Simulation Models for Solar Photovoltaic Materials


Simulation Models for Solar Photovoltaic Materials

M. Rizwan, Waheed S. Khan, A. Asma, A. Shehzadi

Semiconducting materials have dominated the photovoltaic industry for a long time. The advancement in solar cell technology is significantly influenced by computer modelling, designing and simulations of the semiconductor materials used for the device operation. Different modelling techniques including one, two and three dimensional models had been employed to comprehend the device operation of solar cell and other electronic devices based on semiconductor materials such as silicon and gallium arsenide. The performance of computing power is increasing with the passage of time in order to improve modelling and designing of different semiconductor materials for solar cell devices. In this chapter, different reported semiconductor materials, their standard characteristics and basic history of modelling, standard models used in photovoltaic industry and principles of modelling such as carrier statistics, transitions, band structure and mobility are explained in detail. Different characteristics of semiconductor material like the carrier transportation, carrier statistics, band structure, and heavy doping effect and carrier generations are described with respect to material modelling.

Semiconducting Material, Photovoltaic Industry, Band Structure, Carrier Generation, Modelling

Published online 5/1/2021, 20 pages

Citation: M. Rizwan, Waheed S. Khan, A. Asma, A. Shehzadi, Simulation Models for Solar Photovoltaic Materials, Materials Research Foundations, Vol. 103, pp 114-133, 2021


Part of the book on Materials for Solar Cell Technologies II

[1] T. Markvart, L. Castaner, Semiconductor materials and modelling, in: A. McEvoy, T. Markvart L. Castaner (Eds.) Practical handbook of photovoltaics: Fundamentals and applications Academic Press (2011).
[2] U. Rau, H.W. Schock, Electronic properties of Cu (In, Ga) Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges, App. Phy. A 69 (1999) 131-147.
[3] S. Swirhun, Y.H. Kwark, R. Swanson, Measurement of electron lifetime, electron mobility and band-gap narrowing in heavily doped p-type silicon, 1986 International Electron Devices Meeting, IEEE, 1986, pp. 24-27.
[4] J. Del Alamo, S. Swirhun, R. Swanson, Simultaneous measurement of hole lifetime, hole mobility and bandgap narrowing in heavily doped n-type silicon, 1985 International Electron Devices Meeting, IEEE, 1985, pp. 290-293.
[5] S. Sze, Physics of semiconductor devices, John Wiley, New York NY (1981) 122-129.
[6] P. Garcia-Nieto, Study of visibility degradation due to coagulation, condensation, and gravitational settling of the atmospheric aerosol, Aerosol. Sci. Tech 36 (2002) 814-827.
[7] A. Elfakir, T. Tlemçani, E. Benamar, A. Belayachi, E. Gutierrez-Berasategui, G. Schmerber, M. Balestrieri, S. Colis, A. Slaoui, A. Dinia, Structural, electrical and optical properties of sprayed Nd–F codoped ZnO thin films, J. Sol-Gel. Sci. Techn73 (2015) 557-562.
[8] S. Selberherr, Analysis and simulation of semiconductor devices, Springer Science & Business Media (2012).
[9] T.P. Pearsall, Properties, processing and applications of indium phosphide, Institution of Electrical Engineers, 2000.
[10] M. Shur, Physics of Semiconductor Devices, Prentice Hall, Inc., Englewood Cliffs, New Jersey (1990) 680.
[11] L.L. Kazmerski, S. Wagner, Cu-ternary chalcopyrite, Solar cells, in: T.J. Coutts, J.D. Meakin (Eds.), Current Topics in Photovoltaics, Academic Press, Orlando (1985) 41.
[12] C.M. Snowden, Semiconductor device modelling, Rep. Prog. Phys 48 (1985) 223.
[13] Y.P. Varshni, Temperature dependence of the energy gap in semiconductors, physica 34 (1967) 149-154.
[14] M. Littlejohn, J. Hauser, T. Glisson, Velocity field characteristics of GaAs with Γ c 6-L c 6-X c 6 conduction-band ordering, J. Appl. Phys 48 (1977) 4587-4590.
[15] E. D. Palik, , Handbook of optical constants of solids, Academic Press Handbook Series (1985).
[16] P.J. Timans, The thermal radiative properties of semiconductors, in: F. Roozeboom (Ed.) Advances in rapid thermal and integrated processing, Springer (1996), pp. 35-101.
[17] Z. Liang, A. Nardes, D. Wang, J.J. Berry, B.A. Gregg, Defect engineering in π-conjugated polymers, Chem. Mater. 21 (2009) 4914-4919.
[18] D. Let, A. Stancu, V.G. Cimpoca, Study over optical absorption and emission in semiconductors, J. Sci. Arts.
[19] K. Rajkanan, R. Singh, J. Shewchun, Absorption coefficient of silicon for solar cell calculations, Solid State Electron. 22 (1979) 793-795.
[20] P. Schmid, Optical absorption in heavily doped silicon, Phys. Rev. B 23 (1981) 5531.
[21] A. Ramdas, S. Rodriguez, Spectroscopy of the solid-state analogues of the hydrogen atom: donors and acceptors in semiconductors, Rep. Prog. Phys. 44 (1981) 1297.
[22] W. Van Roosbroeck, W. Shockley, Photon-radiative recombination of electrons and holes in germanium, Phys.Rev. B 94 (1954) 1558.
[23] R. King, R. Sinton, R. Swanson, Studies of diffused phosphorus emitters: saturation current, surface recombination velocity, and quantum efficiency, IEEE T. Electron. Dev 37 (1990) 365-371.
[24] H.J. Hovel, R.K. Williardson, A.C. Beer, Semiconductors and semimetals. Volume 11. Solar cells, Academic Press, New York (1975).
[25] F. Seitz, Displacement of atoms during irradiation, Solid. State. Phys. 2 (1956) 307-442.
[26] G. Kinchin, R. Pease, The displacement of atoms in solids by radiation, Rep. Prog. Phys18 (1955) 1.
[27] B. Anspaugh, GaAs solar cell radiation handbook, JPL Publication, California, 1996.
[28] H. Tada, J. Carter Jr, B. Anspaugh, R. Downing, Solar cell radiation handbook, JPL Publication, California, 1982.
[29] T. Coutts, M. Yamaguchi, Indium phosphide-based solar cells: A critical review of their fabrication performance and operation, Current topics in photovoltaics 3 (1988).
[30] V.M. Andreev, V.A. Grilikhes, V.D. Rumiantsev, Photovoltaic conversion of concentrated sunlight, John Wiley1997.
[31] B. Garcia, J. Martinez, J. Piqueras, Laser melting of GaAs covered with thin metal layers, Appl. Phys. A 51 (1990) 437-445.
[32] D. Caughey, R. Thomas, Carrier mobilities in silicon empirically related to doping and field, P. IEEE 55 (1967) 2192-2193.
[33] R.G. Downing, J.R. Carter Jr., J.M. Denney, The energy dependence of electron damage in silicon, Proc. 4th IEEE, Photovoltaic Specialists Conf., 1 (1964) A-5-1.
[34] W. Rosenzweig, Diffusion length measurement by means of ionizing radiation, BSTJ 41 (1962) 1573-1588.
[35] A. Meulenberg, Damage in silicon solar cells from 2 to 155 MeV protons, Photovoltaic Specialists Conference, 10 th, Palo Alto, Calif, 1974, pp. 359-365.
[36] T. Markvart, Radiation damage in solar cells, J. Mater. Sci-Mater El.1 (1990) 1-12.
[37] M. Yamaguchi, K. Ando, Mechanism for radiation resistance of InP solar cells, J. Appl. Phys63 (1988) 5555-5562.
[38] C. Travier, Reviw of microwave guns, Part. Accel. 36 (1991) 33-74.
[39] M.L. Lovejoy, M.R. Melloch, M.S. Lundstrom, Temperature dependence of minority and majority carrier mobilities in degenerately doped GaAs, App.Phys.Lett 67 (1995) 1101-1103.
[40] M. Lundstrom, E. Harmon, M. Melloch, Effective bandgap narrowing in doped GaAs, EMIS datareviews series 16 (1996) 186-189.
[41] M. Sotoodeh, A. Khalid, A. Rezazadeh, Empirical low-field mobility model for III–V compounds applicable in device simulation codes, J. Appl. Phys87 (2000) 2890-2900.
[42] W. Rosenzweig, F. Smits, W. Brown, Energy dependence of proton irradiation damage in silicon, J. Appl. Phys35 (1964) 2707-2711.
[43] S.A. Hussain, G.J.A. Sada, The effect of cu-doping on the optical properties of znfe2o4 films prepared by chemical spray pyrolysis method, world (Drude) 3 (2009) 4.
[44] W. Shockley, W. Read Jr, Statistics of the recombinations of holes and electrons, Phys.Rev 87 (1952) 835.
[45] S. Jain, D. Hirst, J. O’sullivan, Gold nanoparticles as novel agents for cancer therapy, Br. J. Radiol. 85 (2012) 101-113.
[46] D. Klaassen, J. Slotboom, H. De Graaff, Unified apparent bandgap narrowing in n-and p-type silicon, Solid-State Electron. 35 (1992) 125-129.