Transparent Conducting Electrodes for Optoelectronic Devices: State-of-the-art and Perspectives

$30.00

Transparent Conducting Electrodes for Optoelectronic Devices: State-of-the-art and Perspectives

Abhijit Ray, Rajaram Narasimman

This chapter brings a concise review of the transparent conducting materials, films and electrodes (TCM, TCF and TCE, respectively), its state-of-the-art and outlooks ahead. Initial part of the chapter gives a general introduction of the topic, followed by a feasible road map as proposed and collated by the authors based on several other reviews. Fundamental physics behind the transparent conductors is discussed in the latter part. Established and potential oxide based TCMs, namely the transparent conducting oxides (TCOs) are reviewed which are being used commercially and will see application in the near future. Non-conventional TCMs, which are mostly non-TCOs, such as graphene, carbon nanotubes (CNT), metallic nanowires (MNWs) and their hybrids are described in brief. Scalability and large area fabrication which are most important concerns for commercialization of TCMs are discussed. The general prospects are given at the end.

Keywords
Transparent Conductors, Thin Films, Metallic Nanowires, Graphene

Published online 5/1/2021, 37 pages

Citation: Abhijit Ray, Rajaram Narasimman, Transparent Conducting Electrodes for Optoelectronic Devices: State-of-the-art and Perspectives, Materials Research Foundations, Vol. 103, pp 77-113, 2021

DOI: https://doi.org/10.21741/9781644901410-4

Part of the book on Materials for Solar Cell Technologies II

References
[1] H.C. Chu, Y.C. Chang, Y. Lin, S.H. Chang, W.C. Chang, G.A. Li, H.Y. Tuan, Spray-deposited large-area copper nanowire transparent conductive electrodes and their uses for touch screen applications, ACS Appl. Mater. Interfaces 8 (2016) 13009-13017. doi: 10.1021/acsami.6b02652
[2] A.R. Madaria, A. Kumar, C. Zhou, Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens, Nanotechnology 22 (2011) 245201. doi: 10.1088/0957-4484/22/24/245201
[3] T. Minami, S. Takata, T. Kakumu, New multicomponent transparent conducting oxide films for transparent electrodes of flat panel displays, J. Vac. Sci. Technol. A 14 (1996) 1689-1693. doi: 10.1116/1.580320
[4] G.S. Chae, A modified transparent conducting oxide for flat panel displays only, Jpn. J. Appl. Phys. 40 (2001) 1282. doi: 10.1143/JJAP.40.1282
[5] G. Jo, M. Choe, C.Y. Cho, J.H. Kim, W. Park, S. Lee, W.-K. Hong, T.-W. Kim, S.-J. Park, B.H. Hong, Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes, Nanotechnology 21 (2010) 175201. doi: 10.1088/0957-4484/21/17/175201
[6] H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Morkoç, Transparent conducting oxides for electrode applications in light emitting and absorbing devices, Superlattices Microstruct. 48 (2010) 458-484. doi: 10.1016/j.spmi.2010.08.011
[7] K. Rana, J. Singh, J.H. Ahn, A graphene-based transparent electrode for use in flexible optoelectronic devices, J. Mater. Chem. C 2 (2014) 2646-2656. doi: 10.1039/C3TC32264E
[8] D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, J.P. Simonato, Flexible transparent conductive materials based on silver nanowire networks: a review, Nanotechnology 24 (2013) 452001. doi: 10.1088/0957-4484/24/45/452001
[9] A.W. Wright, ART. VII.–on the production of transparent metallic films by the electrical discharge in exhausted tubes, American Journal of Science and Arts (1820-1879) 13 (1877) 49.
[10] K. Baedeker, Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen, Annalen der Physik 327 (1907): 749-766. doi:10.1002/andp.19073270409
[11] T. Minami, Transparent conducting oxide semiconductors for transparent electrodes, Semicond. Sci. Technol. 20 (2005) S35. doi: 10.1088/0268-1242/20/4/004
[12] H.B. Lee, W.-Y. Jin, M.M. Ovhal, N. Kumar, J.W. Kang, Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review, J. Mater. Chem. C 7 (2019) 1087-1110. doi: 10.1039/C8TC04423F
[13] J. Lewis, S. Grego, B. Chalamala, E. Vick, D. Temple, Highly flexible transparent electrodes for organic light-emitting diode-based displays, Appl. Phys. Lett. 85 (2004) 3450-3452. doi: 10.1063/1.1806559
[14] K.H. Kim, B.R. Koo, H.J. Ahn, Sheet resistance dependence of fluorine-doped tin oxide films for high-performance electrochromic devices, Ceram. Int. 44 (2018) 9408-9413. doi: 10.1016/j.ceramint.2018.02.157
[15] R. Shukla, A. Srivastava, A. Srivastava, K. Dubey, Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition, J. Cryst. Growth 294 (2006) 427-431. doi: 10.1016/j.jcrysgro.2006.06.035
[16] T. Sannicolo, M. Lagrange, A. Cabos, C. Celle, J.P. Simonato, D. Bellet, Metallic nanowire-based transparent electrodes for next generation flexible devices: a Review, Small 12 (2016) 6052-6075. doi: 10.1002/smll.201602581
[17] M. Vosgueritchian, D.J. Lipomi, Z. Bao, Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes, Adv. Funct. Mater. 22 (2012) 421-428. doi: 10.1002/adfm.201101775
[18] J. Wu, M. Agrawal, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes, ACS Nano 4 (2010) 43-48. doi: 10.1021/nn900728d
[19] Y. Xu, J. Liu, Graphene as transparent electrodes: fabrication and new emerging applications, Small 12 (2016) 1400-1419. doi: 10.1002/smll.201502988
[20] Y. Lee, J.H. Ahn, Graphene-based transparent conductive films, Nano 8 (2013) 1330001. doi: 10.1142/S1793292013300016
[21] S. Park, M. Vosguerichian, Z. Bao, A review of fabrication and applications of carbon nanotube film-based flexible electronics, Nanoscale 5 (2013) 1727-1752. doi: 10.1039/C3NR33560G
[22] A.J. Stapleton, R.A. Afre, A.V. Ellis, J.G. Shapter, G.G. Andersson, J.S. Quinton, D.A. Lewis, Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes, Sci. Technol. Adv. Mater. 14 (2013) 035004. doi: 10.1088/1468-6996/14/3/035004
[23] Y.M. Chien, F. Lefevre, I. Shih, R. Izquierdo, A solution processed top emission OLED with transparent carbon nanotube electrodes, Nanotechnology 21 (2010) 134020. doi: 10.1088/0957-4484/21/13/134020
[24] N. Saran, K. Parikh, D.-S. Suh, E. Munoz, H. Kolla, S.K. Manohar, Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates, J. Am. Chem. Soc. 126 (2004) 4462-4463. doi: 10.1021/ja037273p
[25] B. Deng, P.C. Hsu, G. Chen, B. Chandrashekar, L. Liao, Z. Ayitimuda, J. Wu, Y. Guo, L. Lin, Y. Zhou, Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes, Nano Lett. 15 (2015) 4206-4213. doi: 10.1021/acs.nanolett.5b01531
[26] K. Zilberberg, T. Riedl, Metal-nanostructures–a modern and powerful platform to create transparent electrodes for thin-film photovoltaics, J. Mater. Chem. A 4 (2016) 14481-14508. doi: 10.1039/C6TA05286J
[27] D. Zhang, R. Wang, M. Wen, D. Weng, X. Cui, J. Sun, H. Li, Y. Lu, Synthesis of ultralong copper nanowires for high-performance transparent electrodes, J. Am. Chem. Soc. 134 (2012) 14283-14286. doi:10.1021/ja3050184
[28] S. Ye, A.R. Rathmell, Z. Chen, I.E. Stewart, B.J. Wiley, Metal nanowire networks: the next generation of transparent conductors, Adv. Mater. 26 (2014) 6670-6687. doi: 10.1002/adma.201402710
[29] K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes, Nature Photonics 6 (2012) 809. doi: 10.1038/nphoton.2012.282
[30] D.S. Hecht, L. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Adv. Mater. 23 (2011) 1482-1513. doi: 10.1002/adma.201003188
[31] S. Kang, T. Kim, S. Cho, Y. Lee, A. Choe, B. Walker, S.J. Ko, J.Y. Kim, H. Ko, Capillary printing of highly aligned silver nanowire transparent electrodes for high-performance optoelectronic devices, Nano Lett. 15 (2015) 7933-7942. doi: 10.1021/acs.nanolett.5b03019
[32] Z. Yu, L. Li, Q. Zhang, W. Hu, Q. Pei, Silver nanowire-polymer composite electrodes for efficient polymer solar cells, Adv. Mater. 23 (2011) 4453-4457. doi: 10.1002/adma.201101992
[33] X.Y. Zeng, Q.K. Zhang, R.M. Yu, C.Z. Lu, A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer, Adv. Mater. 22 (2010) 4484-4488. doi: 10.1002/adma.201001811
[34] D.S. Leem, A. Edwards, M. Faist, J. Nelson, D.D. Bradley, J.C. De Mello, Efficient organic solar cells with solution-processed silver nanowire electrodes, Adv. Mater. 23 (2011) 4371-4375. doi: 10.1002/adma.201100871
[35] S. Yun, X. Niu, Z. Yu, W. Hu, P. Brochu, Q. Pei, Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation, Adv. Mater. 24 (2012) 1321-1327. doi: 10.1002/adma.201104101
[36] H.G. Im, S.H. Jung, J. Jin, D. Lee, J. Lee, D. Lee, J.Y. Lee, I.D. Kim, B.S. Bae, Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics, ACS Nano 8 (2014) 10973-10979. doi: 10.1021/nn504883m
[37] V.B. Nam, D. Lee, Copper nanowires and their applications for flexible, transparent conducting films: a review, Nanomaterials 6 (2016) 47. doi: 10.3390/nano6030047
[38] C. Sachse, N. Weiß, N. Gaponik, L. M. Meskamp, A. Eychmüller, K. Leo, ITO -free, small-molecule organic solar cells on spray-coated copper-nanowire-based transparent electrodes, Adv. Energy Mater. 4 (2014) 1300737. doi: 10.1002/aenm.201300737
[39] A.R. Rathmell, S.M. Bergin, Y.L. Hua, Z.Y. Li, B.J. Wiley, The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films, Adv. Mater. 22 (2010) 3558-3563. doi: 10.1002/adma.201000775
[40] K. Ghaffarzadeh, R. Das, Transparent Conductive Films and Materials 2018-2028: Forecasts, Technologies, Players, IDTechEx Research, 2018.
[41] G. Hautier, A. Miglio, G. Ceder, G.M. Rignanese, X. Gonze, Identification and design principles of low hole effective mass p-type transparent conducting oxides, Nat. Commun. 4 (2013) 1-7. doi: 10.1038/ncomms3292
[42] K. Alberi, M.B. Nardelli, A. Zakutayev, L. Mitas, S. Curtarolo, A. Jain, M. Fornari, N. Marzari, I. Takeuchi, M.L. Green, The 2019 materials by design roadmap, J. Phys. D: Appl. Phys. 52 (2018) 013001. doi: 10.1088/1361-6463/aad926
[43] L. Hu, H.S. Kim, J.Y. Lee, P. Peumans, Y. Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano 4 (2010) 2955-2963. doi: 10.1021/nn1005232
[44] K. Azuma, K. Sakajiri, H. Matsumoto, S. Kang, J. Watanabe, M. Tokita, Facile fabrication of transparent and conductive nanowire networks by wet chemical etching with an electrospun nanofiber mask template, Mater. Lett. 115 (2014) 187-189. doi: 10.1016/j.matlet.2013.10.054
[45] F. Cicoira, C. Santato, Organic electronics: emerging concepts and technologies, John Wiley & Sons (2013). ISBN (Print): 978-3-527-41131-3.
[46] K.S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, K. Kim, A roadmap for graphene, Nature 490 (2012) 192-200. doi: 10.1038/nature11458.
[47] Please refer to https://www.alliedmarketresearch.com/transparent-conductive-films-market
[48] C. Kittel, P. McEuen, P. McEuen, Introduction to solid state physics, Wiley New York (1996). ISBN (Print): 978-81-265-1045-0.
[49] P.R. Wallace, The band theory of graphite, Phys. Rev. 71 (1947) 622. doi: 10.1103/PhysRev.71.622
[50] Partially adapted from https://physicscatalyst.com/chemistry/modern-periodic-table.png
[51] K. Shimakawa, S. Narushima, H. Hosono, H. Kawazoe, Electronic transport in degenerate amorphous oxide semiconductors, Philos. Mag. Lett. 79 (1999) 755-761. doi: 10.1080/095008399176823
[52] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98 (2005) 11. doi: 10.1063/1.1992666
[53] H. Hosono, N. Kikuchi, N. Ueda, H. Kawazoe, K.i. Shimidzu, Amorphous transparent electroconductor 2CdO⋅ GeO2: Conversion of amorphous insulating cadmium germanate by ion implantation, Appl. Phys. Lett. 67 (1995) 2663-2665. doi: 10.1063/1.114329
[54] S. Narushima, M. Orita, M. Hirano, H. Hosono, Electronic structure and transport properties in the transparent amorphous oxide semiconductor 2 CdO⋅ GeO2, Phys. Rev. B 66 (2002) 035203. doi: 10.1103/PhysRevB.66.035203
[55] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature 432 (2004) 488-492. doi: 10.1038/nature03090
[56] H. Hosono, Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application, J. Non-Cryst. Solids 352 (2006) 851-858. doi: 10.1016/j.jnoncrysol.2006.01.073
[57] M.P. Taylor, D.W. Readey, M.F. van Hest, C.W. Teplin, J.L. Alleman, M.S. Dabney, L.M. Gedvilas, B.M. Keyes, B. To, J.D. Perkins, The remarkable thermal stability of amorphous In-ZnO transparent conductors, Adv. Funct. Mater. 18 (2008) 3169-3178. doi: 10.1002/adfm.200700604
[58] Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, T. Hasegawa, A transparent metal: Nb-doped anatase TiO2, Appl. Phys. Lett. 86 (2005) 252101. doi: 10.1063/1.1949728
[59] S. Sheng, G. Fang, C. Li, S. Xu, X. Zhao, p-type transparent conducting oxides, physica status solidi (a) 203 (2006) 1891-1900. doi: 10.1002/pssa.200521479
[60] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, P-type electrical conduction in transparent thin films of CuAlO2, Nature 389 (1997) 939-942. doi: 10.1038/40087
[61] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706-710. doi: 10.1038/nature07719
[62] J. Wang, M. Liang, Y. Fang, T. Qiu, J. Zhang, L. Zhi, Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens, Adv. Mater. 24 (2012) 2874-2878. doi: 10.1002/adma.201200055
[63] X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett. 8 (2008) 323-327. doi: 10.1021/nl072838r
[64] S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5 (2010) 574. doi: 10.1038/nnano.2010.132
[65] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58. doi: 10.1038/354056a0
[66] H. Zhu, C. Xu, D. Wu, B. Wei, R. Vajtai, P. Ajayan, Direct synthesis of long single-walled carbon nanotube strands, Science 296 (2002) 884-886. doi: 10.1126/science.1066996
[67] M.S. Dresselhaus, G. Dresselhaus, P. Eklund, A. Rao, Carbon nanotubes. In: W. Andreoni (eds) The physics of fullerene-based and fullerene-related materials. physics and chemistry of materials with low-dimensional structures, 23 (2000) 331-379. Springer, Dordrecht. doi: 10.1007/978-94-011-4038-6_9
[68] W. De Heer, J.M. Bonard, T. Stöckli, A. Chatelain, L. Forro, D. Ugarte, Carbon nanotubes films: electronic properties and their application as field emitters, Z. Phys. D Atom. Mol. Cl. 40 (1997) 418-420. doi: 10.1007/s004600050241
[69] T.W. Odom, J.-L. Huang, P. Kim, C.M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes, Nature 391 (1998) 62-64. doi: 10.1038/34145
[70] E. Snow, J. Novak, P. Campbell, D. Park, Random networks of carbon nanotubes as an electronic material, Appl. Phys. Lett. 82 (2003) 2145-2147. doi: 10.1063/1.1564291
[71] H. Dai, Carbon nanotubes: synthesis, integration, and properties, Accounts Chem. Res. 35 (2002) 1035-1044. doi: 10.1021/ar0101640
[72] J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, R. Kizek, Methods for carbon nanotubes synthesis, J. Mater. Chem. 21 (2011) 15872-15884. doi: 10.1039/C1JM12254A
[73] R. Andrews, D. Jacques, D. Qian, T. Rantell, Multiwall carbon nanotubes: synthesis and application, Accounts Chem. Res. 35 (2002) 1008-1017. doi: 10.1021/ar010151m
[74] S.B. Sinnott, R. Andrews, Carbon nanotubes: synthesis, properties, and applications, Crit. Rev. Solid State 26 (2001) 145-249. doi: 10.1080/20014091104189
[75] A. Kaskela, A.G. Nasibulin, M.Y. Timmermans, B. Aitchison, A. Papadimitratos, Y. Tian, Z. Zhu, H. Jiang, D.P. Brown, A. Zakhidov, Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique, Nano Lett. 10 (2010) 4349-4355. doi: 10.1021/nl101680s
[76] C.S. Woo, C.H. Lim, C.W. Cho, B. Park, H. Ju, D.H. Min, C.J. Lee, S.B. Lee, Fabrication of flexible and transparent single-wall carbon nanotube gas sensors by vacuum filtration and poly (dimethyl siloxane) mold transfer, Microelectronic. Eng. 84 (2007) 1610-1613. doi: 10.1016/j.mee.2007.01.162
[77] M. Kaempgen, G. Duesberg, S. Roth, Transparent carbon nanotube coatings, Appl. Surf. Sci. 252 (2005) 425-429. doi: 10.1016/j.apsusc.2005.01.020
[78] F. Antolini, T. Di Luccio, E. Serra, P. Aversa, L. Tapfer, S. Sangiorgi, Deposition and characterization of Langmuir-Blodgett films of cadmium arachidate/SWCNTs composites, Surf. Interface Anal. 38 (2006) 1285-1290. doi: 10.1002/sia.2391
[79] Y.L. Tai, Z.G. Yang, Flexible, transparent, thickness-controllable SWCNT/PEDOT: PSS hybrid films based on coffee-ring lithography for functional noncontact sensing device, Langmuir 31 (2015) 13257-13264. doi: 10.1021/acs.langmuir.5b03449
[80] S. Ravi, A.B. Kaiser, C.W. Bumby, Improved conduction in transparent single walled carbon nanotube networks drop-cast from volatile amine dispersions, Chem. Phy. Lett. 496 (2010) 80-85. doi: 10.1016/j.cplett.2010.06.084
[81] G. Gruner, Carbon nanotube films for transparent and plastic electronics, J. Mater. Chem. 16 (2006) 3533-3539. doi: 10.1039/B603821M
[82] K. Lee, Z. Wu, Z. Chen, F. Ren, S. Pearton, A. Rinzler, Single wall carbon nanotubes for p-type ohmic contacts to GaN light-emitting diodes, Nano Letters 4 (2004) 911-914. doi:
[83] D. Simien, J.A. Fagan, W. Luo, J.F. Douglas, K. Migler, J. Obrzut, Influence of nanotube length on the optical and conductivity properties of thin single-wall carbon nanotube networks, ACS Nano 2 (2008) 1879-1884. doi: 10.1021/nn800376x
[84] H.Z. Geng, K.K. Kim, Y.H. Lee, Recent progress in carbon nanotube-based flexible transparent conducting film, Carbon nanotubes and associated devices, carbon nanotubes and associated devices, Int. Soc. Optics and Photonics 7037 (2008) 70370A. doi: 10.1117/12.796143
[85] C. Jiang, J. Zhao, H.A. Therese, M. Friedrich, A. Mews, Raman imaging and spectroscopy of heterogeneous individual carbon nanotubes, J. Phys. Chem. B 107 (2003) 8742-8745. doi: 10.1021/jp035371r
[86] S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, J.N. Coleman, Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios, ACS Nano 3 (2009) 1767-1774. doi: 10.1021/nn900348c
[87] E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, M.L. Brongersma, Self-limited plasmonic welding of silver nanowire junctions, Nat. Mater. 11 (2012) 241-249. doi: 10.1038/nmat3238
[88] A.R. Rathmell, B.J. Wiley, The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates, Adv. Mater. 23 (2011) 4798-4803. doi: 10.1002/adma.201102284
[89] Y.S. Cho, Y.D. Huh, Synthesis of ultralong copper nanowires by reduction of copper-amine complexes, Mater. Lett. 63 (2009) 227-229. doi: 10.1016/j.matlet.2008.09.049
[90] Y. Chang, M.L. Lye, H.C. Zeng, Large-scale synthesis of high-quality ultralong copper nanowires, Langmuir 21 (2005) 3746-3748. doi: 10.1021/la050220w
[91] S. Ye, A.R. Rathmell, I.E. Stewart, Y.-C. Ha, A.R. Wilson, Z. Chen, B.J. Wiley, A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films, Chem. Commun. 50 (2014) 2562-2564. doi: 10.1039/C3CC48561G
[92] P.C. Hsu, D. Kong, S. Wang, H. Wang, A.J. Welch, H. Wu, Y. Cui, Electrolessly deposited electrospun metal nanowire transparent electrodes, J. Am. Chem. Soc. 136 (2014) 10593-10596. doi: 10.1021/ja505741e
[93] A. Kim, Y. Won, K. Woo, S. Jeong, J. Moon, All-solution-processed indium-free transparent composite electrodes based on Ag nanowire and metal oxide for thin-film solar cells, Adv. Func. Mater. 24 (2014) 2462-2471. doi: 10.1002/adfm.201303518
[94] A. Kim, Y. Won, K. Woo, C.-H. Kim, J. Moon, Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells, ACS Nano 7 (2013) 1081-1091. doi: 10.1021/nn305491x
[95] T. Stubhan, J. Krantz, N. Li, F. Guo, I. Litzov, M. Steidl, M. Richter, G.J. Matt, C.J. Brabec, High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode, Sol. Energy Mater. Sol. Cells 107 (2012) 248-251. doi: 10.1016/j.solmat.2012.06.039
[96] C.H. Chung, T.B. Song, B. Bob, R. Zhu, Y. Yang, Solution-processed flexible transparent conductors composed of silver nanowire networks embedded in indium tin oxide nanoparticle matrices, Nano Res. 5 (2012) 805-814. doi: 10.1007/s12274-012-0264-8
[97] W.J. Scheideler, J. Smith, I. Deckman, S. Chung, A.C. Arias, V. Subramanian, A robust, gravure-printed, silver nanowire/metal oxide hybrid electrode for high-throughput patterned transparent conductors, J. Mater. Chem. C 4 (2016) 3248-3255. doi: 10.1039/C5TC04364F
[98] K. Zilberberg, F. Gasse, R. Pagui, A. Polywka, A. Behrendt, S. Trost, R. Heiderhoff, P. Görrn, T. Riedl, Highly robust indium-free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxides, Adv. Func. Mater. 24 (2014) 1671-1678. doi: 10.1002/adfm.201303108
[99] S. Xu, B. Man, S. Jiang, M. Liu, C. Yang, C. Chen, C. Zhang, Graphene–silver nanowire hybrid films as electrodes for transparent and flexible loudspeakers, Cryst. Eng. Comm. 16 (2014) 3532-3539. doi: 10.1039/c3ce42656d
[100] M.S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.G. Kim, D.Y. Lee, S. Nam, High-performance, transparent, and stretchable electrodes using graphene–metal nanowire hybrid structures, Nano Lett. 13 (2013) 2814-2821. doi: 10.1021/nl401070p
[101] L. Dou, F. Cui, Y. Yu, G. Khanarian, S.W. Eaton, Q. Yang, J. Resasco, C. Schildknecht, K. Schierle-Arndt, P. Yang, Solution-processed copper/reduced-graphene-oxide core/shell nanowire transparent conductors, ACS Nano 10 (2016) 2600-2606. doi: 10.1021/acsnano.5b07651
[102] H.J. Han, Y.C. Choi, J.H. Han, Preparation of transparent conducting films with improved haze characteristics using single-wall carbon nanotube-silver nanowire hybrid material, Synthetic Met. 199 (2015) 219-222. doi: 10.1016/j.synthmet.2014.11.014
[103] D.D. Nguyen, N.-H. Tai, S.Y. Chen, Y.L. Chueh, Controlled growth of carbon nanotube–graphene hybrid materials for flexible and transparent conductors and electron field emitters, Nanoscale 4 (2012) 632-638. doi: 10.1039/C1NR11328C
[104] Z.D. Huang, B. Zhang, S.W. Oh, Q.B. Zheng, X.Y. Lin, N. Yousefi, J.K. Kim, Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors, J. Mater. Chem. 22 (2012) 3591-3599. doi: 10.1039/C2JM15048D
[105] Y. Xu, Y. Wang, J. Liang, Y. Huang, Y. Ma, X. Wan, Y. Chen, A hybrid material of graphene and poly (3, 4-ethyldioxythiophene) with high conductivity, flexibility, and transparency, Nano Res. 2 (2009) 343-348. doi: 10.1007/s12274-009-9032-9
[106] R. Zhu, C.-H. Chung, K.C. Cha, W. Yang, Y.B. Zheng, H. Zhou, T.-B. Song, C.-C. Chen, P.S. Weiss, G. Li, Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors, ACS Nano 5 (2011) 9877-9882. doi: 10.1021/nn203576v
[107] S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, I. Jung, G.H. Dommett, G. Evmenenko, S.-E. Wu, S.-F. Chen, C.-P. Liu, Graphene− silica composite thin films as transparent conductors, Nano Lett. 7 (2007) 1888-1892. doi: 10.1021/nl070477+