Hybrid Materials for Solar Cells

$30.00

Hybrid Materials for Solar Cells

Umesh Fegade, Ganesh Jethave

Solar energy is an attractive renewable energy source across the globe that can help overcome the energy crises and has the ability to replace conventional resources. Hybrid solar cells have higher conversion efficiency. In the current chapter the research related to the carbon nanotubes, organic and inorganic solar cell, dye-sensitized solar cells and tandem solar cells are reviewed. The organic solar cells are most suitable and economic, but it has low efficiency of up to 15%. The inorganic solar cells are very expensive and have high efficiency of up to 46% and are used in space applications. The hybrid solar cell is the third type and the perovskite tandem has already proven to be quite efficient (17%) and low cost, mostly because of the cheap materials that are being used.

Keywords
Renewable Energy, Hybrid Solar Cell, Carbon Nanotube, Organic and Inorganic Solar Cell, Dye Sensitized Solar Cell, Tandem Solar Cell

Published online 5/1/2021, 26 pages

Citation: Umesh Fegade, Ganesh Jethave, Hybrid Materials for Solar Cells, Materials Research Foundations, Vol. 103, pp 149-174, 2021

DOI: https://doi.org/10.21741/9781644901410-7

Part of the book on Materials for Solar Cell Technologies II

References
[1] S.B. Darling, F. You, T. Veselka, A. Velosa, Assumptions and the levelized cost of energy for photovoltaics, Energ. Environ. Sci. 4 (2011) 3133–3139. https://doi.org/10.1039/c0ee00698j
[2] J. Fan, B. Jia, M. Gu, Perovskite based low-cost and high efficiency hybrid halide solar cells, Photonics Res. 2 (2014) 111. https://doi.org/10.1364/prj.2.000111
[3] D. Yue, P. Khatav, F. You, S.B. Darling, Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics, Energ. Environ. Sci. 2 (2012) 9163–9172. https://doi.org/10.1039/c2ee22597b
[4] C. Chen, Y. Lu, E.S. Kong, Y. Zhang, S.T. Lee, Nanowelded carbon-nanotube-based solar microcells, Small. 4 (2008) 1313–1318. https://doi.org/10.1002/smll.200701309
[5] B.W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E.M.J. Johansson, Bismuth based hybrid perovskites A3Bi2I9 (A: Methylammonium or Cesium) for solar cell application, Adv. Mater. 27 (2015) 6806–6813. https://doi.org/10.1002/adma.201501978
[6] Giorgio Dodero, IPGSRL “ 2011 India energy handbook”,(2011).
[7] S. Sawant, The properties and advantages of the hybrid solar cell, Int. Res. J. Sci. Eng. A5 (2018) 19–25.
[8] E. Da Como, F. De Angelis, H. Snaith, A. Walker, unconventional thin film photovoltaics, RSC(2016). https://doi.org/10.1039/9781782624066-fp001
[9] S.K. Balasingam, M. Lee, M.G. Kang, Y. Jun, Improvement of dye-sensitized solar cells toward the broader light harvesting of the solar spectrum, Chem. Commun. 49 (2013) 1471–1487. https://doi.org/10.1039/c2cc37616d
[10] L. El Chaar, L.A. Lamont, N. El Zein, Review of photovoltaic technologies, Renew. Sustain. Energy Rev. 15 (2011) 2165–2175. https://doi.org/10.1016/j.rser.2011.01.004
[11] M.T. Lloyd, Hybrid solar cells, in: Encycl. Nanotechnol., Springer Netherlands, 2016, pp. 1494–1500. https://doi.org/10.1007/978-94-017-9780-1_14
[12] S.E. Shaheen, D.S. Ginley, G.E. Jabbour, Organic-based photovoltaics: toward low-cost power generation, MRS Bull. 30 (2005) 10–19. https://doi.org/10.1557/mrs2005.2
[13] E. Kymakis, G.A.J. Amaratunga, Single-wall carbon nanotube/conjugated polymer photovoltaic devices, Appl. Phys. Lett. 80 (2002) 112–114. https://doi.org/10.1063/1.1428416
[14] J.C. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia, N.L. Rupesinghe, W.K. Hsu, N. Grobert, H. Terrones, G.A.J. Amaratunga, Enhanced electron field emission in b-doped carbon nanotubes, Nano Lett. 2 (2002) 1191–1195. https://doi.org/10.1021/nl0256457
[15] P. Dharap, Z. Li, S. Nagarajaiah, E. V. Barrera, Nanotube film based on single-wall carbon nanotubes for strain sensing, Nanotechnology. 15 (2004) 379–382. https://doi.org/10.1088/0957-4484/15/3/026
[16] J.U. Lee, Photovoltaic effect in ideal carbon nanotube diodes, Appl. Phys. Lett. 87 (2005) 1–4. https://doi.org/10.1063/1.2010598
[17] B.O.& M. Gratzelt, Institute, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature. 353 (1991) 737–740.
[18] E. Lancelle-Beltran, P. Prené, C. Boscher, P. Belleville, P. Buvat, C. Sanchez, All-solid-state dye-sensitized nanoporous TiO2 hybrid solar cells with high energy-conversion efficiency, Adv. Mater. 18 (2006) 2579–2582. https://doi.org/10.1002/adma.200502023
[19] J.E. Moser, Solar cells: Later rather than sooner, Nat. Mater. 4 (2005) 723–724. https://doi.org/10.1038/nmat1504
[20] G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C.J. Brabec, Design rules for donors in bulk-heterojunction tandem solar cells-towards 15 % energy-conversion efficiency, Adv. Mater. 20 (2008) 579–583. https://doi.org/10.1002/adma.200702337
[21] T. Kim, Y.S. Kim, J.Y. Choi, J.H. Jeon, W.W. Park, S.W. Moon, S.M. Kim, S. Han, B. Kim, D.K. Lee, H. Kim, J.Y. Kim, M.J. Ko, K. Kim, Reversed organic-inorganic hybrid tandem solar cells for improved interfacial series resistances and balanced photocurrents, Synthetic Met. 175 (2013) 103–107. https://doi.org/10.1016/j.synthmet.2013.05.002
[22] Y. Jung, X. Li, N.K. Rajan, A.D. Taylor, M.A. Reed, Record high efficiency single-walled carbon nanotube/silicon p – N junction solar cells, Nano Lett. 13 (2013) 95–99. https://doi.org/10.1021/nl3035652
[23] M.W. Khan, X. Zuo, Q. Yang, H. Tang, K. Mehmood, U. Rehman, M. Wu, G. Li, multiwall carbon nanotubes boost the short-circuit current of Ru(II) based dye-sensitized solar cells, Nanoscale 12 (2020) 1046–1060. https://doi.org/10.1039/c9nr09227g
[24] E. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, Two-dimensional transition metal dichalcogenide-based counter electrodes for dye-sensitized solar cells, RSC Adv. 7 (2017) 28234–28290. https://doi.org/10.1039/c7ra03599c
[25] B. Pradhan, S.K. Batabyal, A.J. Pal, Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices, Appl. Phys. Lett. 88 (2006) 2–5. https://doi.org/10.1063/1.2179372
[26] P.R. Somani, S.P. Somani, M. Umeno, Application of metal nanoparticles decorated carbon nanotubes in photovoltaics, Appl. Phys. Lett. 93 (2008) 2006–2009. https://doi.org/10.1063/1.2963470
[27] P.R. Somani, S.P. Somani, M. Umeno, Application of metal nanoparticles decorated carbon nanotubes in photovoltaics, Appl. Phys. Lett. 93 (2008). https://doi.org/10.1063/1.2963470
[28] S. Zhang, C. Ji, Z. Bian, P. Yu, L. Zhang, D. Liu, E. Shi, Y. Shang, H. Peng, Q. Cheng, D. Wang, C. Huang, A. Cao, Porous, platinum nanoparticle-adsorbed carbon nanotube yarns for efficient fiber solar cells, ACS Nano. 6 (2012) 7191–7198. https://doi.org/10.1021/nn3022553
[29] A.A. Arbab, K.C. Sun, I.A. Sahito, M.B. Qadir, Y.S. Choi, S.H. Jeong, A novel activated-charcoal-doped multiwalled carbon nanotube hybrid for quasi-solid-state dye-sensitized solar cell outperforming Pt electrode, ACS Appl. Mater. Interfaces. 8 (2016) 7471–7482. https://doi.org/10.1021/acsami.5b09319
[30] P.R. Pudasaini, F. Ruiz-zepeda, M. Sharma, D. Elam, A. Ponce, A.A. Ayon, High efficiency hybrid silicon nanopillar-polymer solar cells, Appl. Mater. Interfaces. 5 (2013) 9620–9627. https://doi.org/10.1021/am402598j
[31] S. Dayal, N. Kopidakis, D.C. Olson, D.S. Ginley, G. Rumbles, Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency, Nano Lett. 10 (2010) 239–242. https://doi.org/10.1021/nl903406s
[32] V. Kaltenhauser, T. Rath, M. Edler, A. Reichmann, G. Trimmel, Exploring polymer/nanoparticle hybrid solar cells in tandem architecture, RSC Adv. 3 (2013) 18643–18650. https://doi.org/10.1039/c3ra43842b
[33] J.Y. Kim, P. Vincent, J. Jang, M.S. Jang, M. Choi, J.H. Bae, C. Lee, H. Kim, Versatile use of ZnO interlayer in hybrid solar cells for self-powered near infra-red photo-detecting application, J. Alloys Compd. 813 (2020) 1–7. https://doi.org/10.1016/j.jallcom.2019.152202
[34] R. Liu, J. Wang, T. Sun, M. Wang, C. Wu, H. Zou, T. Song, X. Zhang, S.T. Lee, Z.L. Wang, B. Sun, Silicon nanowire/polymer hybrid solar cell-supercapacitor: a self-charging power unit with a total efficiency of 10.5%, Nano Lett. 17 (2017) 4240–4247. https://doi.org/10.1021/acs.nanolett.7b01154
[35] B.R. Saunders, M.L. Turner, Nanoparticle-polymer photovoltaic cells, Adv. Colloid Interface Sci. 138 (2008) 1–23. https://doi.org/10.1016/j.cis.2007.09.001
[36] M.H. Yun, J.W. Kim, S.Y. Park, D.S. Kim, B. Walker, J.Y. Kim, High-efficiency, hybrid Si/C60 heterojunction solar cells, J. Mater. Chem. A. 4 (2016) 16410–16417. https://doi.org/10.1039/c6ta02248k
[37] S. Yodyingyong, X. Zhou, Q. Zhang, D. Triampo, J. Xi, K. Park, B. Limketkai, G. Cao, Enhanced photovoltaic performance of nanostructured hybrid solar cell using highly oriented TiO2 nanotubes, J. Phys. Chem. C. 114 (2010) 21851–21855. https://doi.org/10.1021/jp1077888
[38] N. Balis, V. Dracopoulos, E. Stathatos, N. Boukos, P. Lianos, A solid-state hybrid solar cell made of nc-TiO2, CdS quantum dots, and P3HT with 2-amino-1-methylbenzimidazole as an interface modifier, J. Phys. Chem. C. 115 (2011) 10911–10916. https://doi.org/10.1021/jp2022264
[39] B. Reeja-Jayan, A. Manthiram, Understanding the improved stability of hybrid polymer solar cells fabricated with copper electrodes, ACS Appl. Mater. Interfaces. 3 (2011) 1492–1501. https://doi.org/10.1021/am200067d
[40] W.P. Liao, S.C. Hsu, W.H. Lin, J.J. Wu, Hierarchical TiO2 nanostructured array/P3HT hybrid solar cells with interfacial modification, J. Phys. Chem. C. 116 (2012) 15938–15945. https://doi.org/10.1021/jp304915x
[41] S. Abdulalmohsin, J.B. Cui, Graphene-enriched P3HT and porphyrin-modified ZnO nanowire arrays for hybrid solar cell applications, J. Phys. Chem. C. 116 (2012) 9433–9438. https://doi.org/10.1021/jp301881s
[42] M.J. Greaney, S. Das, D.H. Webber, S.E. Bradforth, R.L. Brutchey, Improving open circuit potential in hybrid P3HT: CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange, ACS Nano. 6 (2012) 4222–4230. https://doi.org/10.1021/nn3007509
[43] S. Jeong, E.C. Garnett, S. Wang, Z. Yu, S. Fan, M.L. Brongersma, M.D. McGehee, Y. Cui, Hybrid silicon nanocone-polymer solar cells, Nano Lett. 12 (2012) 2971–2976. https://doi.org/10.1021/nl300713x
[44] S.H. Eom, M.J. Baek, H. Park, L. Yan, S. Liu, W. You, S.H. Lee, Roles of interfacial modifiers in hybrid solar cells: Inorganic/polymer bilayer vs inorganic/polymer:Fullerene bulk heterojunction, ACS Appl. Mater. Interfaces. 6 (2014) 803–810. https://doi.org/10.1021/am402684w
[45] Y. Qin, Y. Cheng, L. Jiang, X. Jin, M. Li, X. Luo, G. Liao, T. Wei, Q. Li, Top-down strategy toward versatile graphene quantum dots for organic/inorganic hybrid solar cells, ACS Sustain. Chem. Eng. 3 (2015) 637–644. https://doi.org/10.1021/sc500761n
[46] Y.T. Lee, F.R. Lin, C.H. Chen, Z. Pei, A 14.7% organic/silicon nanoholes hybrid solar cell via interfacial engineering by solution-processed inorganic conformal layer, ACS Appl. Mater. Interfaces. 8 (2016) 34537–34545. https://doi.org/10.1021/acsami.6b10741
[47] H.D. Um, D. Choi, A. Choi, J.H. Seo, K. Seo, Embedded metal electrode for organic-inorganic hybrid nanowire solar cells, ACS Nano. 11 (2017) 6218–6224. https://doi.org/10.1021/acsnano.7b02322
[48] D.H. Shin, J.H. Kim, S.H. Choi, High-performance conducting polymer/Si nanowires hybrid solar cells using multilayer-graphene transparent conductive electrode and back surface passivation layer, ACS Sustain. Chem. Eng. 6 (2018) 12446–12452. https://doi.org/10.1021/acssuschemeng.8b03005
[49] M.D. Brown, T. Suteewong, R.S.S. Kumar, V.D. Innocenzo, A. Petrozza, M.M. Lee, U. Wiesner, H.J. Snaith, Plasmonic dye-sensitized solar cells using core – shell metal – insulator nanoparticles, Nano Lett. 11 (2011) 438–445. https://doi.org/10.1021/nl1031106
[50] F. Wang, N.K. Subbaiyan, Q. Wang, C. Rochford, G. Xu, R. Lu, A. Elliot, F. D’souza, R. Hui, J. Wu, Development of nanopatterned fluorine-doped tin oxide electrodes for dye-sensitized solar cells with improved light trapping, ACS Appl. Mater. Interfaces. 4 (2012) 1565–1572. https://doi.org/10.1021/am201760q
[51] M.K. Gangishetty, K.E. Lee, R.W.J. Scott, T.L. Kelly, Plasmonic enhancement of dye sensitized solar cells in the red-to-near-infrared region using triangular core-shell Ag@SiO2 nanoparticles, ACS Appl. Mater. Interfaces. 5 (2013) 11044–11051. https://doi.org/10.1021/am403280r
[52] S. Kelkar, K. Pandey, S. Agarkar, N. Saikhedkar, M. Tathavadekar, I. Agrawal, R.V.N. Gundloori, S. Ogale, Functionally engineered egg albumen gel for quasi-solid dye sensitized solar cells, ACS Sustain. Chem. Eng. 2 (2014) 2707–2714. https://doi.org/10.1021/sc5004488
[53] C. Karam, R. Habchi, S. Tingry, P. Miele, M. Bechelany, Design of multilayers of urchin-like ZnO nanowires coated with TiO2 nanostructures for dye-sensitized solar cells , ACS Appl. Nano Mater. 1 (2018) 3705–3714. https://doi.org/10.1021/acsanm.8b00849
[54] J.S. Kang, J. Kim, J.S. Kim, K. Nam, H. Jo, Y.J. Son, J. Kang, J. Jeong, H. Choe, T.H. Kwon, Y.E. Sung, Electrochemically synthesized mesoscopic nickel oxide films as photocathodes for dye-sensitized solar cells, ACS Appl. Energy Mater. 1 (2018) 4178–4185. https://doi.org/10.1021/acsaem.8b00834
[55] F.A. AL-Temimei, A.H. OmranAlkhayatt, A DFT/TD-DFT investigation on the efficiency of new dyes based on ethyl red dye as a dye-sensitized solar cell light-absorbing material, Optik (Stuttg). (2019) 163920. https://doi.org/10.1016/j.ijleo.2019.163920
[56] Y. Liu, L.A. Renna, M. Bag, Z.A. Page, P. Kim, J. Choi, T. Emrick, D. Venkataraman, T.P. Russell, High efficiency tandem thin-perovskite/polymer solar cells with a graded recombination layer, ACS Appl. Mater. Interfaces. 8 (2016) 7070–7076. https://doi.org/10.1021/acsami.5b12740
[57] L. Kranz, A. Abate, T. Feurer, F. Fu, E. Avancini, J. Löckinger, P. Reinhard, S.M. Zakeeruddin, M. Grätzel, S. Buecheler, A.N. Tiwari, High-efficiency polycrystalline thin film tandem solar cells, J. Phys. Chem. Lett. 6 (2015) 2676–2681. https://doi.org/10.1021/acs.jpclett.5b01108
[58] A. Guchhait, H.A. Dewi, S.W. Leow, H. Wang, G. Han, F. Bin Suhaimi, S. Mhaisalkar, L.H. Wong, N. Mathews, Over 20% efficient CIGS-perovskite tandem solar cells, ACS Energy Lett. 2 (2017) 807–812. https://doi.org/10.1021/acsenergylett.7b00187
[59] G. Li, H. Li, J.Y.L. Ho, M. Wong, H.S. Kwok, Nanopyramid structure for ultrathin c-Si tandem solar cells, Nano Lett. 14 (2014) 2563–2568. https://doi.org/10.1021/nl500366c
[60] K.T. Vansant, J. Simon, J.F. Geisz, E.L. Warren, K.L. Schulte, A.J. Ptak, M.S. Young, M. Rienäcker, H. Schulte-Huxel, R. Peibst, A.C. Tamboli, Toward Low-cost 4-terminal GaAs//Si tandem solar cells, ACS Appl. Energy Mater. 2 (2019) 2375–2380. https://doi.org/10.1021/acsaem.9b00018