Bio-Mediated Synthesis of Metal Nanomaterials for SERS Application


Bio-Mediated Synthesis of Metal Nanomaterials for SERS Application

Sangeetha Kumaravel and Subrata Kundu

The discovery of nanomaterials (NMs) caused a great revolution in the field of science especially in material science. The highly exotic and tunable size and shape of NMs have devoted more interest due to their unique physiochemical properties. There are various methods and methodologies involved to prepare NMs in a desired morphology. Among these, the fabrication of bio-molecules mediated NMs are highly attractive because their size and shape can be easily tuned by simple, eco-friendly and reliable way. Deoxyribonucleic acid (DNA) is considered to be one of the most promising and well-studied bio-molecule in the fabrication of various types of NMs. The rich functionalities with the double-helix structure of DNA facilitate to accommodate a higher number of metal ions on its surface and results in perfect chain-like nano-assemblies. Moreover, the DNA mediated NMs can be highly useful for the Surface Enhanced Raman Scattering (SERS) studies with appropriate analytes. The SERS technique provides the fingerprint information of the analyte molecules even at very low concentration (such as even in ppm levels). The SERS intensity is greatly influenced by the size and shape of the NMs prepared using DNA scaffolds due to their assembly in a close proximity and generation of higher number of ‘hot spots’. In this present book chapter, we elaborated the numerous methodologies involved for the synthesis of DNA-based NMs considering their size, shapes, and also highlighted the possible mechanism involved for their growth with DNA scaffolds. In-addition, the possible application of DNA mediated NMs towards SERS studies has also been detailed in this book chapter.

Nanomaterials, Biomolecules, DNA, Incubation, Photoreduction, Seed-Mediated, Inter-Partical Distance, SPR, Generation, Noble Metals, SERS, Enhancement Factor, Methylene Blue, Rhodamine 6G, Tumor Detection

Published online 8/10/2021, 37 pages

Citation: Sangeetha Kumaravel and Subrata Kundu, Bio-Mediated Synthesis of Metal Nanomaterials for SERS Application, Materials Research Foundations, Vol. 111, pp 118-154, 2021


Part of the book on Bioinspired Nanomaterials

[1] K.D. Gilroy, A. Ruditskiy, H. Peng, D. Qin, Y. Xia, Bimetallic Nanocrystals: Syntheses , Properties , and Applications, Chem. Rev. 116 (2016) 10414−10472.
[2] J.R. Heath, Nanoscale Materials, Acc. Chem. Res. 32 (1999) 990059
[3] X. Peng, Q. Pan, G.L. Rempel, Bimetallic dendrimer-encapsulated nanoparticles as catalysts: a review of the research advances, Chem.Soc.Rev. 37 (2008) 1619–1628.
[4] R.J. White, R. Luque, V.L. Budarin, J.H. Clark, D.J. Macquarrie, Supported metal nanoparticles on porous materials. Methods and applications, Chem.Soc.Rev. 38 (2009) 481–494.
[5] M.F.H. Jr, D.W. Mogk, J. Ranville, I.C. Allen, G.W. Luther, L.C. Marr, B.P. Mcgrail, M. Murayama, N.P. Qafoku, K.M. Rosso, N. Sahai, P.A. Schroeder, P. Vikesland, P. Westerhoff, Y. Yang, Natural, incidental, and engineered nanomaterials and their impacts on the Earth system, Science (80-. ). 363 (2019) 6434.
[6] M.F. Hochella, S.K. Lower, P.A. Maurice, R.L. Penn, N. Sahai, D.L. Sparks, B.S. Twining, Nanominerals, Mineral nanoparticles, and Earth Systems, Science. 1631 (2008) 1631–1635.
[7] M.K. Mcnutt, Convergence in the Geosciences, GeoHealth. 1 (2017) 2–3.
[8] H. Shirakawa, The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers (Nobel Lecture), Angew. Chem. Int. Ed. 40 (2000) 2574 – 2580.
[9] J. Huang, L. Lin, D. Sun, H. Chen, D. Yang, Q. Li, Bio-inspired synthesis of metal nanomaterials and applications, Chem.Soc.Rev. 44 (2015) 6330–6374.
[10] C. Aur, T. Nesma, P. Juanes-velasco, A. Landeira-viñuela, H. Fidalgo-gomez, V. Acebes-fernandez, R. Gongora, A. Parra, R. Manzano-roman, M. Fuentes, Interactions of NPs and Biosystems : Microenvironment of NPs and Biomolecules in Nanomedicine, Nanomaterials. 9 (2019) 1365
[11] C. Toumey, Reading Feynman Into Nanotechnology: A Text for a New Science, Res. Philos. Technol. 12 (2008) 133–168
[12] C.M. Niemeyer, Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science, Angew. Chem. Int. Ed. 40 (2001) 4128 ± 4158
[13] H. Hosein, D.R. Strongin, T. Douglas, K. Rosso, A Bioengineering Approach to the Production of Metal and Metal Oxide NPs, 2005
[14] A.R. Tao, S. Habas, P. Yang, Shape Control of Colloidal Metal Nanocrystals, Small 2008,. 4 (2008) 310–325.
[15] E.D. Spoerke, A.K. Boal, G.D. Bachand, B.C. Bunker, Templated Nanocrystal Assembly on Biodynamic Artificial Microtubule Asters, ACS Nano. 7 (2019) 2012–2019
[16] Z. Chen, C. Liu, F. Cao, J. Ren, X. Qu, DNA metallization: principles, methods, structures, and applications, Chem. Soc. Rev. 47 (2018) 4017–4072.
[17] Z. Zhang, Y. Wen, Y. Ma, J. Luo, L. Jiang, Y. Song, Mixed DNA-functionalized nanoparticle probes for surface-enhanced Raman scattering-based multiplex DNA detection, Chem. Commun. 47 (2011) 7407–7409.
[18] V. V Thacker, L.O. Herrmann, D.O. Sigle, T. Zhang, T. Liedl, J.J. Baumberg, U.F. Keyser, DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering, Nat. Commun. 5 (2014) 3448.
[19] D. Janas, Towards monochiral carbon nanotubes: A review of progress in sorting of single-wall carbon nanotubes, Mater. Chem. Front. 2 (2017) 36–63.
[20] A. Mehmood, H. Ghafar, S. Yaqoob, U.F. Gohar, B. Ahmad, Mesoporous Silica NPs: A Review, J. Dev. Drugs. 6 (2017) 1–11.
[21] S.S. Sankar, K. Karthick, K. Sangeetha, R.S. Gill, S. Kundu, Annexation of Nickel vanadate (Ni3V2O8) nanocubes on nanofibers: an excellent electrocatalyst for water oxidation, ACS Sustain. Chem. Eng. 8 (2020) 4572–4579.
[22] P. Thiruvengetam, D.K. Chand, Oxidomolybdenum based catalysts for sulfoxidation reactions: A brief Review, J. Indian Chem. Soc. 95 (2018) 781–788
[23] P. Thiruvengetam, R.D. Chakravarthy, D.K. Chand, A molybdenum based metallomicellar catalyst for controlled and chemoselective oxidation of activated alcohols in aqueous medium, J. Catal. 376 (2019) 123–133.
[24] Y. Cao, D. Li, F. Jiang, Y. Yang, Z. Huang, Engineering Metal Nanostructure for SERS Application, J. Nanomater. 2013 (2013) 1–6
[25] D. Sharma, S. Kanchi, K. Bisetty, Biogenic synthesis of nanoparticles: A review, Arab. J. Chem. 12 (2015) 3576–3600.
[26] M. Razavi, Bio-based nanostructured materials, Elsevier Ltd., 2018.
[27] R. Levy, N.T.K. Thanh, R.C. Doty, I. Hussain, R.J. Nichols, D.J. Schiffrin, M. Brust, D.G. Fernig, Rational and Combinatorial Design of Peptide Capping Ligands for Gold nanoparticles, J. Am. Chem. Soc. 126 (2004) 10076–10084
[28] M.S. Ekiz, G. Cinar, M.A. Khalily, M.O. Guler, Self-assembled peptide nanostructures for functional materials, Nanotechnology. 27 (2016) 402002
[29] T. Maruyama, Y. Fujimoto, T. Maekawa, Synthesis of gold nanoparticles using various amino acids, J. Colloid Interface Sci. 447 (2015) 447, 254–257.
[30] S. Manivannan, I. Kang, Y. Seo, H. Jin, S. Lee, K. Kim, M13 Virus-Incorporated Biotemplates on Electrode Surfaces to Nucleate Metal Nanostructures by Electrodeposition M13 Virus-Incorporated Biotemplates on Electrode Surfaces to Nucleate Metal Nanostructures by Electrodeposition, ACS Appl. Mater. Interfaces. 9 (2017) 32965–32976.
[31] S. Kumaravel, P. Thiruvengetam, S.R. Ede, K. Karthick, S. Anantharaj, S.S. Sankar, S. Kundu, Cobalt tungsten oxide hydroxide hydrate (CTOHH) on DNA scaffold: an excellent bi-functional catalyst for oxygen evolution reaction (OER) and aromatic alcohol oxidation, Dalt. Trans. 48 (2019) 17117–17131.
[32] M.C. Bubalo, S. Vidovi, I. Radoj, S. Jokic, Green solvents for green technologies, J Chem Technol Biotechnol. 90 (2015) 1631–1629.
[33] O.I. Wilner, I. Willner, Functionalized DNA Nanostructures, Chem. Rev. 112 (2012) 2528–2556.
[34] N.C. Seeman, Nucleic Acid Junctions and Lattices, J. Theor. Biol. 99 (1982) 237–247
[35] J.D. Moroz, P. Nelson, Torsional directed walks, entropic elasticity, and DNA twist stiffness, Proc. Natl. Acad. Sci. 94 (1997) 14418–14422
[36] E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, DNA-templated assembly and electrode attachment of a conducting silver wire, Nature. 391 (1998) 775-778
[37] J.J. Storhoff, C.A. Mirkin, Programmed Materials Synthesis with DNA, Chem. Rev. 99 (1999) 1849–1862
[38] C. Lin, Y. Liu, S. Rinker, H. Yan, DNA Tile Based Self-Assembly: Building Complex Nanoarchitectures, ChemPhysChem. 7 (2006) 1641–1647.
[39] J. Sharma, R. Chhabra, C.S. Andersen, K. V Gothelf, H. Yan, Y. Liu, Toward Reliable Gold Nanoparticle Patterning On Self-Assembled DNA Nanoscaffold, J. Am. Chem. Soc.. 130 (2008) 7820–7821
[40] Y. Liu, C. Lin, H. Li, H. Yan, Aptamer-Directed Self-Assembly of Protein Arrays on a DNA Nanostructure, Angew. Chem. Int. Ed. 44 (2005) 4333–4338.
[41] K. Sangeetha, S.S. Sankar, K. Karthick, S. Anantharaj, S.R. Ede, S. Wilson T., S. Kundu, Synthesis of ultra-small Rh nanoparticles congregated over DNA for catalysis and SERS applications, Colloids Surfaces B Biointerfaces. 173 (2019) 249–257.
[42] S. Kumaravel, P. Thiruvengetam, K. Karthick, S.S. Sankar, S. Kundu, Detection of Lignin Motifs with RuO2-DNA as an Active Catalyst via Surface-Enhanced Raman Scattering Studies, ACS Sustain. Chem. Eng. 7 (2019) 18463–18475.
[43] S.R. Ede, S. Kundu, Microwave Synthesis of SnWO4 Nanoassemblies on DNA Scaffold: A Novel Material for High Performance Supercapacitor and as Catalyst for Butanol Oxidation, ACS Sustain. Chem. Eng. 3 (2015) 2321–2336.
[44] S.R. Ede, A. Ramadoss, U. Nithiyanantham, S. Ananthara, and S. Kundu, Bio-molecule Assisted Aggregation of ZnWO4 nanoparticles (NPs) into Chain-like Assemblies: Material for High Performance Supercapacitor and as Catalyst for Benzyl Alcohol Oxidation, Inorg. Chem. 54 (2015) 3851–3863.
[45] K. Karthick, S. Anantharaj, S.N. Jagadeesan, P. Kumar, S.R. Ede, D.K. Pattanayak, S. Patchaiammal, S. Kundu, Advanced Cu3Sn and Selenized Cu3Sn@Cu Foam as Electrocatalysts for Water Oxidation under Alkaline and Near-Neutral Conditions, Inorg. Chem. 58 (2019) 9490–9499.
[46] S. Anantharaj, K. Karthick, S. Kundu, NiTe2 Nanowire Outperforms Pt/C in High-Rate Hydrogen Evolution at Extreme pH Conditions, Inorg. Chem. 57 (2018) 3082–3096.
[47] S. Anantharaj, T.S. Amarnath, E. Subhashini, S. Chatterjee, K.C.S. Swaathini, K. Karthick, S. Kundu, Shrinking the Hydrogen Overpotential of Cu by 1 V and Imparting Ultralow Charge Transfer Resistance for Enhanced H2 Evolution, ACS Catal. 8 (2018) 5686–5697.
[48] I. Katayama, K. Shudo, J. Takeda, T. Shimada, A. Kubo, S. Hishita, D. Fujita, M. Kitajima, Ultrafast Dynamics of Surface-Enhanced Raman Scattering Due to Au Nanostructures, Nano Lett. 11 (2011) 2648–2654.
[49] S. Zong, C. Chen, Z. Wang, Y. Zhang, Y. Cui, Surface Enhanced Raman Scattering Based in Situ Hybridization Strategy for Telomere Length Assessment, ACS Nano. 10 (2016) 2950–2959.
[50] S. Kundu, M. Mandal, S.K. Ghosh, T. Pal, Photochemical deposition of SERS active silver nanoparticles on silica gel, J. Photochem. Photobiol. A Chem. 162 (2004) 625–632.
[51] J.P. Camden, J.A. Dieringer, Y. Wang, D.J. Masiello, L.D. Marks, G.C. Schatz, R.P. Van Duyne, Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots, J. Am. Chem. Soc.. 130 (2008) 12616–12617
[52] J. Shen, J. Su, J. Yan, B. Zhao, D. Wang, S. Wang, S. Mathur, K. Li, M. Liu, C. Fan, Y. He, S. Song, Bimetallic nano-mushrooms with DNA-mediated interior nanogaps for high-efficiency SERS signal amplification, Nano Res. 8 (2014) 731–742.
[53] C. Muehlethaler, C.R. Considine, V. Menon, W. Lin, Y. Lee, J.R. Lombardi, Ultra-High Raman Enhancement on Monolayer MoS2, ACS Photonics. 3 (2016) 1164–1169.
[54] M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman Spectra of Pyridine Adsorbed at a Silver Electrode, 1974
[55] D. Mehn, C. Morasso, R. Vanna, M. Bedoni, D. Prosperi, F. Gramatica, Vibrational Spectroscopy Immobilised gold nanostars in a paper-based test system for surface-enhanced Raman spectroscopy, Vib. Spectrosc. 68 (2013) 45–50.
[56] Y. Yan, A.I. Radu, W. Rao, H. Wang, G. Chen, K. Weber, D. Wang, D. Cialla-May, J. Popp, P. Schaaf, Mesoscopically Bi-continuous Ag−Au Hybrid Nanosponges with Tunable Plasmon Resonances as Bottom-Up Substrates for Surface- Enhanced Raman Spectroscopy, Chem. Mater. 28 (2016) 7673−7682.
[57] S. Chen, P. Xu, Y. Li, J. Xue, S. Han, W. Ou, L. Li, W. Ni, Rapid Seedless Synthesis of Gold Nanoplates with Microscaled Edge Length in a High Yield and Their Application in SERS, Nano-Micro Lett. 8 (2016) 328–335.
[58] F. Pu, Y. Huang, Z. Yang, H. Qiu, J. Ren, Nucleotide-Based Assemblies for Green Synthesis of Silver nanoparticles with Controlled Localized Surface Plasmon Resonances and Their Applications, ACS Appl. Mater. Interfaces. 10 (2018) 9929–9937.
[59] H. Wei, H. Xu, Hot spots in different metal nanostructures for plasmon- enhanced Raman spectroscopy, Nanoscale. 5 (2013) 10794–10805.
[60] S. Ding, J. Yi, J. Li, B. Ren, R. Panneerselvam, Z. Tian, Nanostructure-based plasmon- enhanced Raman spectroscopy for surface analysis of materials, Nat. Rev. Mater. 1 (2016) 1–16.
[61] P.E. Noppadon Nuntawong, P. Eiamchai, S. Limwichean, M. Horprathum, V. Patthanasettakul, P. Chindaudom, Applications of surface-enhanced Raman scattering (SERS) substrate, in: Asian Conf. Def. Technol., 2015: pp. 92–95
[62] J.M. Mclellan, A. Siekkinen, J. Chen, Y. Xia, Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes, Chem. Phys. Lett. 427 (2006) 122–126.
[63] J. Li, Y. Yanga, D. Qin, Hollow nanocubes made of Ag–Au alloys for SERS detection with sensitivity of 10-8 M for melamine, J. Mater. Chem. C. 2 (2014) 9934–9940.
[64] Y.W. Lee, M. Kim, S.W. Kang, S.W. Han, Polyhedral Bimetallic Alloy Nanocrystals Exclusively Bound by {110} Facets: Au–Pd Rhombic Dodecahedra, Angew. Chem. Int. Ed. 50 (2011) 3466–3470.
[65] B. Ren, X. Lin, Z. Yang, G. Liu, R.F. Aroca, B. Mao, Z.-Q. Tian, Surface-Enhanced Raman Scattering in the Ultraviolet Spectral Region : UV-SERS on Rhodium and Ruthenium Electrodes, J. Am. Chem. Soc. 100 (2003) 9598–9599.
[66] C. Fasolato, F. Ripanti, A. Capocefalo, A. Sarra, F. Brasili, C. Petrillo, C. Fasolato, P. Postorino, DNA-functionalized gold nanoparticle assemblies for Surface Enhanced Raman Scattering, Colloids Surfaces A Physicochem. Eng. Asp. 589 (2019) 124399.
[67] L. Zhang, H. Ma, L. Yang, Design and fabrication of surface-enhanced Raman scattering substrate from DNA – gold NPs, RSC Adv. 4 (2014) 45207–45213.
[68] X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, B. Ding, Rolling Up Gold Nanoparticle-Dressed DNA Origami into Three- Dimensional Plasmonic Chiral Nanostructures, J. Am. Chem. Soc.. 134 (2012) 146–149
[69] J. Keum, M. Kim, J. Park, C. Yoo, N. Huh, S. Chul, DNA-directed self-assembly of three-dimensional plasmonic nanostructures for detection by surface-enhanced Raman scattering ( SERS ), Sens. Bio-Sensing Res. 1 (2014) 21–25.
[70] Y. Li, X. Qi, C. Lei, Q. Yue, S. Zhang, Simultaneous SERS detection and imaging of two biomarkers on the cancer cell surface by self-assembly of branched DNA–gold nanoaggregates, Chem. Commun. 50 (2014) 9907–9909.
[71] M. Liu, Z. Wang, S. Zong, R. Zhang, D. Zhu, S. Xu, C. Wang, SERS-based DNA detection in aqueous solutions using oligonucleotide-modified Ag nanoprisms and gold nanoparticles, Anal Bioanal Chem. 405 (2013) 6131–6136.
[72] S. Anantharaj, U. Nithiyanantham, S.R. Ede, S. Kundu, Osmium organosol on DNA: Application in catalytic hydrogenation reaction and in SERS studies, Ind. Eng. Chem. Res. 53 (2014) 19228–19238.
[73] K. Sakthikumar, S. Anantharaj, S.R. Ede, K. Karthick, S. Kundu, A highly stable rhenium organosol on a DNA scaffold for catalytic and SERS applications, J. Mater. Chem. C. 4 (2016) 6309–6320.
[74] G. Wei, L. Wang, Z. Liu, Y. Song, L. Sun, T. Yang, Z. Li, DNA-Network-Templated Self-Assembly of Silver nanoparticles and Their Application in Surface-Enhanced Raman Scattering, J. Phys. Chem. B. 109 (2005) 23941–23947
[75] C. Peng, Y. Song, G. Wei, W. Zhang, Z. Li, W. Dong, Self-assembly of λ-DNA networks/Ag nanoparticles: Hybrid architecture and active-SERS substrate, J. Colloid Interface Sci. 317 (2008) 183–190.
[76] S. Kundu, M. Jayachandran, The self-assembling of DNA-templated Au nanoparticles into nanowires and their enhanced SERS and catalytic applications, RSC Adv. 3 (2013) 16486.
[77] L. Yang, G. Chen, J. Wang, T. Wang, M. Li, J. Liu, Sunlight-induced formation of silver-gold bimetallic nanostructures on DNA template for highly active surface enhanced Raman scattering substrates and application in TNT / tumor marker detection, J. Mater. Chem. 19 (2009) 6849–6856.
[78] H. Ma, D. Lin, H. Liu, L. Yang, L. Zhang, J. Liu, Hot spots in photoreduced Au nanoparticles on DNA scaffolds potent for robust and high-sensitive surface-enhanced Raman scattering substrates, Mater. Chem. Phys. 138 (2013) 573–580.
[79] S. Kundu, Y. Chen, W. Dai, L. Ma, A.M. Sinyukov, H. Liang, Enhanced Catalytic and SERS Activities of Size-selective Rh nanoparticles on DNA Scaffold, J. Mater. Chem. C. 5 (2017) 2577–2590.
[80] S. Kundu, S.-I. Yi, L. Ma, Y. Chen, W. Dai, A.M. Sinyukov, H. Liang, Morphology dependent catalysis and surface enhanced Raman scattering (SERS) studies using Pd nanostructures in DNA, CTAB and PVA scaffolds, Dalt. Trans. 46 (2017) 9678–9691.
[81] L. Sun, D. Zhao, Z. Zhang, B. Li, D. Shen, DNA-based fabrication of density-controlled vertically aligned ZnO nanorod arrays and their SERS applications, J. Mater. Chem. 21 (2011) 9674–9681.
[82] Z.Y. Jiang, X.X. Jiang, S. Su, X.P. Wei, S.T. Lee, Z.Y. Jiang, X.X. Jiang, S. Su, Y. He, Silicon-based reproducible and active surface-enhanced Raman scattering substrates for sensitive , specific , and multiplex DNA detection Silicon-based reproducible and active surface-enhanced Raman scattering substrates for sensitive , specific , and mul, Appl. Phys. Lett. 100 (2012) 203104.
[83] M. Kahraman, E.R. Mullen, A. Korkmaz, S. Wachsmann-hogiu, Fundamentals and applications of SERS-based bioanalytical sensing, Nanophotonics. 6 (2017) 831–852.
[84] C.A.R. Auchinvole, P. Richardson, C. Mcguinnes, V. Mallikarjun, K. Donaldson, H. Mcnab, C.J. Campbell, Monitoring Intracellular Redox Potential Changes Using SERS Nanosensors, ACS Nano. 6 (2012) 888–896
[85] Z.Q. Tian, B. Ren, D.Y. Wu, Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures, J. Phys. Chem. B. 106 (2002) 9463–9483.
[86] J.D. Driskell, R.A. Tripp, Label-free SERS detection of microRNA based on affinity for an unmodified silver nanorod array substrate, Chem. Commun. 46 (2010) 3298–3300.
[87] X. Yang, C. Gu, F. Qian, Y. Li, J.Z. Zhang, Highly Sensitive Detection of Proteins and Bacteria in Aqueous Solution Using Surface-Enhanced Raman Scattering and Optical Fibers, Anal. Chem. 83 (2011) 5888–5894
[88] P. Negri, A. Kage, A. Nitsche, D. Naumann, R.A. Dluhy, Detection of viral nucleoprotein binding to anti-influenza aptamers via SERS, Chem. Commun. 47 (2011) 8635–8637.
[89] S. Efrima, B. V Bronk, Silver Colloids Impregnating or Coating Bacteria, J. Phys. Chem. B. 102 (1998) 5947–5950
[90] I. Sayin, M. Kahraman, F. Sahin, D. Yurdakul, M. Culha, Characterization of Yeast Species Using Surface-Enhanced Raman Scattering, Appl. Spectrosc. 63 (2009) 1276–1282
[91] M. Lee, S. Lee, J. Lee, H. Lim, G. Hun, E. Kyu, S. Chang, C. Hwan, J. Choo, Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging, Biosens. Bioelectron. 26 (2011) 2135–2141.
[92] H. Jun, L. Liu, C. An, X. Zhang, M.Y. Lv, Y.M. Zhao, H.J. Xu, Study of surface-enhanced Raman scattering activity of DNA-directed self-assembled gold nanoparticle dimers, Appl. Phys. Lett. 107 (2015) 193106.
[93] S.S. Sankar, K. Sangeetha, K. Karthick, S. Anantharaj, S.R. Ede, S. Kundu, Pt nanoparticles Tethered DNA Assemblies for Enhanced Catalysis and SERS Applications, New J. Chem. 42 (2018) 15784-15792.
[94] D. Majumdar, A. Singha, P.K. Mondal, S. Kundu, DNA-mediated wirelike clusters of silver nanoparticles: An ultrasensitive SERS substrate, ACS Appl. Mater. Interfaces. 5 (2013) 7798–7807.
[95] K. Sangeetha, K. Karthick, S. Sam Sankar, Arun Karmakar, S, Kundu, Prospects in interfaces of biomolecule DNA and nanomaterials as an effective way for improvising surface enhanced Raman scattering: A review, Advances in Colloid and Interface Science: 291 (2021) 102399