Photocatalytic Degradation of Levofloxacin by Cu doped TiO2 under Visible LED Light


Photocatalytic Degradation of Levofloxacin by Cu doped TiO2 under Visible LED Light

K.S. Varma, V.G. Gandhi, R.J. Tayade, A.D. Shukla, B. Bharatiya, P.A. Joshi

Degradation performance of Cu-TiO2 photocatalytic materials against a widely used antibiotic drug levofloxacin (LFX) was investigated under visible LED light source of 40 W. Cu-TiO2 (0.25-1.0 wt%) nanomaterials are prepared through reverse micelle mediated modified sol-gel method. Characterization of synthesized Cu-TiO2 samples are performed by XRD, UV-Vis, and DLS techniques. The doping of 0.5 wt% copper in TiO2 shown lower crystallite size (5.79 nm) and visible light absorption characteristics with energy band gap of 2.84 eV. 0.5 wt% Cu-TiO2 photocatalyst has shown significant LFX degradation of 75.5% with catalyst loading of 1 g/L and initial pollutant concentration of 50 mg/L.

Cu-TiO2, Doping, Photocatalyst, Degradation, Levofloxacin, Visible LED Light

Published online 5/1/2021, 17 pages

Citation: K.S. Varma, V.G. Gandhi, R.J. Tayade, A.D. Shukla, B. Bharatiya, P.A. Joshi, Photocatalytic Degradation of Levofloxacin by Cu doped TiO2 under Visible LED Light, Materials Research Foundations, Vol. 102, pp 182-198, 2021


Part of the book on Advances in Wastewater Treatment II

[1] E. Etebu, I. Arikekpar, Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives, Int. J. Appl. Microbiol. Biotechnol. Res. 4 (2016), 90–101
[2] M. Boy-Roura, J. Mas-Pla, M. Petrovic, M. Gros, D. Soler, D. Brusi, A. Menció, Towards the understanding of antibiotic occurrence and transport in groundwater: Findings from the Baix Fluvià alluvial aquifer (NE Catalonia, Spain). Sci. Total Environ, 612 (2018) 1387–1406.
[3] M. Feng, X. Wang, J. Chen, R. Qu, Y. Sui, L. Cizmas, Z. Wang, V. K. Sharma, Degradation of fluoroquinolone antibiotics by ferrate(VI): Effects of water constituents and oxidized products. Water Res. 103 (2016) 48–57.
[4] R. Mirzaei, M. Yunesian, S. Nasseri, M. Gholami, E. Jalilzadeh, S. Shoeibi, A. Mesdaghinia, Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran. Sci. Total Environ. 619–620 (2018) 446–459.
[5] P. K. Mutiyar, A. K. Mittal, Risk assessment of antibiotic residues in different water matrices in India: key issues and challenges. Environ. Sci. Pollut. Res. 21 (2014) 7723–7736.
[6] L. Riaz, T. Mahmood, A. Kamal, M. Shafqat, A. Rashid, Industrial release of fluoroquinolones (FQs) in the waste water bodies with their associated ecological risk in Pakistan. Environ. Toxicol. Pharmacol. 52 (2017) 14–20.
[7] C. Teglia, F. Perez, N. Michlig, M. Repetti, H. Goicoechea, M. Culzoni, Occurrence, Distribution, and Ecological Risk of Fluoroquinolones in Rivers and Wastewaters. Environ. Toxicol. Chem. 38 (2019).
[8] H. A. Younes, H. M. Mahmoud, M. M. Abdelrahman, H. F. Nassar, Seasonal occurrence, removal efficiency and associated ecological risk assessment of three antibiotics in a municipal wastewater treatment plant in Egypt. Environ. Nanotechnology, Monit. Manag. 12 (2019) 100239.
[9] L. Zhang, L. Shen, S. Qin, J. Cui, Y. Liu, Quinolones antibiotics in the Baiyangdian Lake, China: Occurrence, distribution, predicted no-effect concentrations (PNECs) and ecological risks by three methods. Environ. Pollut. 256 (2020) 113458.
[10] L. Birošová, T. Mackuľak, I. Bodík, J. Ryba, J. Škubák, R. Grabic, Pilot study of seasonal occurrence and distribution of antibiotics and drug resistant bacteria in wastewater treatment plants in Slovakia. Sci. Total Environ. 490 (2014) 440–444.
[11] G. Chen, X. Liu, D. Tartakevosky, M. Li, Risk assessment of three fluoroquinolone antibiotics in the groundwater recharge system. Ecotoxicol. Environ. Saf. 133 (2016) 18–24.
[12] A. Mahmood, H. Alhaideri, F. Hassan, Detection of Antibiotics in Drinking Water Treatment Plants in Baghdad City, Iraq. Adv. Public Heal. (2019) 1–10.
[13] A. Wang, H. Wang, H. Deng, S. Wang, W. Shi, Z. Yi, R. Qiu, K. Yan, Controllable synthesis of mesoporous manganese oxide microsphere efficient for photo-Fenton-like removal of fluoroquinolone antibiotics. Appl. Catal. B Environ. 248 (2019) 298–308.
[14] M. Gonzalez-pleiter, S. Gonzalo, I. Rodea-Palomares, F. Leganes, R. Rosal, K. Boltes, E. Marco, F. Fernandez-Piñas, Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Res. 47 (2013).
[15] Z. Zhou, Z. Zhang, L. Feng, J. Zhang, Y. Li, T. Lu, H. Qian, Adverse effects of levofloxacin and oxytetracycline on aquatic microbial communities. Sci. Total Environ. 734 (2020) 139499.
[16] L. P. Padhye, H. Yao, F. T. Kung’u, C. -H. Huang, Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Res. 51 (2014) 266–276.
[17] M. Yasojima, N. Nakada, K. Komori, Y. Suzuki, H. Tanaka, Occurrence of levofloxacin, clarithromycin and azithromycin in wastewater treatment plant in Japan. Water Sci. Technol. 53 (2006) 227–233.
[18] M. H. Al-Jabari, S. Sulaiman, S. Ali, R. Barakat, A. Mubarak, S. A. Khan, Adsorption study of levofloxacin on reusable magnetic nanoparticles: Kinetics and antibacterial activity. J. Mol. Liq. 291 (2019) 111249.
[19] S. S. Limbikai, N. A. Deshpande, R. M. Kulkarni, A. A. P. Khan, A. Khan, Kinetics and adsorption studies on the removal of levofloxacin using coconut coir charcoal impregnated with Al2O3 nanoparticles. Desalin. Water Treat. 57 (2016) 23918–23926.
[20] A. Ullah, M. Zahoor, S. Alam, R. Ullah, A. S. Alqahtani, H. M. Mahmood, Separation of levofloxacin from industry effluents using novel magnetic nanocomposite and membranes hybrid processes. Biomed Res. Int. (2019) 5276841.
[21] V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices – A review. J. Environ. Manage. 92 (2011) 2304–2347.
[22] B. Bethi, S. H. Sonawane, B. A. Bhanvase, S. P. Gumfekar, Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chem. Eng. Process.- Process Intensif. 109 (2016) 178–189.
[23] M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 35 (2009) 402–417.
[24] R. Patel, T. Bhingradiya, A. Deshmukh, V. Gandhi, Response Surface Methodology for Optimization and Modeling of Photo-Degradation of Alizarin Cyanine Green and Acid Orange 7 Dyes Using UV/TiO2 Process. Mater. Sci. Forum 855 (2016) 94–104.
[25] J. Vyas, M. Mishra, V. Gandhi, Photocatalytic Degradation of Alizarin Cyanine Green G, Reactive Red 195 and Reactive Black 5 Using UV/TiO2 Process. Mater. Sci. Forum 764 (2013) 284–292.
[26] R. J. Tayade, W. K. Jo, Enhanced Photocatalytic Activity of TiO2 Supported on Different Carbon Allotropes for Degradation of Pharmaceutical Organic Compounds, in: R. J. Tayade, V. Gandhi (Eds.), Photocatalytic nanomaterials for environmental applications, Materials Research Forum LLC, Millersville, PA 17551, USA, 2018, pp. 139-159.
[27] B. S. M. Al Balushi, F. Al Marzouqi, B. Al Wahaibi, A. T. Kuvarega, S. M. Z. Al Kindy, Y. Kim, R. Selvaraj, Hydrothermal synthesis of CdS sub-microspheres for photocatalytic degradation of pharmaceuticals. Appl. Surf. Sci. 457 (2018) 559–565.
[28] Q. Chen, Y. Xin, X. Zhu, Au-Pd nanoparticles-decorated TiO2 nanobelts for photocatalytic degradation of antibiotic levofloxacin in aqueous solution. Electrochim. Acta 186 (2015) 34–42.
[29] M. Kaur, A. Umar, S. K. Mehta, S. K. Kansal, Reduced graphene oxide-CdS heterostructure: An efficient fluorescent probe for the sensing of Ag(I) and sunset yellow and a visible-light responsive photocatalyst for the degradation of levofloxacin drug in aqueous phase. Appl. Catal. B Environ. 245 (2019) 143–158.
[30] H. Sun, P. Qin, Z. Wu, C. Liao, J. Guo, S. Luo, Y. Chai, Visible light-driven photocatalytic degradation of organic pollutants by a novel Ag3VO4/Ag2CO3 p–n heterojunction photocatalyst: Mechanistic insight and degradation pathways. J. Alloys Compd. 834 (2020) 155211.
[31] T. An, H. Yang, W. Song, G. Li, H. Luo, W. J. Cooper, Mechanistic Considerations for the Advanced Oxidation Treatment of Fluoroquinolone Pharmaceutical Compounds using TiO2 Heterogeneous Catalysis. J. Phys. Chem. A 114 (2010) 2569–2575.
[32] V. Bhatia, A. K. Ray, A. Dhir, Enhanced photocatalytic degradation of ofloxacin by co-doped titanium dioxide under solar irradiation. Sep. Purif. Technol. 161 (2016) 1–7.
[33] X. Van Doorslaer, P. M. Heynderickx, K. Demeestere, K. Debevere, H. Van Langenhove, J. Dewulf, TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin: Operational variables and scavenger study. Appl. Catal. B Environ. 111–112 (2012) 150–156.
[34] V. Gandhi, M. Mishra, P. A. Joshi, Titanium dioxide catalyzed photocatalytic degradation of carboxylic acids from waste water: A review. Mater. Sci. Forum 712 (2012) 175–189.
[35] S. K. Kansal, P. Kundu, S. Sood, R. Lamba, A. Umar, S. K. Mehta, Photocatalytic degradation of the antibiotic levofloxacin using highly crystalline TiO2 nanoparticles. New J. Chem. 38 (2014) 3220–3226.
[36] A. Kaur, D. B. Salunke, A. Umar, S. K. Mehta, A. S. K. Sinha, S. K. Kansal, Visible light driven photocatalytic degradation of fluoroquinolone levofloxacin drug using Ag2O/TiO2 quantum dots: a mechanistic study and degradation pathway. New J. Chem. 41 (2017) 12079–12090.
[37] X. Qu, J. Brame, Q. Li, P. J. J. Alvarez, Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse. Acc. Chem. Res. 46 (2013) 834–843.
[38] M. A. Rauf, M. A. Meetani, S. Hisaindee, An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276 (2011) 13–27.
[39] S. Sharma, A. Umar, S. Mehta, A. Ibhadon, S. Kansal, Solar light driven photocatalytic degradation of levofloxacin using TiO2/Carbon-dots nanocomposite. New J. Chem. 42 (2018)
[40] K. Natarajan, P. Singh, H. C. Bajaj, R. J. Tayade, Facile synthesis of TiO2/ZnFe2O4 nanocomposite by sol-gel auto combustion method for superior visible light photocatalytic efficiency. Korean J. Chem. Eng. 33 (2016) 1788–1798.
[41] W. -K. Jo, R. J. Tayade, New Generation Energy-Efficient Light Source for Photocatalysis: LEDs for Environmental Applications. Ind. Eng. Chem. Res. 53 (2014) 2073–2084.
[42] K. Natarajan, H. Bajaj, R. Tayade, Synthesis Route Impact on BiVO₄ Nanoparticles and their Visible Light Photocatalytic Activity Under Green LED Irradiation. J. Nanosci. Nanotechnol. 19 (2019) 5100–5115.
[43] R. Klein, R. Sayre, J. Dowdy, V. Werth, The risk of ultraviolet radiation exposure from indoor lamps in lupus erythematosus. Autoimmun. Rev. 8 (2009) 320–324.
[44] D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. C Photochem. Rev. 6 (2005) 186–205.
[45] H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 79 (2015) 128–146.
[46] T. Parangi, M. K. Mishra, Titania Nanoparticles as Modified Photocatalysts: A Review on Design and Development. Comments Inorg. Chem. 39 (2019) 90–126.
[47] K. S. Varma, R. J. Tayade, K. J. Shah, P. A. Joshi, , A. D. Shukla, , V. G. Gandhi, Photocatalytic degradation of pharmaceutical and pesticide compounds (PPCs) using doped TiO2 nanomaterials: A review. Water-Energy Nexus 3 (2020) 46–61.
[48] S. S. Boxi, S. Paria, Visible light induced enhanced photocatalytic degradation of organic pollutants in aqueous media using Ag doped hollow TiO2 nanospheres. RSC Adv. 5 (2015) 37657–37668.
[49] L. Devi, N. Kottam, B. Murthy, S. Kumar, Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light. J. Mol. Catal. A Chem. 328 (2010) 44–52.
[50] V. Krishnakumar, S. Boobas, J. Jayaprakash, M. Rajaboopathi, B. Han, M. Louhi-Kultanen, Effect of Cu doping on TiO2 nanoparticles and its photocatalytic activity under visible light. J. Mater. Sci. Mater. Electron. 27 (2016) 7438–7447.
[51] X. Lin, F. Rong, X. Ji, D. Fu, Visible light photocatalytic activity and Photoelectrochemical property of Fe-doped TiO2 hollow spheres by sol–gel method. J. Sol-Gel Sci. Technol. 59 (2011) 283–289.
[52] M. Vega, M. Hinojosa Reyes, A. Hernandez-Ramírez, J. Guzmán Mar, V. Glez, L. Reyes, Visible light photocatalytic activity of sol–gel Ni-doped TiO2 on p-arsanilic acid degradation. J. Sol-Gel Sci. Technol. 85 (2018)
[53] M. T. Yilleng, E. C. Gimba, G. I. Ndukwe, I. M. Bugaje, D. W. Rooney, H. G. Manyar, Batch to continuous photocatalytic degradation of phenol using TiO2 and Au-Pd nanoparticles supported on TiO2. J. Environ. Chem. Eng. 6 (2018) 6382–6389.
[54] S. Mathew, P. Ganguly, S. Rhatigan, V. Kumaravel, C. Byrne, S. J. Hinder, J. Bartlett, M. Nolan, S. C. Pillai, Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity. Appl. Sci. 8 (2018) 2067.
[55] H. Nishikiori, T. Sato, S. Kubota, N. Tanaka, Y. Shimizu, T. Fujii, Preparation of Cu-doped TiO2 via refluxing of alkoxide solution and its photocatalytic properties. Res. Chem. Intermed. 38 (2012) 595–613.
[56] R. S. K. Wong, J. Feng, X. Hu, P. L.Yue, Discoloration and Mineralization of Non-biodegradable Azo Dye Orange II by Copper-doped TiO2 Nanocatalysts. J. Environ. Sci. Heal. Part A 39 (2004) 2583–2595.
[57] M. Asilturk, F. Sayılkan, E. Arpaç, Effect of Fe3+ Ion Doping to TiO2 on the Photocatalytic Degradation of Malachite Green Dye under UV and Vis-Irradiation. J. Photochem. Photobiol. A Chem. 203 (2009) 64–71.
[58] S. I. Mogal, V. G. Gandhi, M. Mishra, S. Tripathi, T. Shripathi, P. A. Joshi, , D. O. Shah, Single-Step Synthesis of Silver-Doped Titanium Dioxide: Influence of Silver on Structural, Textural, and Photocatalytic Properties. Ind. Eng. Chem. Res. 53 (2014) 5749–5758.
[59] M. Fernández-García, X. Wang, C. Belver, J. C. Hanson, J. A. Rodriguez, Anatase-TiO2 Nanomaterials:  Morphological/Size Dependence of the Crystallization and Phase Behavior Phenomena. J. Phys. Chem. C 111 (2007) 674–682.
[60] B. Richard, J. -L. Lemyre, A. M. Ritcey, Nanoparticle Size Control in Microemulsion Synthesis. Langmuir 33 (2017) 4748–4757.
[61] L. -F. Chiang, R. Doong, Cu–TiO2 nanorods with enhanced ultraviolet- and visible-light photoactivity for bisphenol A degradation. J. Hazard. Mater. 277 (2014) 84–92.
[62] P. Singla, O. P. Pandey, K. Singh, Study of photocatalytic degradation of environmentally harmful phthalate esters using Ni-doped TiO2 nanoparticles. Int. J. Environ. Sci. Technol. 13 (2016) 849–856.
[63] J. Huang, X. Guo, B. Wang, L. Li, M. Zhao, L. Dong, X. Liu, Y. Huang, Synthesis and Photocatalytic Activity of Mo-Doped TiO2 Nanoparticles. J. Spectrosc. (2015) 681850.
[64] C. -J. Lin, W. -T. Yang, Ordered mesostructured Cu-doped TiO2 spheres as active visible-light-driven photocatalysts for degradation of paracetamol. Chem. Eng. J. 237 (2014)131–137.
[65] R. Kamble, S. Mahajan, V. Puri, H. Shinde, P. K. M. Garadkar, Visible Light-Driven high Photocatalytic Activity of Cu-Doped TiO2 Nanoparticles Synthesized by Hydrothermal Method. Mater. Sci. Res. India 15 (2018) 197–208.
[66] N. Turkten, Z. Cinar, A. Tomruk, M. Bekbolet, Copper-doped TiO2 photocatalysts: application to drinking water by humic matter degradation. Environ. Sci. Pollut. Res. 26 (2019) 36096–36106.
[67] M. Sarafraz, M. Sadeghi, A. Yazdanbakhsh, M. M. Amini, M. Sadani, A. Eslami, Enhanced photocatalytic degradation of ciprofloxacin by black Ti3+/N-TiO2 under visible LED light irradiation: Kinetic, energy consumption, degradation pathway, and toxicity assessment. Process Saf. Environ. Prot. 137 (2020) 261–272.