Electrochemical Oxidation of Perfluorooctanoic Acid (PFOA) from Aqueous Solution using Non-Active Ti/SnO2-Sb2O5/PbO2 Anodes


Electrochemical Oxidation of Perfluorooctanoic Acid (PFOA) from Aqueous Solution using Non-Active Ti/SnO2-Sb2O5/PbO2 Anodes

Seema Singh, Kinjal J. Shah, Nidhi Mehta, Vimal Chandra Srivastava, Shang-Lien Lo

In this study, electrochemical oxidation of perfluorooctanoic acid (PFOA, C7H15CO2H) from aqueous solution was examined in terms of PFOA and total organic carbon (TOC) removal by using Ti/SnO2-Sb2O5/PbO2non-active electrodes. The effects of operating parameters: initial pH (pHo), current density (j), and electrolyte concentration (m) at different time intervals were examined. Specific energy consumption (SEC) was used to determine the process proficiency. The C-C bond between C7F15 was first cleaved and thendegraded into fluoride ions (F−) and short carbon-chain per-fluorinated carboxylic acids (PFCAs) ((∼C2−C7) such as perfluoroethanoic acid (PFEA: C2F5CO2H), perfluoropropanoic acid (PFPA: C3F7CO2H), perfluorobutanoic acid (PFBA: C4F9CO2H), perfluoropentanoic acid (PFPeA: C5F11CO2H), perfluorohexanoic acid (PFHxA: C6F13CO2H), perfluoheptanoic acid (PFHpA: C7F14CO2H). These intermediates by-products were determined using the gas chromatograph-mass spectrometry (GC/MS) analysis. The rate of PFOA decomposition was followed the pseudo-first-order kinetics. About 82%TOC and 94% PFOA removals were formed at the optimal condition of pHo = 3.58, j=168.34 Am-2, and m = 250 mgL-1 at 120 min of electrolysis with SEC = 593 kWh/kg TOC. A plausible degradation mechanism was also proposed at the optimal treatment condition.

Perfluorooctanoic Acid, Electrochemical Oxidation, Specific Energy Consumption, Reaction Kinetics, Degradation Mechanism

Published online 5/1/2021, 20 pages

Citation: Seema Singh, Kinjal J. Shah, Nidhi Mehta, Vimal Chandra Srivastava, Shang-Lien Lo, Electrochemical Oxidation of Perfluorooctanoic Acid (PFOA) from Aqueous Solution using Non-Active Ti/SnO2-Sb2O5/PbO2 Anodes, Materials Research Foundations, Vol. 102, pp 48-67, 2021

DOI: https://doi.org/10.21741/9781644901397-2

Part of the book on Advances in Wastewater Treatment II

[1] J. Niu, Y. Li, E. Shang, Z. Xu, J. Liu. Electrochemical oxidation of perfluorinated compounds in water. Chemosphere 146 (2015) 526-538.https://doi.org/10.1016/j.chemosphere.2015.11.115
[2] S. Li, G. Zhang, W. Zhang, H. Zheng, W. Zhu, N. Sun, Y. Zheng, P. Wang. Microwave enhanced Fenton-like process for degradation of perfluorooctanoic acid (PFOA) using Pb-BiFeO3/rGO as heterogeneous catalyst. Chem. Eng. J. 326 (2017) 756–764.https://doi.org/10.1016/j.cej.2017.06.037
[3] S. Khan, X. He, J.A. Khan, H.M. Khan, D.L. Boccelli, D.D. Dionysiou. Kinetics and mechanism of sulfate radical- and hydroxyl radical-induced degradation of highly chlorinated pesticide lindane in UV/peroxymonosulfate system. Chem. Eng. J. 318 (2017)135–142.https://doi.org/10.1016/j.cej.2016.05.150
[4] M.-K. Kim, T. Kim, T.-K. Kim, S.-W. Joo, K.D. Zoh. Degradation mechanism of perfluorooctanoic acid (PFOA) during electrocoagulation using Fe electrode. Sep. Purif. Technol. 247 (2020) 116911. https://doi.org/10.1016/j.seppur.2020.116911
[5] M.-J. Chen, S.-L. Lo, Y.–C. Lee, C.-C. Huang. Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide. J. Hazard. Mater. 288 (2015) 168–175.https://doi.org/10.1016/j.jhazmat.2015.02.004
[6] Q. Zhuo, S. Deng, B.Yang, J. Huang, G. Yu. Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode, Environ. Sci. Technol. 45 (2011) 2973–2979.https://doi.org/10.1021/es1024542
[7] Z. Li, Q. Yang, Y. Zhong, X. Li, L. Zhou, X. Li, G. Zeng. Granular activated carbon supported iron as a heterogeneous persulfate catalyst for the pretreatment of mature landfill leachate. RSC Adv. 6 (2016) 987–994.https://doi.org/10.1039/C5RA21781D
[8] M.-J. Chen, S.-L. Lo, Y.-C. Lee, J. Kuo, C.-H. Wu. Decomposition of perfluorooctanoic acid by ultraviolet light irradiation with Pb-modified titanium dioxide. J. Hazard. Mater. 303 (2016) 111–118.https://doi.org/10.1016/j.jhazmat.2015.10.011
[9] Y.C. Lee, S.-L. Lo, P.T. Chiueh, D.G. Chang. Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. Water Res. 43 (2009) 2811–2816.https://doi.org/10.1016/j.watres.2009.03.052
[10] L.-A.P. Thi, H.-T. Do, S.-L. Lo. Enhancing decomposition rate of perfluorooctanoic acid by carbonate radical assisted sonochemical treatment. Ultrasonics Sonochem. 21 (2014) 1875–1880.https://doi.org/10.1016/j.ultsonch.2014.03.027
[11] Y.-b. Hu, S.-L. Lo, Y.-F. Li, Y.-C. Lee, M.-J. Chen, J.-C. Lin. Autocatalytic degradation of perfluorooctanoic acid in a permanganate-ultrasonic system. Water Res. 140 (2018) 148-157.https://doi.org/10.1016/j.watres.2018.04.044
[12] V. Mulabagal, L. Liu, J. Qi, C. Wilson, J.S. Hayworth. A rapid UHPLC-MS/MS method for simultaneous quantitation of perfluoroalkyl substances (PFAS) in estuarine water. Talanta 190 (2018) 95-102.https://doi.org/10.1016/j.talanta.2018.07.053
[13] Z.W. Du, S.B. Deng, Y. Bei, Q. Huang, B. Wang, J. Huang, G. Yu. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbent – a review. J. Hazard. Mater. 274 (2014)443–454.https://doi.org/10.1016/j.jhazmat.2014.04.038
[14] Y.P. Bao, J.F. Niu, Z.S. Xu, D. Gao, J.H. Shi, X.M. Sun, Q.G. Huang, Removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from water by coagulation: mechanisms and influencing factors. J. Colloid Interface Sci. 434 (2014) 59–64.https://doi.org/10.1016/j.jcis.2014.07.041
[15] Y.-C. Lee, Y.-F. Li, M.-J. Chen, Y.-C. Chen, S.-L. Lo. Efficient decomposition of perfluorooctanic acid by persulfate with iron-modified activated carbon. Water Res. 174 (2020) 115618.https://doi.org/10.1016/j.watres.2020.115618
[16] B. P. Chaplin. Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ. Sci.: Processes Impacts, 2014, 16, 1182. https://doi.org/10.1039/C3EM00679D
[17] W. Wu, Z.-H. Huang, T.-T. Lim. Recent development of mixed metal oxide anodes for electrochemicaloxidation of organic pollutants in water. Appl. Catal. A: General 480 (2014) 58–78.https://doi.org/10.1016/j.apcata.2014.04.035
[18] P.V. Nidheesh, M. Zhou, M.A. Oturan. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 197 (2018) 210-227.https://doi.org/10.1016/j.chemosphere.2017.12.195
[19] H. Lin, J. Niu, S. Ding, L. Zhang, Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2–Sb, Ti/SnO2–Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes, Water Res. 46 (2012) 2281-2289.https://doi.org/10.1016/j.watres.2012.01.053
[20] H. Zhao, J. Gao, G. Zhao, J. Fan, Y. Wang, Y. Wang. Fabrication of novel SnO2- Sb/carbon aerogel electrode for ultrasonic electrochemical oxidation of perfluorooctanoate with high catalytic efficiency. Appl. Catal. B Environ. 136 (2013) 278-286.https://doi.org/10.1016/j.apcatb.2013.02.013
[21] J. Niu, H. Lin, C. Gong, X. Sun. Theoretical and experimental insights into the electrochemical mineralization mechanism of perfluorooctanoic acid. Environ. Sci. Technol. 47 (2013)14341-14349.https://doi.org/10.1021/es402987t
[22] Q. Zhuo, X. Li, F. Yan, B. Yang, S. Deng, J. Huang, G. Yu. Electrochemical oxidation of 1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS) on DSA electrode: operating parameters and mechanism. J. Environ. Sci. 26 (2014) 1733-1739.https://doi.org/10.1016/j.jes.2014.06.014
[23] Q. Zhuo, S. Deng, B. Yang, J. Huang, B. Wang, T. Zhang, G. Yu, Degradation of perfluorinated compounds on a boron-doped diamond electrode. Electrochim. Acta 77 (2012) 17-22.https://doi.org/10.1016/j.electacta.2012.04.145
[24] S. Singh, S.-L. Lo, V.C. Srivastava, A.D. Hiwarkar. Comparative study of electrochemical oxidation for dye degradation: Parametric optimization and mechanism identification. J. Environ. Chem. Eng. 4 (2016) 2911–2921.https://doi.org/10.1016/j.jece.2016.05.036
[25] B. Xu, J. L. Zhou, A. Altaee, M. B. Ahmed, M.A. H. Johir, J. Ren, X. Li. Improved photocatalysis of perfluorooctanoic acid in water and wastewater by Ga2O3/UV system assisted by peroxymonosulfate. Chemosphere 239 (2020) 124-722.https://doi.org/10.1016/j.chemosphere.2019.124722
[26] Y.-C. Lee, S.-L. Lo, J. Kuo, C.-P. Huang, Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon, J. Hazard. Mater. 261 (2013) 463– 469.https://doi.org/10.1016/j.jhazmat.2013.07.054
[27] J.-C. Lin, C.-Y. Hu, S.-L. Lo. Effect of surfactants on the degradation o perfluorooctanoic acid (PFOA) by ultrasonic (US) treatment. UltrasonicsSonochem. 28 (2016) 130–135.https://doi.org/10.1016/j.ultsonch.2015.07.007