Bio-Mediated Synthesis of Nanomaterials for Packaging Applications


Bio-Mediated Synthesis of Nanomaterials for Packaging Applications

P. Sivaranjana, N. Rajini, V. Arumugaprabu, S.O. Ismail

Change in lifestyle of humans in this present generation with huge dependence on packaging materials has encouraged several studies on development of new variety of packaging materials. Emphasis on replacement of existing non-biodegradable packaging materials with biodegradable materials paved the way for the use of biopolymers. Lack of properties, such as thermal stability and mechanical strength in biopolymers led to the development of biopolymer nanocomposites by adding metal/metal oxide nanoparticles as fillers into the biopolymers. Metal/metal oxide nanoparticles improve mechanical/tensile strength, thermal stability as well as antimicrobial properties of the binding and receiving polymer matrix. Bio-mediated synthesis of metal/metal oxide nanoparticles result in the development of novel packaging materials at a low cost and without releasing hazardous wastes into the environments. Novel packaging materials with metal/metal oxide nanoparticles as additives are capable of increasing the shelf life of food, in certain cases they act as indicators of quality food inside the package. Summarily, this present chapter focuses on bio-mediated synthesis of various metal/metal oxide nanoparticles and their applications in food packaging.

Biosynthesis, Filler, Additive, Packaging Material, Antimicrobial, Metal Nanoparticles

Published online 8/10/2021, 22 pages

Citation: P. Sivaranjana, N. Rajini, V. Arumugaprabu, S.O. Ismail, Bio-Mediated Synthesis of Nanomaterials for Packaging Applications, Materials Research Foundations, Vol. 111, pp 96-117, 2021


Part of the book on Bioinspired Nanomaterials

[1] J.-W. Han, L. Ruiz-Garcia, J.-P. Qian, and X.-T. Yang, “Food Packaging: A Comprehensive Review and Future Trends,” Compr. Rev. Food Sci. Food Saf., vol. 17, no. 4, pp. 860–877, Jul. 2018.
[2] O. M. Koivistoinen, “Catabolism of biomass-derived sugars in fungi and metabolic engineering as a tool for organic acid production.” 2013.
[3] J. Vartiainen, M. Vähä-Nissi, and A. Harlin, “Biopolymer Films and Coatings in Packaging Applications—A Review of Recent Developments,” Mater. Sci. Appl., vol. 05, no. 10, pp. 708–718, Aug. 2014.
[4] “Nanomaterial advantage | Nature.” [Online]. Available: [Accessed: 01-May-2020].
[5] N. Peelman et al., “Application of bioplastics for food packaging,” Trends in Food Science and Technology, vol. 32, no. 2. Elsevier, pp. 128–141, 01-Aug-2013.
[6] M. Pal, “Nanotechnology: A New Approach in Food Packaging,” 2017.
[7] “Nanomaterials | Food Packaging Forum.” [Online]. Available: [Accessed: 01-May-2020].
[8] C. Buzea, I. I. Pacheco, and K. Robbie, “Nanomaterials and nanoparticles: Sources and toxicity,” Biointerphases, vol. 2, no. 4, pp. MR17–MR71, Dec. 2007.
[9] M. Cushen, J. Kerry, M. Morris, M. Cruz-Romero, and E. Cummins, “Migration and exposure assessment of silver from a PVC nanocomposite,” Food Chem., vol. 139, no. 1–4, pp. 389–397, Aug. 2013.
[10] E. Fortunati et al., “Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles,” Carbohydr. Polym., vol. 87, no. 2, pp. 1596–1605, Jan. 2012.
[11] H. Y. Yu, X. Y. Yang, F. F. Lu, G. Y. Chen, and J. M. Yao, “Fabrication of multifunctional cellulose nanocrystals/poly(lactic acid) nanocomposites with silver nanoparticles by spraying method,” Carbohydr. Polym., vol. 140, pp. 209–219, Apr. 2016.
[12] B. Iamareerat, M. Singh, M. B. Sadiq, and A. K. Anal, “Reinforced cassava starch based edible film incorporated with essential oil and sodium bentonite nanoclay as food packaging material,” J. Food Sci. Technol., vol. 55, no. 5, pp. 1953–1959, May 2018.
[13] N. Mude, A. Ingle, A. Gade, and M. Rai, “Synthesis of silver nanoparticles using callus extract of Carica papaya – A first report,” J. Plant Biochem. Biotechnol., vol. 18, no. 1, pp. 83–86, Jan. 2009.
[14] K. Vasudeo, S. Sampat, and K. Pramod, “Biosynthesis of copper nanoparticles using aqueous extract of Eucalyptus sp . plant leaves,” Curr. Sci., vol. 109, no. 2, pp. 255–257, 2015.
[15] “Nanomaterials in food contact materials; considerations for risk assessment – Annals of the National Institute of Hygiene – Volume 68, Number 4 (2017) – AGRO – Yadda.” [Online]. Available: [Accessed: 01-May-2020].
[16] Z. Piperigkou et al., “Emerging aspects of nanotoxicology in health and disease: From agriculture and food sector to cancer therapeutics,” Food and Chemical Toxicology, vol. 91. Elsevier Ltd, pp. 42–57, 01-May-2016.
[17] C. M. Ramakritinan et al., “Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications,” Front. Lab. Med., vol. 2, no. 1, pp. 30–35, 2018.
[18] M. Cruz-Romero, “Crop-based biodegradable packaging and its environmental implications.,” CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour., vol. 3, no. 074, 2009.
[19] N. Durán, P. D. Marcato, R. De Conti, O. L. Alves, F. T. M. Costa, and M. Brocchi, “Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action,” Journal of the Brazilian Chemical Society, vol. 21, no. 6. Sociedade Brasileira de Quimica, pp. 949–959, 2010.
[20] X. Wei et al., “Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO 3,” Bioresour. Technol., vol. 103, no. 1, pp. 273–278, Jan. 2012.
[21] K. AbdelRahim, S. Y. Mahmoud, A. M. Ali, K. S. Almaary, A. E. Z. M. A. Mustafa, and S. M. Husseiny, “Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer,” Saudi J. Biol. Sci., vol. 24, no. 1, pp. 208–216, Jan. 2017.
[22] T. Yurtluk, F. A. Akçay, and A. Avcı, “Biosynthesis of silver nanoparticles using novel Bacillus sp. SBT8,” Prep. Biochem. Biotechnol., vol. 48, no. 2, pp. 151–159, Feb. 2018.
[23] H. Singh, J. Du, P. Singh, and T. H. Yi, “Extracellular synthesis of silver nanoparticles by Pseudomonas sp. THG-LS1.4 and their antimicrobial application,” J. Pharm. Anal., vol. 8, no. 4, pp. 258–264, Aug. 2018.
[24] E. K. F. Elbeshehy, A. M. Elazzazy, and G. Aggelis, “Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens,” Front. Microbiol., vol. 6, no. MAY, 2015.
[25] V. L. Das, R. Thomas, R. T. Varghese, E. V. Soniya, J. Mathew, and E. K. Radhakrishnan, “Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area,” 3 Biotech, vol. 4, no. 2, pp. 121–126, Apr. 2014.
[26] D. Manikprabhu and K. Lingappa, “Antibacterial activity of silver nanoparticles against methicillin-resistant Staphylococcus aureus synthesized using model Streptomyces sp. pigment by photo-irradiation method,” J. Pharm. Res., vol. 6, no. 2, pp. 255–260, Feb. 2013.
[27] B. A. Chopade et al., “Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics,” Int. J. Nanomedicine, p. 4277, Nov. 2013.
[28] V. Gopinath et al., “Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity,” Arab. J. Chem., vol. 10, no. 8, pp. 1107–1117, Dec. 2017.
[29] L. Devi and S. Joshi, “Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi,” J. Microsc. Ultrastruct., vol. 3, no. 1, p. 29, Mar. 2015.
[30] S. M. Husseiny, T. A. Salah, and H. A. Anter, “Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities,” Beni-Suef Univ. J. Basic Appl. Sci., vol. 4, no. 3, pp. 225–231, Sep. 2015.
[31] M. D. Balakumaran, R. Ramachandran, and P. T. Kalaichelvan, “Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities,” Microbiol. Res., vol. 178, pp. 9–17, Sep. 2015.
[32] L. Ma et al., “Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions,” Mater. Sci. Eng. C, vol. 77, pp. 963–971, Aug. 2017.
[33] K. Siegel-Hertz, V. Edel-Hermann, E. Chapelle, S. Terrat, J. M. Raaijmakers, and C. Steinberg, “Comparative microbiome analysis of a Fusarium wilt suppressive soil and a Fusarium wilt conducive soil from the Châteaurenard region,” Front. Microbiol., vol. 9, no. APR, p. 568, Apr. 2018.
[34] M. Saravanan, S. Arokiyaraj, T. Lakshmi, and A. Pugazhendhi, “Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria,” Microb. Pathog., vol. 117, pp. 68–72, Apr. 2018.
[35] S. Kumar, A. Shukla, P. P. Baul, A. Mitra, and D. Halder, “Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications,” Food Packag. Shelf Life, vol. 16, 2018.
[36] S. Paramasivan, N. E.R., R. Nagarajan, V. R. Anumakonda, and H. N., “Characterization of cotton fabric nanocomposites with in situ generated copper nanoparticles for antimicrobial applications,” Prep. Biochem. Biotechnol., vol. 0, no. 0, pp. 1–8, 2018.
[37] V. Sadanand, N. Rajini, B. Satyanarayana, and A. V. Rajulu, “Preparation and properties of cellulose/silver nanoparticle composites with in situ-generated silver nanoparticles using Ocimum sanctum leaf extract,” Int. J. Polym. Anal. Charact., vol. 21, no. 5, pp. 408–416, 2016.
[38] P. Sivaranjana, E. R. Nagarajan, N. Rajini, M. Jawaid, and A. V. Rajulu, “Cellulose nanocomposite films with in situ generated silver nanoparticles using Cassia alata leaf extract as a reducing agent,” Int. J. Biol. Macromol., vol. 99, pp. 223–232, 2017.
[39] A. C. S. Almeida, E. A. N. Franco, F. M. Peixoto, K. L. F. Pessanha, and N. R. Melo, “Aplicação de nanotecnologia em embalagens de alimentos,” Polimeros, vol. 25, no. spe, pp. 89–97, Dec. 2015.
[40] A. S. Asger, K. Jannick, K. Jørgensen, M.-L. Knop, L. Martin, and O. Mikkelsen, “Bactericidal Effect of Silver Nanoparticles Determination of size and shape of triangular silver nanoprisms and spherical silver nanoparticles and their bactericidal effect against Escherichia coli and Bacillus subtilis.”
[41] J. R. Morones et al., “JN2005,” Nanotechnology, vol. 16, no. 10, pp. 2346–53, 2005.
[42] S. Soltani and R. Nourdahr, “Study on the Antimicrobial Effect of Nanosilver Tray Packaging of Minced Beef at Refrigerator Temperature,” Glob. Vet., vol. 9, no. 3, pp. 284–289, 2012.
[43] H. Tavakoli, H. Rastegar, M. Taherian, M. Samadi, and H. Rostami, “The effect of nano-silver packaging in increasing the shelf life of nuts: An in vitro model,” Ital. J. Food Saf., vol. 6, no. 4, pp. 156–161, Jan. 2017.
[44] L. Kuuliala et al., “Preparation and antimicrobial characterization of silver-containing packaging materials for meat,” Food Packag. Shelf Life, vol. 6, pp. 53–60, Dec. 2015.
[45] F. Beigmohammadi, S. H. Peighambardoust, J. Hesari, S. Azadmard-Damirchi, S. J. Peighambardoust, and N. K. Khosrowshahi, “Antibacterial properties of LDPE nanocomposite films in packaging of UF cheese,” LWT – Food Sci. Technol., vol. 65, pp. 106–111, 2016.
[46] W. Li, L. Li, H. Zhang, M. Yuan, and Y. Qin, “Evaluation of PLA nanocomposite films on physicochemical and microbiological properties of refrigerated cottage cheese,” J. Food Process. Preserv., vol. 42, no. 1, p. e13362, Jan. 2018.
[47] H. Chi et al., “Effect of PLA nanocomposite films containing bergamot essential oil, TiO 2 nanoparticles, and Ag nanoparticles on shelf life of mangoes,” Sci. Hortic. (Amsterdam)., vol. 249, pp. 192–198, Apr. 2019.
[48] J. Pulit-Prociak, J. Chwastowski, A. Kucharski, and M. Banach, “Functionalization of textiles with silver and zinc oxide nanoparticles,” Appl. Surf. Sci., vol. 385, pp. 543–553, Nov. 2016.
[49] R. Raliya and J. C. Tarafdar, “ZnO Nanoparticle Biosynthesis and Its Effect on Phosphorous-Mobilizing Enzyme Secretion and Gum Contents in Clusterbean (Cyamopsis tetragonoloba L.),” Agric. Res., vol. 2, no. 1, pp. 48–57, Jan. 2013.
[50] Shamsuzzaman, A. Mashrai, H. Khanam, and R. N. Aljawfi, “Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines,” Arab. J. Chem., vol. 10, pp. S1530–S1536, May 2017.
[51] M. D. Rao and P. Gautam, “Synthesis and characterization of ZnO nanoflowers using Chlamydomonas reinhardtii : A green approach,” Environ. Prog. Sustain. Energy, vol. 35, no. 4, pp. 1020–1026, Jul. 2016.
[52] S. Azizi, M. B. Ahmad, F. Namvar, and R. Mohamad, “Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract,” Mater. Lett., vol. 116, pp. 275–277, Feb. 2014.
[53] A. Król, P. Pomastowski, K. Rafińska, V. Railean-Plugaru, and B. Buszewski, “Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism,” Advances in Colloid and Interface Science, vol. 249. Elsevier B.V., pp. 37–52, 01-Nov-2017.
[54] R. Yuvakkumar, J. Suresh, A. J. Nathanael, M. Sundrarajan, and S. I. Hong, “Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications,” Mater. Sci. Eng. C, vol. 41, pp. 17–27, Aug. 2014.
[55] S. Nagarajan and K. Arumugam Kuppusamy, “Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India,” J. Nanobiotechnology, vol. 11, no. 1, pp. 1–11, Dec. 2013.
[56] L. Xiao, C. Liu, X. Chen, and Z. Yang, “Zinc oxide nanoparticles induce renal toxicity through reactive oxygen species,” Food Chem. Toxicol., vol. 90, pp. 76–83, Apr. 2016.
[57] H. Esmailzadeh, P. Sangpour, F. Shahraz, J. Hejazi, and R. Khaksar, “Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes,” Mater. Sci. Eng. C, vol. 58, pp. 1058–1063, Jan. 2016.
[58] A. Babaei-Ghazvini, I. Shahabi-Ghahfarrokhi, and V. Goudarzi, “Preparation of UV-protective starch/kefiran/ZnO nanocomposite as a packaging film: Characterization,” Food Packag. Shelf Life, vol. 16, pp. 103–111, Jun. 2018.
[59] V. K. Kotharangannagari and K. Krishnan, “Biodegradable hybrid nanocomposites of starch/lysine and ZnO nanoparticles with shape memory properties,” Mater. Des., vol. 109, pp. 590–595, Nov. 2016.
[60] M. Mizielińska, U. Kowalska, M. Jarosz, and P. Sumińska, “A Comparison of the Effects of Packaging Containing Nano ZnO or Polylysine on the Microbial Purity and Texture of Cod (Gadus morhua) Fillets,” Nanomaterials, vol. 8, no. 3, p. 158, Mar. 2018.
[61] S. V. Calderon, B. Gomes, P. J. Ferreira, and S. Carvalho, “Zinc nanostructures for oxygen scavenging,” Nanoscale, vol. 9, no. 16, pp. 5254–5262, Apr. 2017.
[62] X. Li, Y. Xing, Y. Jiang, Y. Ding, and W. Li, “Antimicrobial activities of ZnO powder-coated PVC film to inactivate food pathogens,” Int. J. Food Sci. Technol., vol. 44, no. 11, pp. 2161–2168, Nov. 2009.
[63] “Effects of Nano-ZnO Power-Coated PVC Film on the Physiological Properties and Microbiological Changes of Fresh-Cut ‘Fuji’ Apple | Scientific.Net.”.
[64] W. Li, L. Li, Y. Cao, T. Lan, H. Chen, and Y. Qin, “Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple,” Nanomaterials, vol. 7, no. 8, p. 207, Jul. 2017.
[65] S. Beak, H. Kim, and K. Bin Song, “Characterization of an Olive Flounder Bone Gelatin-Zinc Oxide Nanocomposite Film and Evaluation of Its Potential Application in Spinach Packaging,” J. Food Sci., vol. 82, no. 11, pp. 2643–2649, Nov. 2017.
[66] S. S. K., M. P. Indumathi, and G. R. Rajarajeswari, “Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications,” Int. J. Biol. Macromol., vol. 124, pp. 163–174, Mar. 2019.
[67] A. Jayakumar et al., “Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application,” Int. J. Biol. Macromol., vol. 136, pp. 395–403, Sep. 2019.
[68] H. Almasi, P. Jafarzadeh, and L. Mehryar, “Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: Characterization, antimicrobial and release properties,” Carbohydr. Polym., vol. 186, pp. 273–281, Apr. 2018.
[69] S. Shende, A. P. Ingle, A. Gade, and M. Rai, “Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity,” World J. Microbiol. Biotechnol., vol. 31, no. 6, pp. 865–873, Apr. 2015.
[70] R. Khani, B. Roostaei, G. Bagherzade, and M. Moudi, “Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: Application for adsorption of triphenylmethane dye and antibacterial assay,” J. Mol. Liq., vol. 255, pp. 541–549, Apr. 2018.
[71] S. Thakur, S. Sharma, S. Thakur, and R. Rai, “Green Synthesis of Copper Nano-Particles Using Asparagus adscendens Roxb. Root and Leaf Extract and Their Antimicrobial Activities,” Int. J. Curr. Microbiol. Appl. Sci., vol. 7, no. 04, pp. 683–694, Apr. 2018.
[72] I. Chung et al., “Green synthesis of copper nanoparticles using eclipta prostrata leaves extract and their antioxidant and cytotoxic activities,” Exp. Ther. Med., vol. 14, no. 1, pp. 18–24, Jul. 2017.
[73] M. Nasrollahzadeh and S. Mohammad Sajadi, “Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature,” J. Colloid Interface Sci., vol. 457, pp. 141–147, Nov. 2015.
[74] M. Nasrollahzadeh, S. S. Momeni, and S. M. Sajadi, “Green synthesis of copper nanoparticles using Plantago asiatica leaf extract and their application for the cyanation of aldehydes using K 4 Fe(CN) 6,” J. Colloid Interface Sci., vol. 506, pp. 471–477, Nov. 2017.
[75] Z. Issaabadi, M. Nasrollahzadeh, and S. M. Sajadi, “Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity,” J. Clean. Prod., vol. 142, pp. 3584–3591, Jan. 2017.
[76] M. A. Asghar et al., “Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity,” LWT – Food Sci. Technol., vol. 90, pp. 98–107, Apr. 2018.
[77] A. F. Jaramillo et al., “Comparative Study of the Antimicrobial Effect of Nanocomposites and Composite Based on Poly(butylene adipate-co-terephthalate) Using Cu and Cu/Cu2O Nanoparticles and CuSO4,” Nanoscale Res. Lett., vol. 14, no. 1, pp. 1–17, May 2019.
[78] M. Grigore, E. Biscu, A. Holban, M. Gestal, and A. Grumezescu, “Methods of Synthesis, Properties and Biomedical Applications of CuO Nanoparticles,” Pharmaceuticals, vol. 9, no. 4, p. 75, Nov. 2016.
[79] V. Sadanand, N. Rajini, A. Varada Rajulu, and B. Satyanarayana, “Preparation of cellulose composites with in situ generated copper nanoparticles using leaf extract and their properties,” Carbohydr. Polym., vol. 150, pp. 32–39, Oct. 2016.
[80] Y. A. Arfat, J. Ahmed, N. Hiremath, R. Auras, and A. Joseph, “Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver-copper nanoparticles,” Food Hydrocoll., vol. 62, pp. 191–202, Jan. 2017.
[81] A. Eivazihollagh et al., “One-pot synthesis of cellulose-templated copper nanoparticles with antibacterial properties,” Mater. Lett., vol. 187, pp. 170–172, Jan. 2017.
[82] C. Sharma, R. Dhiman, N. Rokana, and H. Panwar, “Nanotechnology: An untapped resource for food packaging,” Frontiers in Microbiology, vol. 8, no. SEP. Frontiers Media S.A., 12-Sep-2017.
[83] A. Llorens, E. Lloret, P. Picouet, and A. Fernandez, “Study of the antifungal potential of novel cellulose/copper composites as absorbent materials for fruit juices,” Int. J. Food Microbiol., vol. 158, no. 2, pp. 113–119, Aug. 2012.
[84] S. Ebrahimiasl and A. Rajabpour, “Synthesis and characterization of novel bactericidal Cu/HPMC BNCs using chemical reduction method for food packaging,” J. Food Sci. Technol., vol. 52, no. 9, pp. 5982–5988, Sep. 2015.
[85] D. Longano et al., “Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging,” in Analytical and Bioanalytical Chemistry, 2012, vol. 403, no. 4, pp. 1179–1186.
[86] S. Shankar and J. W. Rhim, “Effect of copper salts and reducing agents on characteristics and antimicrobial activity of copper nanoparticles,” Mater. Lett., vol. 132, pp. 307–311, Oct. 2014.
[87] D. N. Bikiaris and K. S. Triantafyllidis, “HDPE/Cu-nanofiber nanocomposites with enhanced antibacterial and oxygen barrier properties appropriate for food packaging applications,” Mater. Lett., vol. 93, pp. 1–4, Feb. 2013.
[88] H. M. Yadav, J. S. Kim, and S. H. Pawar, “Developments in photocatalytic antibacterial activity of nano TiO2: A review,” Korean Journal of Chemical Engineering, vol. 33, no. 7. Springer New York LLC, pp. 1989–1998, 01-Jul-2016.
[89] G. Rajakumar, A. A. Rahuman, B. Priyamvada, V. G. Khanna, D. K. Kumar, and P. J. Sujin, “Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles,” Mater. Lett., vol. 68, pp. 115–117, Feb. 2012.
[90] A. Vishnu Kirthi et al., “Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis,” Mater. Lett., vol. 65, no. 17–18, pp. 2745–2747, Sep. 2011.
[91] Q. He, Y. Zhang, X. Cai, and S. Wang, “Fabrication of gelatin-TiO2 nanocomposite film and its structural, antibacterial and physical properties,” Int. J. Biol. Macromol., vol. 84, pp. 153–160, Mar. 2016.
[92] S. A. Oleyaei, Y. Zahedi, B. Ghanbarzadeh, and A. A. Moayedi, “Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles,” Int. J. Biol. Macromol., vol. 89, pp. 256–264, Aug. 2016.
[93] A. Nešić et al., “Pectin-based nanocomposite aerogels for potential insulated food packaging application,” Carbohydr. Polym., vol. 195, pp. 128–135, Sep. 2018.
[94] H. Li, J. Yang, P. Li, T. Lan, and L. Peng, “A facile method for preparation superhydrophobic paper with enhanced physical strength and moisture-proofing property,” Carbohydr. Polym., vol. 160, pp. 9–17, Mar. 2017.
[95] C. López de Dicastillo, C. Patiño, M. J. Galotto, J. L. Palma, D. Alburquenque, and J. Escrig, “Novel antimicrobial titanium dioxide nanotubes obtained through a combination of atomic layer deposition and electrospinning technologies,” Nanomaterials, vol. 8, no. 2, Feb. 2018.
[96] Y. Xing et al., “Effect of TiO 2 nanoparticles on the antibacterial and physical properties of polyethylene-based film,” Prog. Org. Coatings, vol. 73, no. 2–3, pp. 219–224, Feb. 2012.
[97] D. Roilo, C. A. Maestri, M. Scarpa, P. Bettotti, and R. Checchetto, “Gas barrier and optical properties of cellulose nanofiber coatings with dispersed TiO2 nanoparticles,” Surf. Coatings Technol., vol. 343, pp. 131–137, Jun. 2018.
[98] A. Mihaly-Cozmuta et al., “Preparation and characterization of active cellulose-based papers modified with TiO2, Ag and zeolite nanocomposites for bread packaging application,” Cellulose, vol. 24, no. 9, pp. 3911–3928, Sep. 2017.
[99] D. Li, Q. Ye, L. Jiang, and Z. Luo, “Effects of nano-TiO 2 -LDPE packaging on postharvest quality and antioxidant capacity of strawberry ( Fragaria ananassa Duch.) stored at refrigeration temperature,” J. Sci. Food Agric., vol. 97, no. 4, pp. 1116–1123, Mar. 2017.
[100] K. Velayutham et al., “Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis,” Parasitol. Res., vol. 111, no. 6, pp. 2329–2337, Dec. 2012.
[101] N. A. Órdenes-Aenishanslins, L. A. Saona, V. M. Durán-Toro, J. P. Monrás, D. M. Bravo, and J. M. Pérez-Donoso, “Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells,” Microb. Cell Fact., vol. 13, no. 1, pp. 1–10, Jul. 2014.
[102] C. Swaroop and M. Shukla, “Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications,” Int. J. Biol. Macromol., vol. 113, pp. 729–736, Jul. 2018.
[103] M. J. Khalaj, H. Ahmadi, R. Lesankhosh, and G. Khalaj, “Study of physical and mechanical properties of polypropylene nanocomposites for food packaging application: Nano-clay modified with iron nanoparticles,” Trends in Food Science and Technology, vol. 51. Elsevier Ltd, pp. 41–48, 01-May-2016.
[104] S. Mallakpour and H. Y. Nazari, “The influence of bovine serum albumin-modified silica on the physicochemical properties of poly(vinyl alcohol) nanocomposites synthesized by ultrasonication technique,” Ultrason. Sonochem., vol. 41, pp. 1–10, Mar. 2018.