Sustainable Organo-Inorganic Metal Composites for Catalytic Degradation of Industrial Persistent Toxic Substances and Energy Storage

$30.00

Sustainable Organo-Inorganic Metal Composites for Catalytic Degradation of Industrial Persistent Toxic Substances and Energy Storage

Suranjana V. Mayani, Sang Wook Kim, Vishal J. Mayani

Colossal quantity of wastewater contaminated with persistent hazardous substances and degradable toxic compounds to the atmosphere are generated annually. Amongst the particular pollutant, chemicals, organic dyestuffs are of a considerable significance by virtue of its applications in fibers, fabric, coloring element, printed matter and manuring production. The present chapter comprises a complete perspective of green and sustainable organic-inorganic metal nanocomposites for heterogeneous chemical curtail of precarious organic noxious tinge (Chromotrope-2R, Eosin-Y and Methylene Blue) and energy storage (H2 and C2H4). The nanocomposites were designed by simple strategy adopting nanostructured porous carbon material developed from reasonable pyrolysis fuel oil (PFO) related pitch remains.

Keywords
Economical, Energy Storage, Green Heterogeneous Catalyst, Hazardous Water Pollutants, Organic Dyes

Published online 5/1/2021, 22 pages

Citation: Suranjana V. Mayani, Sang Wook Kim, Vishal J. Mayani, Sustainable Organo-Inorganic Metal Composites for Catalytic Degradation of Industrial Persistent Toxic Substances and Energy Storage, Materials Research Foundations, Vol. 102, pp 106-127, 2021

DOI: https://doi.org/10.21741/9781644901397-4

Part of the book on Advances in Wastewater Treatment II

References
[1] V.J. Mayani, S.V. Mayani, S.W. Kim, Gold salen complex doped carbon nanocomposite Au(Salen)@CC for catalytic oxidation of Eosin Y and Chromotrope 2R dyes, Nature’s Sci. Rep. 7(7239), (2017) 1-9. https://doi.org/10.1038/s41598-017-07707-6
[2] M. Alberta, M.S. Lessina, B. F. Gilchrista, Methylene blue: dangerous dye for neonates, J. Pediatr. Surg., 38(8) (2003), 1244-1245. https://doi.org/10.1016/S0022-3468(03)00278-1
[3] S.V. Mayani, V.J. Mayani, S.W. Kim, Synthesis of molybdovanadophosphoric acid supported hybrid materials and their heterogeneous catalytic activity, Mater. Lett. 111 (2013) 112–115. https://doi.org/10.1016/j.matlet.2013.08.078
[4] I. Fatimah, S. Wang, D. Wulandari, ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue. Appl. Clay Sci. 53 (2011) 553–560. https://doi.org/10.1016/j.clay.2011.05.001
[5] P. Chowdhury, S. Athapaththu, A. Elkamel, A.K. Ray, Visible-solar-light-driven photo-reduction and removal of cadmium ion with Eosin Y sensitized TiO2 in aqueous solution of triethanolamine. Sep. Purif. Technol. 174 (2017) 109–115. https://doi.org/10.1016/j.seppur.2016.10.011
[6] E.M. Arbeloa, C.M. Previtali, S.G. Bertolotti, Photochemical study of eosin-Y with PAMAM dendrimers in aqueous solution. J. Lumin. 180 (2016) 369–375. https://doi.org/10.1016/j.jlumin.2016.08.017
[7] S. Nagaya, H. Nishikiori, H. Mizusaki, K. Sato, H. Wagata, K. Teshima, Crystal structure and photoelectric conversion properties of eosinY adsorbing ZnO films prepared by electroless deposition. Appl. Catal. B. Environ. 189 (2016) 51–55. https://doi.org/10.1016/j.apcatb.2016.02.013
[8] K. Vignesh, A. Suganthi, M. Rajarajan, R. Sakthivadivel, Visible light assisted photo-decolorization of Eosin-Y in aqueous solution using hesperidin modified TiO2 nanoparticles. Appl. Surf. Sci. 258 (2012) 4592–4600. https://doi.org/10.1016/j.apsusc.2012.01.035
[9] T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresourse Technol. 77 (2001) 247–255. https://doi.org/10.1016/S0960-8524(00)00080-8
[10] G.A. Umbuzeiro, H.S. Freeman, S.H. Warren, D.P. Oliveira, Y. Terao, T. Watanabe, L.D. Claxton, The contribution of azo dyes to the mutagenic activity of the Cristais river. Chemosphere 60 (2005), 55–64. https://doi.org/10.1016/j.chemosphere.2004.11.100
[11] K.P. Sharma, S. Sharma, S. Sharma, P.K. Singh, S. Kumar, R. Grover, P.K. Sharma, A comparative study on characterization of textile wastewaters (untreated and treated) toxicity by chemical and biological tests. Chemosphere 69, (2007) 48-54. https://doi.org/10.1016/j.chemosphere.2007.04.086
[12] H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 79 (2015) 128–146. https://doi.org/10.1016/j.watres.2015.04.038
[13] S.V. Mayani, V.J. Mayani, K.G. Bhattacharyya, Phenol and its analogues in water: sources, environmental fate, effects and treatment, In: J. B. Baruah (Eds) In chemistry of phenolic compounds; State of the art, Nova Science Publishers Inc., New York, USA, 2011, Chapter 13, 181–202.
[14] V.J. Mayani, S.V. Mayani, S.W. Kim, Simple preparation of tungsten supported carbon nanoreactors for specific applications: adsorption, catalysis and electrochemical activity. Appl. Surf. Sci. 345, (2015) 433–439. https://doi.org/10.1016/j.apsusc.2015.03.178
[15] V.J. Mayani, S.V. Mayani, Y.G. Lee, S.K. Park, A non-chromatographic method for the separation of highly pure naphthalene crystals from pyrolysis fuel oil. Sep. Purif. Techn. 80 (2011) 90–95. https://doi.org/10.1016/j.seppur.2011.04.013
[16] H. Zhao, N. Neamati, A. Mazumder, S. Sunder, Y. Pommier Jr., T.R. Burke, Arylamide inhibitors of HIV-1 integrase. J. Med. Chem. 40 (1997) 1186–1194. https://doi.org/10.1021/jm960449w
[17] S. Asir, A.S. Demir, H. Icil, The synthesis of novel, unsymmetrically substituted, chiral naphthalene and perylene diimides: photophysical, electrochemical, chiroptical and intramolecular charge transfer properties. Dyes Pigm. 84 (2010) 1–13. https://doi.org/10.1016/j.dyepig.2009.04.014
[18] S.V. Mayani, V.J. Mayani, S.K. Park, S.W. Kim. Synthesis and characterization of metal incorporated composite carbon materials from pyrolysis fuel oil, Mater. Lett. 82 (2012) 120–123. https://doi.org/10.1016/j.matlet.2012.05.078
[19] N.G. Asenjo, C. Botas, C. Blanco, R. Santamaría, M. Granda, R. Menéndez, Synthesis of activated carbons by chemical activation of new anthracene oil-based pitches and their optimization by response surface methodology. Fuel Process Technol. 92 (2011) 1987–1992. https://doi.org/10.1016/j.fuproc.2011.05.021
[20] Y.S. Wang, C.Y. Wang, M.M Chen, New mesoporous carbons prepared from pitch by simultaneous templating carbonization. New Carbon Mater. 24 (2009) 187–190. https://doi.org/10.1016/S1872-5805(08)60047-5
[21] I. Mochida, S.H. Yoon, Y. Korai, K. Kanno, Y. Sakai, M. Komatsu, In: H. Marsh F. Rodriguez-Reinoso (Eds) Sciences of carbon materials. Publicaciones de la Universidad de Alicante, London 2000, 259.
[22] S.B. Yoon, J.Y. Kim, J.H. Kim, Y.J. Park, K.R. Yoon, S.K. Park, J.S. Yu, Synthesis of monodisperse spherical silica particles with solid core and mesoporous shell: Mesopore channels perpendicular to the surface. J. Mater. Chem. 17 (2007) 1758-1761. https://doi.org/10.1039/b617471j
[23] V.J. Mayani, S.H.R. Abdi, R.I. Kureshy, N.H. Khan, S. Agrawal, R.V. Jasra, Synthesis and characterization of (S)-amino alcohol modified M41S as effective material for the enantioseparation of racemic compounds. J. Chrom. A, 1135 (2006) 186–193. https://doi.org/10.1016/j.chroma.2006.09.094
[24] V.J. Mayani, S.H. R. Abdi, R.I. Kureshy, N.H. Khan, A. Das, H.C. Bajaj, Heterogeneous Chiral Copper Complexes of Amino Alcohol for Asymmetric Nitroaldol Reaction. J. Org. Chem., 75 (2010) 6191–6195. https://doi.org/10.1021/jo1010679
[25] S.V. Mayani, V.J. Mayani, S.W. Kim, Development of novel porous carbon frameworks through hydrogen-bonding interaction and its ethylene adsorption activity. J. Porous Mater. 19 (2012) 519–527. https://doi.org/10.1007/s10934-012-9565-2
[26] V.J. Mayani, S.V. Mayani, S.W. Kim, Development of nanocarbon gold composite for heterogeneous catalytic oxidation. Mater. Lett. 87 (2012) 90-93. https://doi.org/10.1016/j.matlet.2012.07.071
[27] S.V. Mayani, V.J. Mayani, J.Y. Lee, S.H. Ko, S.K. Lee, S.W. Kim, Preparation of multi metal–carbon nanoreactors for adsorption and catalysis. Adsorption, 19 (2013) 251–257. https://doi.org/10.1007/s10450-012-9447-6
[28] V.J. Mayani, S.V. Mayani, S.W. Kim, Development of Gold Phosphorus Supported Carbon Nanocomposites. Bull. Korean Chem. Soc. 35(2) (2014), 401-406. https://doi.org/10.5012/bkcs.2014.35.2.401
[29] V.J. Mayani, S.V. Mayani, S.W. Kim Development of Palladium, Gold and Gold-Palladium Containing Metal-Carbon Nanoreactors: Hydrogen Adsorption. Bull. Korean Chem. Soc. 35(5) (2014), 1312-1316. https://doi.org/10.5012/bkcs.2014.35.5.1312
[30] V.J. Mayani, S.V. Mayani, S.W. Kim, Palladium, Gold, and Gold–Palladium Nanoparticle-Supported Carbon Materials for Cyclohexane Oxidation. Chem. Eng. Comm. 203 (2016) 539–547. https://doi.org/10.1080/00986445.2015.1048800
[31] E.H.E. Safaa, M.E. Mohamed, Degradation of methylene blue by catalytic and photo-catalytic processes catalysed by the organotin-polymer 3α[(Me3Sn)4Fe(CN)6]. Appl. Catal. B: Environ. 126 (2012) 326–33. https://doi.org/10.1016/j.apcatb.2012.07.032
[32] S.H.R. Abdi, R.I. Kureshy, N.H. Khan, V.J. Mayani, H.C. Bajaj, Dimeric & polymeric chiral Schiff base complexes and supported BINOL complexes as potential recyclable catalysts in asymmetric kinetic resolution and C–C bond formation reactions. Catal. Surv. Asia 13 (2009), 104–131. https://doi.org/10.1007/s10563-009-9071-y
[33] K. Vignesh, A. Suganthi, M. Rajarajan, R. Sakthivadivel, Visible light assisted photo-decolorization of eosin-Y in aqueous solution using hesperidin modified TiO2 nanoparticles. Appl. Surf. Sci. 258 (2012), 4592–4600. https://doi.org/10.1016/j.apsusc.2012.01.035
[34] L.C. Almeida, S.G. Segura, C. Arias, N. Bocchi, E. Brillas, Electrochemical mineralization of the azo dye Acid Red 29 (Chromotrope 2R) by photoelectro-Fenton process. Chemosphere 89 (2012), 751–758. https://doi.org/10.1016/j.chemosphere.2012.07.007
[35] I.A. Salem, H.A. El-Ghamry, M.A. El-Ghobashy, Application of montmorillonite–Cu(II)ethylenediamine catalyst for the decolorization of Chromotrope 2R with H2O2 in aqueous solution. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 139 (2015) 130–137. https://doi.org/10.1016/j.saa.2014.11.053
[36] G.M. Psofogiannakis, T.A. Steriotis, A.B. Bourlinos, E.P. Kouvelos, G.C. Charalambopoulou, A.K. Stubos, G.E. Froudakis, Enhanced hydrogen storage by spill over on metal-doped carbon foam: an experimental and computational study. Nanoscale, 3 (2011) 933–936. https://doi.org/10.1039/c0nr00767f