. Fras´es, R. Almeida-Paes, L.M. Lima, L. Lemgruber, M. Farina, W. de Souza, C. Sant’Anna, Yeast-derived biosynthesis of silver/silver chloride NPs and their antiproliferative activity against bacteria, RSC Adv. 6(12) (2016) 9893–9904.
[81] K. Ishida, T.F. Cipriano, G.M. Rocha, G. Weissm¨uller, F. Gomes, K. Miranda, S. Rozental, Silver nanoparticle production by the fungus Fusariumoxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts, Mem. Inst. Oswaldo Cruz 109(2)(2014) 220–228.
[82] Mourato A, Gadanho M, Lino AR, Tenreiro R. Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. BioinorgChem Appl. 1 (2011) 1-9.
[83] A. M. Elgorban, A. N. Al-Rahman, S. R. Sayed, A. Hirad, A. A.-F. Mostafa and A. H. Bahkali, Antimicrobial activity and green synthesis of AgNPs using Trochodermaviride, Biotechnol. Biotechnol. Equip. 30(2)(2016) 299–304.
[84] A. Regiel-Futyra, M. Kus-Li´skiewicz, V. Sebastian, S. Irusta, M. Arruebo, A. Kyzioł, G. Stochel, Development of noncytotoxic silver–chitosan nanocomposites for efficient control of biofilm forming microbes, RSC Adv. 7(83)(2017) 52398-52413.
[85] T.C. Leung, C. K. Wong,Y. Xie, Green synthesis of silver NPs using biopolymers, carboxymethylated-curdlan and fucoidan, Mater. Chem. Phys. 121(3) (2010) 402–405.
[86] P. Vasileva, B. Donkova, I. Karadjova, C. Dushkin, Synthesis of starch-stabilized silver NPs and their application as a surface plasmon resonance-based sensor of hydrogen peroxide, Colloids Surf. A 382 (2011) 203–210.
[87] M.B. Ahmad, M.Y. Tay, K. Shameli, M.Z. Hussein, J.J. Lim, Green synthesis and characterization of silver/ chitosan/polyethylene glycol nanocomposites without any reducing agent, Int. J. Mol. Sci. 12(8)(2011) 4872–4884.
[88] P. Malik, R. Shankar, V. Malik, N. Sharma, T.K. Mukherjee,Green chemistry based benign routes for nanoparticle synthesis. J. Nanoparticles 2014 (2014) 1–14.
[89] K.S.Mukunthan, S.Balaji, Cashew apple juice (Anacardiumoccidentale L.) speeds up the synthesis of silver nanoparticles. Int. J. Green Nanotechnol. 4 (2012) 71–85.
[90] N. Ahmad, S. Sharma, M.K.Alam, V.N. Singh, S.F.Shamsi, B.R. Mehta, A.Fatma,Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces. 81 (2010) 81–86.
[91] J.L. Gardea-Torresdey, E. Gomez, J.R. Peralta-Videa, J.G. Parsons, H. Troiani, M. Jose-Yacaman, Alfalfa sprouts: a natural source for the synthesis of silver NPs, Langmuir 19(4)(2003) 1357–1361.
[92] R. Sithara, P. Selvakumar, C. Arun, S. Anandan, P. Sivashanmugam, Economical synthesis of silver nanoparticles using leaf extract of Acalyphahispida and its application in the detection of Mn (II) ions, J. Adv. Res. 8(6) (2017) 561–568.
[93] A.J. Gavhane, P. Padmanabhan, S.P. Kamble, S.N. Jangle, Synthesis of silver NPs using extract of neem leaf and triphala and evaluation of their antimicrobial activities, Int. J. Pharma Bio Sci. 3(3)(2012) 88–100.
[94] B. Vellaichamy, P. Periakaruppan, Silver-nanospheres as a green catalyst for the decontamination of hazardous pollutants, RSC Adv. 5 (2015) 105917–105924.
[95] B. Vellaichamy, P. Periakaruppan, Ag nanoshell catalyzed dedying of industrial effluents,RSC Adv. 6 (2016) 31653–31660.
[96] B. Vellaichamy, P. Periakaruppan, Green synthesized nanospherical silver for selective and sensitive sensing of Cd2+colorimetrically, RSC Adv. 6 (2016) 35778–35784.
[97] V. Balakumar, P. Prakash, K. Muthupandi, A. Rajan, Nanosilver for selective and sensitive sensing of saturnism,Sens. Actuators, B 241 (2017) 814–820.
[98] P. Velmurugan, S. Sivakumar, S. Young-Chae, J. Seong-Ho, Y. Pyoung-In, H. Sung-Chul, Synthesis and characterization comparison of peanut shell extract silver NPs with commercial silver NPs and their antifungal activity, J. Ind. Eng. Chem. 31 (2015) 51–54.
[99] C.Krishnaraj, E.G.Jagan, S.Rajasekar, P.Selvakumar, P.T.Kalaichelvan, N. Mohan,Synthesis of silver nanoparticles using Acalyphaindica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B76(1) (2010) 50-56.
[100] T.C.Prathna, N.Chandrasekaran, A.M.Raichur, A.Mukherjee Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf. B 82 (2011) 152–159.
[101] A.K.Jha, K. Prasad, Green synthesis of silver nanoparticles using cycas leaf. Int J Green Nanotechnol. Phys. Chem. 1 (2010) 110–117.
[102] S.Ravindra, Y.M. Mohan, N.R. Narayana, K.M. Raju, Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “green approach”. Colloids Surf. A Physicochem. Eng. Asp. 367 (2010) 31– 40.
[103] R. Veerasamy, T.Z. Xin, S.Gunasagaran, T.F.W. Xiang, E. Fang, C. Yang, N. Jeyakumar, S.A. Dhanaraj, Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi. Chem. Soc. 15(2) (2011) 113-120.
[104] T.Mochochoko, O.S.Oluwafemi, D.N.Jumbam, S.P.Songca. Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; water hyacinth. Carbohydr.Polym. 98 (2013) 290–294.
[105] J. Singh, N. Singh, A. Rathi, D.Kukkar, M.Rawat,Facile approach to synthesize and characterization of silver nanoparticles by using mulberry leaves extract in aqueous medium and its application in antimicrobial activity. J Nanostructures. 7 (2017) 134–40.
[106] T.Santhoshkumar, A.A.Rahuman, G.Rajakumar, S.Marimuthu, A.Bagavan, C.Jayaseelan, A.A.Zahir, G.Elango, C. Kamaraj,Synthesis of silver nanoparticles using Nelumbonucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res. 108 (2011) 693–702.
[107] J. Singh, A. Mehta, M.Rawat, S. Basu, Green synthesis of silver nanoparticles using sun dried tulsi leaves and its catalytic application for 4-nitrophenol reduction. J Environ. Chem. Eng. 6 (2018) 1468–1474.
[108] S. Iravani, Green synthesis of metal nanoparticles using plants. Green Chem. 13 (2011) 2638-2650.
[109] C.V. Rao, A.K. Golder, Development of a bio-mediated technique of silver-doping on titania, Colloids and Surfaces A: Physicochem. Eng. Aspects 506 (2016) 557–565.
[110] P. Gómez-López, A. Puente-Santiago, A. Castro-Beltrán, L.A. Santos do Nacimiento, A.M. Balu, R. Luque, C.G. Alvarado-Beltrán, Nanomaterials and Catalysis for Green Chemistry, Current Opinion in Green and Sustainable Chemistry, 24 (2020) 48-55.
[111] D. Manoj, R. Saravanan, J. Santhanalakshmi, S. Agarwal, V.K. Gupta, R. Boukherroub, Towards green synthesis of monodisperse Cu nanoparticles: An efficient and high sensitive electrochemical nitrite sensor, Sens. Actuators, B 266(2018) 873-882.
[112] B.K.Ravindra, A.H.Rajasab. A comparative study on biosynthesis of silver nanoparticles using four different fungal species. Int. J. Pharm. Pharm. Sci. 6(1) (2014) 372–376.
[113] A.M.Fayaz, K.Balaji, M.Girilal, R. Yadav, P.T. Kalaichelvan, R. Venketesan, Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against grampositive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. Sci. 6(1) (2010) 103–109.
[114] R.Raliya, J.C.Tarafdar, Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int. Nano Lett. (2014) 493-103.
[115] BK.Bansod,T. Kumar,R. Thakur,S. Rana, I. Singh, A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosensors and Bioelectronics. 94(2017) 443–55.
[116] B. Bansod, T. Kumar, R. Thakur, S. Rana, I. Singh, A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms, Biosens. Bioelectron. 94 (2017) 443-455.
[117] A. Joshi, K.-H. Kim, Recent advances in nanomaterial-based electrochemical detection of antibiotics: Challenges and future perspectives, Biosens. Bioelectron. 153 (2020) 112046-112121.
[118] M. Labib, E.H. Sargent, S.O. Kelley, Electrochemical methods for the analysis of clinically relevant biomolecules. Chem. Rev. 116 (2016), 9001-9090.
[119] Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene Based Electrochemical Sensors and Biosensors: A Review, Electroanalysis 22(10)(2010) 1027-1036.
[120] X. Gan, H. Zhao, Understanding signal amplification strategies of nanostructured electrochemical sensors for environmental pollutants, Curr.Opin.Electrochem. 17(2019) 56-64.
[121] E. Asadian, M. Ghalkhani, S. Shahrokhian, Electrochemical sensing based on carbon nanoparticles: A review, Sensors & Actuators: B. Chemical 293 (2019) 183–209.
[122] F. Arduini, S.Cinti, V. Mazzaracchio, V. Scognamiglio, A. Amine, D. Moscone,Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design, Biosens. Bioelectron.156 (2020) 112033-112085.
[123] B. Vellaichamy, P.Periakaruppan, S.K.Ponnaiah, A new in-situ synthesized ternary CuNPs-PANI-GO nano composite forselective detection of carcinogenic hydrazine, Sens. Actuators, B245 (2017) 156–165.
[124] A. Aravind, M. Sebastiana, B. Mathew,Green synthesized unmodified silver nanoparticles as a multi-sensor for Cr(III) ions, Environ. Sci.: Water Res. Technol. 4 (2018) 1531-1542.
[125] M. Sebastian, A. Aravind and B. Mathew, Green silver-nanoparticle-based dual sensor for toxic Hg(II) ions, Nanotechnology 29(35) (2018)355502-355530.
[126] R. Emmanuel, C.Karuppiaha, S.-M. Chena, S. Palanisamya,S. Padmavathy, P. Prakash, Green synthesis of gold nanoparticles for trace level detection of ahazardous pollutant (nitrobenzene) causing Methemoglobinaemia, J. Hazard. Mater. 279 (2014) 117–124.
[127] C. Karuppiah, S. Palanisamy, S.-M. Chen, R. Emmanuel, M.A. Ali, P. Muthukrishnan, P. Prakash, F.M.A. Al-Hemaid, Green biosynthesis of silver nanoparticles and nanomolardetection of p-nitrophenol, J. Solid State Electrochem. 18 (2014) 1847–1854.
[128] S. Palanisamy, B. Thirumalraj, S.-M. Chen, M.A. Ali, K. Muthupandi, R. Emmanuel, P. Prakash, and Fahad M.A. Al-Hemaid,Fabrication of silver nanoparticles decorated on activated screen printed carbon electrode and its application for ultrasensitive detection of dopamine, Electroanalysis 27 (2015) 1998 – 2006.
[129] C. Karuppiah, S. Palanisamy, S.-M. Chen, R. Emmanuel, K. Muthupandi and P. Prakash,Green synthesis of gold nanoparticles and its application for the trace level determination of painter’s colic, RSC Adv. 5 (2015) 16284–16291.
[130] S.R. Dash, S.S. Bag, A.K. Golder, Synergized AgNPs formation using microwave in a bio-mediated route: Studies on particle aggregation and electrocatalytic sensing of ascorbic acidfrom biological entities, J. Electroanal. Chem.827 (2018) 181–192.
[131] G.D. Carlo, A. Curulli, R.G. Toro, C. Bianchini, T.D. Caro, G. Padeletti, D. Zane, G M. Ingo,Green synthesis of gold−chitosan nanocomposites for caffeic acidsensing, Langmuir 28 (2012) 5471−5479.
[132] K. Gopinath, S. Kumaraguru, K. Bhakyaraj, S. Mohan, K.S. Venkatesh, M. Esakkirajan, P. Kaleeswarran, N.S. Alharbi, S. Kadaikunnan, M. Govindarajan, G. Benelli, A. Arumugam, Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosasuperba leaf extract and their antibacterial and antibiofilmactivities. Microb. Pathog. 101 (2016) 1-11.
[133] J. Rick, M.-C. Tsai, and B.J. Hwang, Biosensors incorporating bimetallic nanoparticles, Nanomaterials 6 (2016) 5-35.
[134] A. Pani, T.D.Thanh, N. H. Kim, J. H. Lee, S.-I.Yun, Peanut Skin Extract Mediated Synthesis of AuNPs, AgNPs and Au-Ag Bionanocomposite forElectrochemical Sudan IV Sensing,IET Nanobiotechnol. 10(6) (2016) 431-437.
[135] P. Veerakumar, A. Sangili, S.-M. Chen, A. Pandikumar, and K.-C. Lin, Fabrication of platinum-rhenium nanoparticles-decoratedporous carbons: voltammetric sensing of furazolidone, ACS Sustainable Chem. Eng. 8(9)(2020) 3591-3605.
[136] J.M. George, A. Antony, B.Mathew, Metal oxide nanoparticles in electrochemical sensing and biosensing: a review, Microchim. Acta185(7) (2018) 358-384.
[137] M.U.A. Prathap, B. Kaur, R. Srivastava, Electrochemical Sensor Platforms Based on Nanostructured Metal Oxides, and Zeolite‐Based Materials, Chem. Rec. 19(5) (2019) 883-907.
[138] N.S. Pavithra, K. Lingaraju, G.K. Raghu, G. Nagaraju,Citrus maxima (Pomelo) juice mediated eco-friendly synthesis of ZnO nanoparticles: Applications to photocatalytic, electrochemical sensor and antibacterial activities,Spectrochim. Acta, Part A 185 (2017) 11–19.
[139] S. Sukumar, A. Rudrasenan, D.P. Nambiar,Green-Synthesized Rice-Shaped Copper Oxide Nanoparticles Using Caesalpiniabonducella Seed Extract and Their Applications, ACS Omega 5(2)(2020) 1040-1051.
[140] S. Momeni, F. Sedaghati,CuO/Cu2O nanoparticles: A simple and green synthesis, characterization and their electrocatalytic performance toward formaldehyde oxidation,Microchem. J. 143 (2018) 64–71.
[141] M. Valian, A. Khoobi, M. Salavati-Niasari, Green synthesis and characterization of DyMnO3-ZnO ceramicnanocomposites for the electrochemical ultratrace detection of atenolol, Mater. Sci. Eng., C 111 (2020) 110854-110865.
[142] N. Matinise, K. Kaviyarasu, N. Mongwaketsi, S. Khamlich, L. Kotsedi, N. Mayedwa, M. Maaza,Green synthesis of novel zinc iron oxide (ZnFe2O4) nanocomposite via MoringaOleifera natural extract for electrochemical applications, Appl. Surf. Sci.446 (2018) 66–73.
[143] B.S. Surendra, H.P. Nagaswarupa, M.U. Hemashree, J. Khanum, Jatropha extract mediated synthesis of ZnFe2O4nanopowder: Excellent performance as an electrochemical sensor, UV photocatalyst and an antibacterial activity, Chem. Phys. Lett. 739 (2020) 136980-137012.
[144] T. Laurila, S. Sainio, M.A. Caro, Hybrid carbon based nanomaterials for electrochemical detection of biomolecules, Prog. Mater Sci. 88(2017) 499-594.
[145] J.N. Tiwari, V. Vij, K.C. Kemp, K.S. Kim, Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules, ACS Nano 10(1) (2016) 46-80.
[146] T.V. Sathisha, B.K. Swamy, M. Schell, B. Eswarappa, Synthesis and characterization of carbon nanoparticles and their modified carbon paste electrode for the determination of dopamine, J. Electroanal. Chem. 720 (2014) 1–8.
[147] E. Vatandost, A. Ghorbani-HasanSaraei, F. Chekin, S. NaghizadehRaeisi, S-A. Shahidi, Green tea extract assisted green synthesis of reduced graphene oxide: Application for highly sensitive electrochemical detection of sunset yellow in food products, Food Chem. (2020) 100085 In Press.
[148] S. Nazarpour, R. Hajian, M.H. Sabzvari, A novel nanocomposite electrochemical sensor based on green synthesis of reduced graphene oxide/gold nanoparticles modified screen printed electrode for determination of tryptophan using response surface methodology approach, Microchemical Journal 154 (2020) 104634-104641.
[149] C. Singh, A. Ali, and G. Sumana, Green Synthesis of Graphene Based Biomaterial using Fenugreek Seeds for Lipid Detection, ACS Sustainable Chem. Eng. 4(3)(2016) 871-880.
[150] C. Karuppiah, K. Muthupandi, S.-M. Chen, M.A. Ali, S. Palanisamy, A. Rajan, P. Prakash, F.M.A. Al-Hemaid, B.-S. Lou, Green synthesized silver nanoparticles decorated on reduced graphene oxide for enhanced electrochemical sensing of nitrobenzene in waste water samples, RSC Adv. 5 (2015) 31139–31146.
[151] S. Palanisamy, C. Karuppiah, S.‐M. Chen, K. Muthupandi, R. Emmanuel, P. Prakash, M.S. Elshikh, M.A. Ali, F.M. A. Al‐Hemaid, Selective and Simultaneous Determination of Dihydroxybenzene Isomers Based on Green Synthesized Gold Nanoparticles Decorated Reduced Graphene Oxide, Electroanalysis 27(5)(2015) 1144-1151.
[152] D. Sharma, M.I. Sabela, S. Kanchi, K. Bisetty, A.A. Skelton, B. Honarparvar,Green synthesis, characterization and electrochemical sensing of silymarin by ZnO nanoparticles: Experimental and DFT studies, J. Electroanal. Chem. 808 (2018) 160–172.
[153] P. Salazar, I. Fernandez, M.C. Rodríguez, A. Hernandez-Creus, J.L. Gonzalez-Mora, One-step green synthesis of silver nanoparticle-modified reduced graphene oxide nanocomposite for H2O2 sensing applications, J. Electroanal. Chem. 855 (2019) 113638-113647.
[154] P. Nayak, B. Anbarasan, and S. Ramaprabhu, Fabrication of Organophosphorus Biosensor Using ZnO Nanoparticle-Decorated Carbon Nanotube−Graphene Hybrid Composite Prepared by a Novel Green Technique,J. Phys. Chem. C 117(25)(2013) 13202-13209.
[155] R.K. Das, S. Saha, V.R. Chelli, A.K. Golder, Bio-inspired AgNPs, multilayers-reduced graphene oxide andgraphite nanocomposite for electrochemical H2O2 sensing, Bull. Mater. Sci. 41 (2018) 86-97.
[156] T. Dodevska, I. Vasileva, P. Denev, D. Karashanova, B. Georgieva, D. Kovacheva, N. Yantcheva, A. Slavov,Rosa damascena waste mediated synthesis of silver nanoparticles: Characteristics and application for an electrochemical sensing of hydrogen peroxide and vanillin, Materials Chemistry and Physics 231 (2019) 335–343.
[157] R.K. Das, A.K.Golder, Co3O4 spinel nanoparticles decorated graphite electrode: Bio-mediated synthesis and electrochemical H2O2 sensing, Electrochim.Acta 251 (2017) 415-426.
[158] M.A. Khalilzadeh, S. Tajik, H. Beitollahi, R.A. Venditti, Green synthesis of magnetic nanocomposite with iron oxide deposited on cellulose nanocrystals with copper (Fe3O4@CNC/Cu): investigation ofcatalytic activity for the development of a venlafaxine electrochemical sensor, Ind. Eng. Chem. Res. 59(10)(2020) 4219-4228.
[159] S. Zhou, H. Xu, Q. Yuan, H. Shen, X. Zhu, Y. Liu, W. Gan, N-doped ordered mesoporous carbon originated from a green biological dye for electrochemical sensing and high pressure CO2 storage, ACS Appl. Mater. Interfaces 8(1) (2016) 918-926.