Composite Ion Exchangers as New Age Photocatalyst


Composite Ion Exchangers as New Age Photocatalyst

Manita Thakur, Ajay Sharma, Manisha Chandel, Suresh Kumar, Ajay Kumar

The innovation of different technologies and emphasis on development of new techniques is indispensable to improve the quality of water globally. Photocatalysis is one of the major techniques explored now a days for the exclusion of water impurities using solar light. Different types of photocatalysts have been employed for the removal of dyes, heavy metals, pesticides from aqueous system. During the last few years, nanocomposite ion exchangers were used as a photocatalyst for the removal of organic pollutants. This chapter includes detailed information about introduction of pollutants into the water system, nanocomposite ion exchangers and photocatalysis removal. Nanocomposite ion exchangers effectively degrade various pollutants present in the marine system. These nanocomposites have also been used in different areas such as fuel cell, sensor, nuclear separation and heavy metal removal etc. Therefore, nanocomposite ion exchangers are a new age photocatalyst with unique and effective properties.

Nanocomposite, Photocatalysis, Ion Exchanger, Dyes, Heavy Metals, Photocatalyst

Published online 4/1/2021, 26 pages

Citation: Manita Thakur, Ajay Sharma, Manisha Chandel, Suresh Kumar, Ajay Kumar, Composite Ion Exchangers as New Age Photocatalyst, Materials Research Foundations, Vol. 100, pp 273-298, 2021


Part of the book on Photocatalysis

[1] Q. Wang, Z. Yang, Industrial water pollution, water environment treatment, and health risks in China, Environmental pollution, 218 (2016) 358-365. 10.1016/j.envpol.2016.07.011
[2] A.K. Awasthi, X. Zeng, J. Li, Environmental pollution of electronic waste recycling in India: a critical review, Environmental pollution, 211 (2016) 259-270.
[3] L. Zhang. J. Gao, Exploring the effects of international tourism on China’s economic growth, energy consumption and environmental pollution: Evidence from a regional panel analysis, Renewable and Sustainable Energy Reviews, 53 (2016) 225-234.
[4] R. Michalski, A. Ficek, Environmental pollution by chemical substances used in the shale gas extraction—a review, Desalination and water treatment, 57 (2015) 1336-43.
[5] W.A. Suk, H. Ahanchian, K.A. Asante, D.O. Carpenter, F. Diaz-Barriga, E.H. Ha, X. Huo, M. King, M. Ruchirawat, E.R. da Silva, L. Sly, Environmental pollution: an under-recognized threat to children’s health, especially in low-and middle-income countries, Environmental health perspectives, 124 (2016) 41-50.
[6] T.K. Parmar, D. Rawtani, Y.K. Agrawal. Bioindicators: the natural indicator of environmental pollution, Frontiers in life science, 9 (2016) 110-118.
[7] L. M. Chiesa, G. F. Labella, A. Giorgi, S. Panseri, R. Pavlovic, S. Bonacci, F. Arioli, The occurrence of pesticides and persistent organic pollutants in Italian organic honeys from different productive areas in relation to potential environmental pollution, Chemosphere, 154 (2016) 482-490.
[8] S. Dudka, D. C. Adriano, Environmental impacts of metal ore mining and processing: a review, Journal of environmental quality, 26 (1997) 590-602. 10.2134/jeq1997.00472425002600030003x
[9] Y. M. Hsueh, C. Y. Lee, S. N. Chien, W. J. Chen, H. S. Shiue, S. R. Huang, M. I. Lin, S. C. Mu, R. L. Hsieh, Association of blood heavy metals with developmental delays and health status in children, Scientific reports, 7 (2017) 43608. /10.1038/srep43608 (2017)
[10] K. Kumar, S. C. Gupta, S. K. Baidoo, Y. Chander, C. J. Rosen, Antibiotic uptake by plants from soil fertilized with animal manure, Journal of environmental quality, 34 (2005) 2082-5. doi:10.2134/jeq2005.0026
[11] I. Zadnipryany, O. Tretiakova, T. P. Sataieva, W. Zukow, Experimental‏ review‏ of‏ cobalt‏ induced cardiomyopathy, Russian Open Medical Journal, 6 (2017) 103.
[12] L. Makarichi, V. Jutidamrongphan, K. A. Techato, The evolution of waste-to-energy incineration: A review, Renewable and Sustainable Energy Reviews, 91 (2018) 812-21.
[13] R. Verma, K. S. Vinoda, M. Papireddy, A. N. Gowda, Toxic pollutants from plastic waste-a review, Procedia Environmental Sciences, 35 (2016) 701-8.
[14] X. Wang, D. Sun, T. Yao, Climate change and global cycling of persistent organic pollutants: a critical review, Science China Earth Sciences, 59 (2016) 1899-911.
[15] J. P. Bonde, E. M. Flachs, S. Rimborg, C. H. Glazer, A. Giwercman, C. H. Ramlau-Hansen, K. S. Hougaard, B. B. Høyer, K. K. Hærvig, S. B. Petersen, L. Rylander, The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: a systematic review and meta-analysis, Human Reproduction Update, 23 (2016) 104-25.
[16] M. Brits, J. De Vos, J. M. Weiss, E. R. Rohwer, J. De Boer, Critical review of the analysis of brominated flame retardants and their environmental levels in Africa, Chemosphere, 164 (2016) 174-89.
[17] D. Megson, E. J. Reiner, K. J. Jobst, F. L. Dorman, M. Robson, J. F. Focant. A review of the determination of persistent organic pollutants for environmental forensics investigations, Analytica Chimica Acta, 941 (2016) 10-25.
[18] V. Filimonova, F. Gonçalves, J. C. Marques, M. De Troch, A. M. Goncalves, Fatty acid profiling as bioindicator of chemical stress in marine organisms: a review, Ecological indicators, 67 (2016) 657-72.
[19] G. Cagnetta, H. Liu, K. Zhang, J. Huang, B. Wang, S. Deng, Y. Wang, G. Yu, Mechano-chemical conversion of brominated POPs into useful oxybromides: a greener approach, Scientific reports, 6 (2016) 28394.
[20] J. Ma, H. Hung, R. W. Macdonald, The influence of global climate change on the environmental fate of persistent organic pollutants: A review with emphasis on the Northern Hemisphere and the Arctic as a receptor, Global and Planetary Change, 146 (2016) 89-108.
[21] M. K. Uddin, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chemical Engineering Journal, 308 (2017) 438-62.
[22] Y. Zhao, G. Mao, H. Hongxia, L. Gao, Effects of EDTA and EDDS on heavy metal activation and accumulation of metals by soybean in alkaline soil, Soil and Sediment Contamination: An International Journal, 24(4) (2015) 353-67.
[23] C. F. Carolin, P. S. Kumar, A. Saravanan, G. J. Joshiba, M. Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review, Journal of Environmental Chemical Engineering, 5 (2017) 2782-99.
[24] D. L. Lake, P. W. Kirk, J. N. Lester, Fractionation, characterization and speciation of heavy metals in sewage sludge and sludge-amended soils: a review, Journal of Environmental Quality, 2 (1984) 175-83.
[25] A. C. Bosch, B. O’Neill, G. O. Sigge, S. E. Kerwath, L. C. Hoffman, Heavy metals in marine fish meat and consumer health: a review, Journal of the Science of Food and Agriculture. 96 (2016) 32-48.
[26] S. H. Liu, G. M. Zeng, Q. Y. Niu, Y. Liu, L. Zhou, L. H. Jiang, X. F. Tan, P. Xu, C. Zhang, M. Cheng, Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review, Bioresource technology. 224 (2017) 25-33.
[27] E. Da’na, Adsorption of heavy metals on functionalized-mesoporous silica: A review, Microporous and Mesoporous Materials, 247 (2017) 145-57.
[28] M. Abtahi, Y. Fakhri, G. Oliveri Conti, H. Keramati, Y. Zandsalimi, Z. Bahmani, R. HosseiniPouya, M. Sarkhosh, B. Moradi, N. Amanidaz, S. M. Ghasemi, Heavy metals (As, Cr, Pb, Cd and Ni) concentrations in rice (Oryzasativa) from Iran and associated risk assessment: a systematic review, Toxin reviews, 36 (2017) 331-41.
[29] G. Richhariya, A. Kumar, P. Tekasakul, B. Gupta, Natural dyes for dye sensitized solar cell: A review, Renewable and Sustainable Energy Reviews, 69 (2017) 705-18.
[30] H. A. Shindy. Fundamentals in the chemistry of cyanine dyes: A review, Dyes and Pigments, 145 (2017) 505-13.
[31] A. M. Ghaedi, A. Vafaei, Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: a review, Advances in colloid and interface science, 245 (2017) 20-39.
[32] C. A. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review, Applied Catalysis B: Environmental, 87 (2009) 105-45.
[33] G. Annadurai, R.S. Juang, D.J. Lee, Use of cellulose-based wastes for adsorption of dyes from aqueous solutions, Journal of hazardous materials, 92(3) (2002) 263-74.
[34] I. Khurana, A. Saxena, J. M. Khurana, P. K. Rai, Removal of dyes using graphene-based composites: a review, Water, Air & Soil Pollution, 228 (2017) 180.
[35] T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresource technology, 77(3) (2001) 247-55.
[36] Z. Cao, J. Engelhardt, M. Dierks, M. T. Clough, G. H. Wang, E. Heracleous, A. Lappas, R. Rinaldi, F. Schüth, Catalysis meets nonthermal separation for the production of (alkyl) phenols and hydrocarbons from pyrolysis oil, Angewandte Chemie International Edition, 56 (2017) 2334-9.
[37] S. D. Schimler, M. A. Cismesia, P. S. Hanley, R. D. Froese, M. J. Jansma, D. C. Bland, M. S. Sanford, Nucleophilic deoxy fluorination of phenols via aryl Fluorosulfonate intermediates, Journal of the American Chemical Society, 139 (2017) 1452-5. DOI: 10.1021/jacs.6b12911
[38] J. Zhou, M. L. Wang, X. Gao, G. F. Jiang, Y. G. Zhou, Bifunctional squaramide-catalyzed synthesis of chiral dihydrocoumarins via ortho-quinonemethides generated from 2-(1-tosylalkyl) phenols, Chemical Communications, 53 (2017) 3531-4.
[39] R. D. Wauchope, The pesticide content of surface water draining from agricultural fields—a review, Journal of environmental quality, 7 (1978) 459-72.
[40] R. J. Hillocks, Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture, Crop Protection, 31 (2012) 85-93.
[41] M. Cycoń, A. Mrozik, Z. Piotrowska-Seget, Bio augmentation as a strategy for the remediation of pesticide-polluted soil: a review, Chemosphere, 172 (2017) 52-71.
[42] M. L. Xu, Y. Gao, X. X. Han, B. Zhao, Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: A review, Journal of agricultural and food chemistry, 65 (2017) 6719-26.
[43] K. Khoiruddin, A. N. Hakim, I. G. Wenten, Advances in electrode ionization technology for ionic separation-A review, Membrane Water Treatment, 5 (2014) 87-108.
[44] O. Oleksiienko, C. Wolkersdorfer, M. Sillanpää, Titanosilicates in cation adsorption and cation exchange–a review, Chemical Engineering Journal, 317 (2017) 570-85.
[45] J. Ran, L. Wu, Y. He, Z. Yang, Y. Wang, C. Jiang, L. Ge, E. Bakangura, T. Xu, Ion exchange membranes: New developments and applications, Journal of Membrane Science, 522 (2017) 267-91.
[46] M. Endo, E. Yoshikawa, N. Muramatsu, N. Takizawa, T. Kawai, H. Unuma, A. Sasaki, A. Masano, Y. Takeyama, T. Kahara, The removal of cesium ion with natural Itaya zeolite and the ion exchange characteristics, Journal of Chemical Technology & Biotechnology, 88 (2013) 1597-602.
[47] M. A. Hickner, B. S. Pivovar, The chemical and structural nature of proton exchange membrane fuel cell properties, Fuel cells, 5 (2005) 213-29.
[48] T. Xu, Ion exchange membranes: state of their development and perspective, Journal of membrane science, 263(1-2) (2005) 1-29.
[49] G. Zhao, X. Huang, Z. Tang, Q. Huang, F. Niu, X. Wang, Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review, Polymer Chemistry, 9 (2018) 3562-82.
[50] W. Jia, B. Tang, P. Wu, Novel composite proton exchange membrane with connected long-range ionic nanochannels constructed via exfoliated nafion–boron nitride nanocomposite, ACS applied materials & interfaces, 9 (2017) 14791-800.
[51] M. Naushad, G. Sharma, A. Kumar, S. Sharma, A. A. Ghfar, A. Bhatnagar, F. J. Stadler, M. R. Khan, Efficient removal of toxic phosphate anions from aqueous environment using pectin based quaternary amino anion exchanger, International Journal of Biological Macromolecules, 106 (2018) 1-0.
[52] Y. Tanaka, S. H. Moon, V. V. Nikonenko, T. Xu, Ion-exchange membranes, International Journal of Chemical Engineering, (2012).
[53] L. Curkovic, S. Cerjan-Stefanovic, T. Filipan, Metal ion exchange by natural and modified zeolites, Water research, 31(6) (1997) 1379-82.
[54] A. Da̧browski, Z. Hubicki, P. Podkościelny, E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere, 56 (2004) 91-106.
[55] Y. F. Yao, J. T. Kummer, Ion exchange properties of and rates of ionic diffusion in beta-alumina, Journal of Inorganic and Nuclear Chemistry, 29 (1967) 2453-75.
[56] A. Nilchi, R. Saberi, M. Moradi, H. Azizpour, R. Zarghami, Adsorption of cesium on copper hexacyanoferrate–PAN composite ion exchanger from aqueous solution, Chemical Engineering Journal, 172 (2011) 572-80.
[57] F. Šebesta, V. Štefula, Composite ion exchanger with ammonium molybdophosphate and its properties, Journal of Radioanalytical and Nuclear Chemistry, 140 (1990) 15-21.
[58] A. Mardan, R. Ajaz, A. Mehmood, S. M. Raza, A. Ghaffar, Preparation of silica potassium cobalt hexacyanoferrate composite ion exchanger and its uptake behavior for cesium, Separation and purification technology, 16 (1999) 147-58.
[59] S. A. Nabi, M. Shahadat, R. Bushra, A. H. Shalla, A. Azam, Synthesis and characterization of nano-composite ion-exchanger; its adsorption behaviour, Colloids and Surfaces B: Biointerfaces, 87 (2011) 122-8.
[60] A. A. Khan, M. M. Alam, Synthesis, characterization and analytical applications of a new and novel ‘organic–inorganic’composite material as a cation exchanger and Cd (II) ion-selective membrane electrode: polyaniline Sn (IV) tungstoarsenate, Reactive and Functional Polymers, 55 (2003) 277-90.
[61] J. K. Moon, K. W. Kim, C. H. Jung, Y. G. Shul, E. H. Lee, Preparation of organic-inorganic composite adsorbent beads for removal of radionuclides and heavy metal ions, Journal of Radioanalytical and Nuclear Chemistry, 246 (2000) 299-307.
[62] S. A. Nabi, M. Shahadat, R. Bushra, A. H. Shalla, F. Ahmed, Development of composite ion-exchange adsorbent for pollutants removal from environmental wastes, Chemical Engineering Journal, 165 (2010) 405-12.
[63] W. W. Ngah, L.C. Teong, M. A. Hanafiah, Adsorption of dyes and heavy metal ions by chitosan composites: A review, Carbohydrate polymers, 83 (2011) 1446-56.
[64] Z. Shen, G. P. Simon, Y. B. Cheng, Comparison of solution intercalation and melt intercalation of polymer–clay nanocomposites, Polymer, 43 (2002) 4251-60.
[65] S. S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Progress in polymer science, 28 (2003) 1539-641.
[66] I. A. Rahman, V. Padavettan, Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites-a review, Journal of Nanomaterials, (2012) 8.
[67] W. Hou, S. B. Cronin, A review of surface plasmon resonance‐enhanced photocatalysis, Advanced Functional Materials, 23 (2013) 1612-9.
[68] K. Kabra, R. Chaudhary, R. L. Sawhney, Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review, Industrial & engineering chemistry research, 43 (2004) 7683-96.
[69] Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review, Nanoscale, 5 (2013) 8326-39.
[70] X. Li, J. Yu, S. Wageh, A. A. Al‐Ghamdi, J. Xie, Graphene in photocatalysis: a review, Small, 12 (2016) 6640-96.
[71] K. Wenderich, G. Mul, Methods, mechanism, and applications of photodeposition in photocatalysis: a review, Chemical reviews, 116 (2016) 14587-619.
[72] L. K. Putri, W. J. Ong, W. S. Chang, S. P. Chai, Heteroatom doped graphene in photocatalysis: a review, Applied Surface Science, 358 (2015) 2-14.
[73] Y. Boyjoo, H. Sun, J. Liu, V. K. Pareek, S. Wang, A review on photocatalysis for air treatment: from catalyst development to reactor design, Chemical Engineering Journal, 310 (2017) 537-59.
[74] J. Byrne, P. Dunlop, J. Hamilton, P. Fernández-Ibáñez, I. Polo-López, P. Sharma, A. Vennard, A review of heterogeneous photocatalysis for water and surface disinfection, Molecules, 20 (2015) 5574-615.
[75] M. N. Chong, B. Jin, C. W. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water research, 44 (2010) 2997-3027.
[76] M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chemical reviews, 93(1) (1993) 341-57.
[77] A. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications. Catalysts, 3 (2013) 189-218.
[78] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chemical reviews, 95 (1995) 69-96.
[79] R. K. Nath, M. F. Zain, A. A. Kadhum, Photocatalysis—a novel approach for solving various environmental and disinfection problems: a brief review, Journal of Applied Sciences Research, 8 (2012) 4147-55.
[80] T. Ramesh, B. Nayak, A. Amirbahman, C. P. Tripp, S. Mukhopadhyay, Application of ultraviolet light assisted titanium dioxide photocatalysis for food safety: A review, Innovative food science & emerging technologies, 38 (2016) 105-15.
[81] D. Pathania, G. Sharma, A. Kumar, M. Naushad, S. Kalia, A. Sharma, Z. A. ALOthman, Combined sorptional–photocatalytic remediation of dyes by polyaniline Zr (IV) selenotungstophosphate nanocomposite, Toxicological & Environmental Chemistry, 97 (2015) 526-37.
[82] G. Sharma, A. Kumar, M. Naushad, D. Pathania, M. Sillanpää, Polyacrylamide@ Zr (IV) vanadophosphate nanocomposite: ion exchange properties, antibacterial activity, and photocatalytic behavior, Journal of Industrial and Engineering Chemistry, 33 (2016) 201-8.
[83] D. Pathania, G. Sharma, R. Thakur, Pectin@ zirconium (IV) silicophosphate nanocomposite ion exchanger: photo catalysis, heavy metal separation and antibacterial activity, Chemical Engineering Journal, 267 (2015) 235-44.
[84] V. K. Gupta, D. Pathania, N. C. Kothiyal, G. Sharma, Polyaniline zirconium (IV) silicophosphate nanocomposite for remediation of methylene blue dye from waste water, Journal of Molecular Liquids, 190 (2014) 139-45.
[85] V. K. Gupta, S. Agarwal, D. Pathania, N. C. Kothiyal, G. Sharma, Use of pectin–thorium (IV) tungstomolybdate nanocomposite for photocatalytic degradation of methylene blue, Carbohydrate polymers, 96 (2013) 277-83.
[86] D. Pathania, G. Sharma, A. Kumar, N. C. Kothiyal, Fabrication of nanocomposite polyaniline zirconium (IV) silicophosphate for photocatalytic and antimicrobial activity, Journal of Alloys and Compounds, 588 (2014) 668-75.
[87] V. K. Gupta, Sharma G, D. Pathania, N. C. Kothiyal, Nanocomposite pectin Zr (IV) selenotungsto phosphate for adsorptional/photocatalytic remediation of methylene blue and malachite green dyes from aqueous system, Journal of Industrial and Engineering Chemistry, 21 (2015) 957-64.
[88] D. Pathania, G. Sharma, M. Naushad, A. Kumar, Synthesis and characterization of a new nanocomposite cation exchanger polyacrylamide Ce (IV) silico phosphate: photocatalytic and antimicrobial applications, Journal of Industrial and Engineering Chemistry, 20 (2014) 3596-603.
[89] V. K. Gupta, D. Pathania, P. Singh, B. S. Rathore, P. Chauhan, Cellulose acetate–zirconium (IV) phosphate nano-composite with enhanced photo-catalytic activity, Carbohydrate polymers, 95 (2013) 434-40.
[90] M. Thakur, G. Sharma, T. Ahamad, A. A. Ghfar, D. Pathania, M. Naushad, Efficient photocatalytic degradation of toxic dyes from aqueous environment using gelatin-Zr (IV) phosphate nanocomposite and its antimicrobial activity, Colloids and Surfaces B: Biointerfaces, 157 (2017) 456-63.
[91] V. K. Gupta, T. A. Saleh, D. Pathania, B. S. Rathore, G. Sharma, A cellulose acetate based nanocomposite for photocatalytic degradation of methylene blue dye under solar light, Ionics, 21 (2015) 1787-93.
[92] G. Sharma, M. Naushad, D. Pathania, A. Kumar, A multifunctional nanocomposite pectin thorium (IV) tungstomolybdate for heavy metal separation and photo remediation of malachite green, Desalination and Water Treatment, 57 (2016) 19443-55.
[93] B. S. Rathore, D. Pathania, Styrene–tin (IV) phosphate nanocomposite for photocatalytic degradation of organic dye in presence of visible light, Journal of Alloys and Compounds, 606 (2014) 105-11.
[94] D. Pathania, M. Thakur, A. K. Mishra, Alginate-Zr (IV) phosphate nanocomposite ion exchanger: Binary separation of heavy metals, photocatalysis and antimicrobial activity, Journal of Alloys and Compounds, 701 (2017) 153-62.
[95] D. Pathania, M. Thakur, A. Sharma, S. Agarwal, V. K. Gupta, Synthesis of lactic acid–Zr (IV) phosphate nanocomposite ion exchanger for green remediation, Ionics, 23 (2017) 699-706.
[96] D. Pathania, M. Thakur, G. Sharma, A. K. Mishra, Tin (IV) phosphate/poly (gelatin-cl-alginate) nanocomposite: Photocatalysis and fabrication of potentiometric sensor for Pb (II), Materials Today Communications, 14 (2018) 282-93.
[97] D. Pathania, M. Thakur, V. Puri, S. Jasrotia, Fabrication of electrically conductive membrane electrode of gelatin-tin (IV) phosphate nanocomposite for the detection of cobalt (II) ions, Advanced Powder Technology, 29 (2018) 915-24.
[98] M. Thakur, D. Pathania, Sol–gel synthesis of gelatin–zirconium (IV) tungstophosphatenano composite ion exchanger and application for the estimation of Cd (II) ions, Journal of Sol-Gel Science and Technology, (2019) 1-3.
[99] D. Pathania, S. Agarwal, V. K. Gupta, M. Thakur, N. S. Alharbi, Zirconium (IV) phosphate/poly (gelatin-cl-alginate) nanocomposite as ion exchanger and Al3+ potentiometric sensor, International Journal of Electrochemical Science, 13 (2018) 994-1012.
[100] D. Pathania, M. Thakur, S. Jasrotia, S. Agarwal, V. K. Gupta, Gelatin-zirconium dioxide nanocomposite as a Ni (II) selective potentiometric sensor: Heavy Metal Separation and Photocatalysis, International Journal of Electrochemical Science, 12 (2017) 8477-94.
[101] S. Kaushal, R. Badru, P. Singh, S. Kumar, S. K. Mittal, Nanocomposite zirconium phosphoborate ion-exchanger incorporating carbon nanotubes with photocatalytic activity, Separation Science and Technology, 51 (2016) 2896-902.