Perovskites based Nano Heterojunctions for Photocatalytic Pollutant Removal


Perovskites based Nano Heterojunctions for Photocatalytic Pollutant Removal

Sunil Kumar, Amit Kumar, Gaurav Sharma, Pooja Dhiman, Genene T. Mola

The development of new generation photocatalytic materials used for the betterment of human as well as environment. Perovskites and perovskites related nano-hetero-junction shows great interest for photocatalytic organic and inorganic pollutant removal. This chapter discusses its crystalline structures varying from cubic (high symmetry) to triclinic (very low symmetry). Various methods have been utilized for synthesis of perovskites such as sol-gel, hydrothermal, vapor deposition methods, solid-state reaction routs from oxide and high pressure technique. The first technique is used for the synthesis of perovskite is ceramic route in which the mixture of oxide was treated at high temperature and processed later by ceramic powder method. Various photocatalyst such as nitrides, sulphides, phosphides, oxide and mixed oxide are employed for photocatalytic water splitting or hydrogen generation. Future perspectives of perovskite-related photocatalyst are included in this chapter.

Perovskites, Nano-Hetero-Junction, Sol-Gel, Hydrothermal, Ceramic Route, Hydrogen Generation

Published online 4/1/2021, 45 pages

Citation: Sunil Kumar, Amit Kumar, Gaurav Sharma, Pooja Dhiman, Genene T. Mola, Perovskites based Nano Heterojunctions for Photocatalytic Pollutant Removal, Materials Research Foundations, Vol. 100, pp 208-252, 2021


Part of the book on Photocatalysis

[1] S. Garcia-Segura, E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 31 (2017) 1-35.
[2] Z. Shi, A. Jayatissa, Perovskites-based solar cells: A review of recent progress, materials and processing methods, Materials 11 (2018) 729.
[3] A. Navrotsky, D.J. Weidner, Perovskite: a structure of great interest to geophysics and materials science, Washington DC American Geophysical Union Geophysical Monograph Series 45 (1989).
[4] M. Osako, E. Ito, Thermal diffusivity of MgSiO3 perovskite, Geophys. Res. Lett. 18 (1991) 239-242.
[5] H. Piel, High Tc superconductors for accelerator cavities, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 287 (1990) 294-305.
[6] J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, J. Li, Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis, Acs Catalysis 4 (2014) 2917-2940.
[7] B. Seyfi, M. Baghalha, H. Kazemian, Modified LaCoO3 nano-perovskite catalysts for the environmental application of automotive CO oxidation, Chem. Eng. J. 148 (2009) 306-311.
[8] B. Xu, K. Yin, J. Lin, Y. Xia, X. Wan, J. Yin, X. Bai, J. Du, Z. Liu, Room-temperature ferromagnetism and ferroelectricity in Fe-doped BaTiO3, Physical Review B 79 (2009) 134109.
[9] X. Zhang, J. Zhang, Z. Nie, M. Wang, X. Ren, X.-j. Wang, Enhanced red phosphorescence in nanosized CaTiO3: Pr3+ phosphors, Appl. Phys. Lett. 90 (2007) 151911.
[10] K. Parida, K. Reddy, S. Martha, D. Das, N. Biswal, Fabrication of nanocrystalline LaFeO3: an efficient sol–gel auto-combustion assisted visible light responsive photocatalyst for water decomposition, Int. J. Hydrogen Energy 35 (2010) 12161-12168.
[11] M. Pena, J. Fierro, Chemical structures and performance of perovskite oxides, Chem. Rev. 101 (2001) 1981-2018.
[12] S. Bharathkumar, M. Sakar, S. Balakumar, Versatility of electrospinning in the fabrication of fibrous mat and mesh nanostructures of bismuth ferrite (BiFeO3) and their magnetic and photocatalytic activities, PCCP 17 (2015) 17745-17754.
[13] Y. Jia, C. Wu, D.-H. Kim, B. Lee, S. Rhee, Y.C. Park, C.S. Kim, Q. Wang, C. Liu, Nitrogen doped BiFeO3 with enhanced magnetic properties and photo-Fenton catalytic activity for degradation of bisphenol A under visible light, Chem. Eng. J. 337 (2018) 709-721.
[14] H. Bai, J. Juay, Z. Liu, X. Song, S.S. Lee, D.D. Sun, Hierarchical SrTiO3/TiO2 nanofibers heterostructures with high efficiency in photocatalytic H2 generation, Applied Catalysis B: Environmental 125 (2012) 367-374.
[15] Q. Wang, T. Hisatomi, S.S.K. Ma, Y. Li, K. Domen, Core/shell structured La-and Rh-codoped SrTiO3 as a hydrogen evolution photocatalyst in Z-scheme overall water splitting under visible light irradiation, Chem. Mater. 26 (2014) 4144-4150.
[16] A. Kumar, M. Naushad, A. Rana, G. Sharma, A.A. Ghfar, F.J. Stadler, M.R. Khan, ZnSe-WO3 nano-hetero-assembly stacked on Gum ghatti for photo-degradative removal of Bisphenol A: Symbiose of adsorption and photocatalysis, Int. J. Biol. Macromol. 104 (2017) 1172-1184.
[17] X. Lü, J. Xie, H. Shu, J. Liu, C. Yin, J. Lin, Microwave-assisted synthesis of nanocrystalline YFeO3 and study of its photoactivity, Materials Science and Engineering: B 138 (2007) 289-292.
[18] M. Asamoto, Y. Iwasaki, S. Yamaguchi, H. Yahiro, Synthesis of perovsite-type oxide catalysts, Ln(Fe, Co)O3 (Ln= La, Pr, Sm, Gd, Dy, Ho, Er, and Yb), from the thermal decomposition of the corresponding cyano complexes, Catal. Today 185 (2012) 230-235.
[19] T. Chen, Z. Zhou, Y. Wang, Surfactant CATB-assisted generation and gas-sensing characteristics of LnFeO3 (Ln= La, Sm, Eu) materials, Sensors and Actuators B: Chemical 143 (2009) 124-131.
[20] S. Thirumalairajan, K. Girija, I. Ganesh, D. Mangalaraj, C. Viswanathan, A. Balamurugan, N. Ponpandian, Controlled synthesis of perovskite LaFeO3 microsphere composed of nanoparticles via self-assembly process and their associated photocatalytic activity, Chem. Eng. J. 209 (2012) 420-428.
[21] L. Ju, Z. Chen, L. Fang, W. Dong, F. Zheng, M. Shen, Sol–gel synthesis and photo‐Fenton‐like catalytic activity of EuFeO3 nanoparticles, J. Am. Ceram. Soc. 94 (2011) 3418-3424.
[22] S. Sun, W. Wang, L. Zhang, M. Shang, Visible light-induced photocatalytic oxidation of phenol and aqueous ammonia in flowerlike Bi2Fe4O9 suspensions, The Journal of Physical Chemistry C 113 (2009) 12826-12831.
[23] D. Weber, CH3NH3PbX3, ein Pb (II)-system mit kubischer perowskitstruktur/CH3NH3PbX3, a Pb (II)-system with cubic perovskite structure, Zeitschrift für Naturforschung B 33 (1978) 1443-1445.
[24] N. Ramadass, ABO3-type oxides—Their structure and properties—A bird’s eye view, Materials Science and Engineering 36 (1978) 231-239.
[25] E. Fatuzzo, W.J. Merz, Ferroelectricity, North-Holland Pub. Co.1967.
[26] J. Haines, J. Rouquette, V. Bornand, M. Pintard, P. Papet, F. Gorelli, Raman scattering studies at high pressure and low temperature: technique and application to the piezoelectric material PbZr0.52Ti0.48O3, Journal of Raman Spectroscopy 34 (2003) 519-523.
[27] J. Shi, L. Guo, ABO3-based photocatalysts for water splitting, Progress in Natural Science: Materials International 22 (2012) 592-615.
[28] T. Zhang, K. Zhao, J. Yu, J. Jin, Y. Qi, H. Li, X. Hou, G. Liu, Photocatalytic water splitting for hydrogen generation on cubic, orthorhombic, and tetragonal KNbO3 microcubes, Nanoscale 5 (2013) 8375-8383.
[29] P. Kanhere, Z. Chen, A review on visible light active perovskite-based photocatalysts, Molecules 19 (2014) 19995-20022.
[30] I. Shein, V. Kozhevnikov, A. Ivanovskii, First-principles study of cubic perovskites SrMO3 (M= Ti, V, Zr and Nb), arXiv preprint cond-mat/0504286 (2005).
[31] S. Thirumalairajan, K. Girija, N.Y. Hebalkar, D. Mangalaraj, C. Viswanathan, N. Ponpandian, Shape evolution of perovskite LaFeO3 nanostructures: a systematic investigation of growth mechanism, properties and morphology dependent photocatalytic activities, RSC Advances 3 (2013) 7549-7561.
[32] T. Takei, R. Haramoto, Q. Dong, N. Kumada, Y. Yonesaki, N. Kinomura, T. Mano, S. Nishimoto, Y. Kameshima, M. Miyake, Photocatalytic activities of various pentavalent bismuthates under visible light irradiation, J. Solid State Chem. 184 (2011) 2017-2022.
[33] K. Van Benthem, C. Elsässer, R. French, Bulk electronic structure of SrTiO 3: experiment and theory, Journal of Applied Physics 90 (2001) 6156-6164.
[34] H. Zhang, G. Chen, X. He, J. Xu, Electronic structure and photocatalytic properties of Ag–La codoped CaTiO3, J. Alloys Compd. 516 (2012) 91-95.
[35] J. Joseph, T. Vimala, V. Sivasubramanian, V. Murthy, Structural investigations on Pb (ZrxT1− x) O3 solid solutions using the X-ray Rietveld method, Journal of materials science 35 (2000) 1571-1575.
[36] W. Dong, D. Wang, L. Jiang, H. Zhu, H. Huang, J. Li, H. Zhao, C. Li, B. Chen, G. Deng, Synthesis of F doping MnTiO3 nanodiscs and their photocatalytic property under visible light, Materials Letters 98 (2013) 265-268.
[37] A. Zaleska-Medynska, A. Malankowska, M. Marchelek, B. Bajorowicz, P. Mazierski, T. Klimczuk, KTaO3-based nanocomposites for air treatment, (2014).
[38] L. Ni, M. Tanabe, H. Irie, A visible-light-induced overall water-splitting photocatalyst: conduction-band-controlled silver tantalate, Chemical Communications 49 (2013) 10094-10096.
[39] H. Wang, F. Wu, H. Jiang, Electronic band structures of ATaO3 (A= Li, Na, and K) from first-principles many-body perturbation theory, The Journal of Physical Chemistry C 115 (2011) 16180-16186.
[40] N. Kumada, N. Kinomura, A. Sleight, Neutron powder diffraction refinement of ilmenite-type bismuth oxides: ABiO3 (A= Na, Ag), Mater. Res. Bull. 35 (2000) 2397-2402.
[41] F.S. Galasso, Structure, properties and preparation of perovskite-type compounds: international series of monographs in solid state physics, Elsevier 2013.
[42] A. Bhalla, R. Guo, R. Roy, The perovskite structure—a review of its role in ceramic science and technology, Mater. Res. Innovations 4 (2000) 3-26.
[43] F. Cordero, F. Trequattrini, F. Craciun, H. Langhammer, D. Quiroga, P. Silva Jr, Probing ferroelectricity in highly conducting materials through their elastic response: Persistence of ferroelectricity in metallic BaTiO3−δ, Physical Review B 99 (2019) 064106.
[44] P. Chen, W. Xu, Y. Gao, P. Holdway, J.H. Warner, M.R. Castell, Thermal Degradation of Monolayer MoS2 on SrTiO3 Supports, The Journal of Physical Chemistry C 123 (2019) 3876-3885.
[45] J. Geusic, H. Marcos, L. Van Uitert, Laser oscillations in Nd‐doped yttrium aluminum, yttrium gallium and gadolinium garnets, Appl. Phys. Lett. 4 (1964) 182-184.
[46] Y. Pan, Q. Su, H. Xu, T. Chen, W. Ge, C. Yang, M. Wu, Synthesis and red luminescence of Pr3+-doped CaTiO3 nanophosphor from polymer precursor, J. Solid State Chem. 174 (2003) 69-73.
[47] K. Dhahri, M. Bejar, E. Dhahri, M. Soares, M. Graça, M. Sousa, M. Valente, Blue-green photoluminescence in BaZrO3− δ powders, Chem. Phys. Lett. 610 (2014) 341-344.
[48] F.P. Sun, Z. Chaudhry, C. Liang, C. Rogers, Truss structure integrity identification using PZT sensor-actuator, J. Intell. Mater. Syst. Struct. 6 (1995) 134-139.
[49] M. Tinkham, Introduction to superconductivity, Courier Corporation2004.
[50] D. Murphy, S. Sunshine, R. Van Dover, R.J. Cava, B. Batlogg, S. Zahurak, L. Schneemeyer, New superconducting cuprate perovskites, Phys. Rev. Lett. 58 (1987) 1888.
[51] J. Schooley, W. Hosler, M.L. Cohen, Superconductivity in Semiconducting SrTiO3, Phys. Rev. Lett. 12 (1964) 474.
[52] C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite, Physical Review B 71 (2005) 060401.
[53] H. Liu, B. Cao, C. O’Connor, Intrinsic magnetism in BaTiO3 with magnetic transition element dopants (Co, Cr, Fe) synthesized by sol-precipitation method, J. Appl. Phys. 109 (2011) 07B516.
[54] N.H. Chan, R. Sharma, D.M. Smyth, Nonstoichiometry in Acceptor‐Doped BaTiO3, J. Am. Ceram. Soc. 65 (1982) 167-170.
[55] D. Segal, Chemical synthesis of ceramic materials, J. Mater. Chem. 7 (1997) 1297-1305.
[56] H. Luo, Y. Wei, H. Jiang, W. Yuan, Y. Lv, J. Caro, H. Wang, Performance of a ceramic membrane reactor with high oxygen flux Ta-containing perovskite for the partial oxidation of methane to syngas, Journal of Membrane Science 350 (2010) 154-160.
[57] M. Reichmann, P.-M. Geffroy, J. Fouletier, N. Richet, T. Chartier, Effect of cation substitution in the A site on the oxygen semi-permeation flux in La0. 5A0. 5Fe0. 7Ga0. 3O3− δ and La0. 5A0. 5Fe0. 7Co0. 3O3− δ dense perovskite membranes with A= Ca, Sr and Ba (part I), J. Power Sources 261 (2014) 175-183.
[58] S. Ohara, A. Kondo, H. Shimoda, K. Sato, H. Abe, M. Naito, Rapid mechanochemical synthesis of fine barium titanate nanoparticles, Mater. Lett. 62 (2008) 2957-2959.
[59] T. Kutty, R. Vivekanandan, Preparation of CaTiO3 fine powders by the hydrothermal method, Mater. Lett. 5 (1987) 79-83.
[60] Y. Zeng, Y. Lin, S. Swartz, Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane, Journal of membrane science 150 (1998) 87-98.
[61] E. Mostafavi, A. Babaei, A. Ataie, Synthesis of nano-structured La0. 6Sr0. 4Co0. 2Fe0. 8O3 perovskite by co-precipitation method, Journal of Ultrafine Grained and Nanostructured Materials 48 (2015) 45-52.
[62] A. Kumar, G. Sharma, M. Naushad, A.a.H. Al-Muhtaseb, A. García-Peñas, G.T. Mola, C. Si, F.J. Stadler, Bio-inspired and biomaterials-based hybrid photocatalysts for environmental detoxification: A review, Chemical Engineering Journal 382 (2020) 122937.
[63] A. Kumar, A. Rana, G. Sharma, M. Naushad, P. Dhiman, A. Kumari, F.J. Stadler, Recent advances in nano-Fenton catalytic degradation of emerging pharmaceutical contaminants, Journal of Molecular Liquids 290 (2019) 111177.
[64] Q. Sun, Y. Hong, Q. Liu, L. Dong, Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2, Applied Surface Science 430 (2018) 399-406.
[65] K. Maeda, Photocatalytic water splitting using semiconductor particles: history and recent developments, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 12 (2011) 237-268.
[66] H. Zhang, G. Chen, Y. Li, Y. Teng, Electronic structure and photocatalytic properties of copper-doped CaTiO3, International Journal of Hydrogen Energy 35 (2010) 2713-2716.
[67] Y. Qu, W. Zhou, H. Fu, Porous Cobalt Titanate Nanorod: A New Candidate for Visible Light‐Driven Photocatalytic Water Oxidation, ChemCatChem 6 (2014) 265-270.
[68] Y. Qu, W. Zhou, Z. Ren, S. Du, X. Meng, G. Tian, K. Pan, G. Wang, H. Fu, Facile preparation of porous NiTiO3 nanorods with enhanced visible-light-driven photocatalytic performance, Journal of Materials Chemistry 22 (2012) 16471-16476.
[69] Y.J. Kim, B. Gao, S.Y. Han, M.H. Jung, A.K. Chakraborty, T. Ko, C. Lee, W.I. Lee, Heterojunction of FeTiO3 nanodisc and TiO2 nanoparticle for a novel visible light photocatalyst, The Journal of Physical Chemistry C 113 (2009) 19179-19184.
[70] M.S. Hassan, T. Amna, M.-S. Khil, Synthesis of high aspect ratio CdTiO3 nanofibers via electrospinning: characterization and photocatalytic activity, Ceram. Int. 40 (2014) 423-427.
[71] L. Li, Y. Zhang, A.M. Schultz, X. Liu, P.A. Salvador, G.S. Rohrer, Visible light photochemical activity of heterostructured PbTiO3–TiO2 core–shell particles, Catalysis Science & Technology 2 (2012) 1945-1952.
[72] S.N. Tijare, M.V. Joshi, P.S. Padole, P.A. Mangrulkar, S.S. Rayalu, N.K. Labhsetwar, Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO3 perovskite, Int. J. Hydrogen Energy 37 (2012) 10451-10456.
[73] P. Dhanasekaran, N. Gupta, Factors affecting the production of H2 by water splitting over a novel visible-light-driven photocatalyst GaFeO3, Int. J. Hydrogen Energy 37 (2012) 4897-4907.
[74] P. Tang, H. Chen, F. Cao, G. Pan, Magnetically recoverable and visible-light-driven nanocrystalline YFeO3 photocatalysts, Catalysis Science & Technology 1 (2011) 1145-1148.
[75] J. Liu, G. Chen, Z. Li, Z. Zhang, Hydrothermal synthesis and photocatalytic properties of ATaO3 and ANbO3 (A= Na and K), Int. J. Hydrogen Energy 32 (2007) 2269-2272.
[76] H. Shi, X. Li, H. Iwai, Z. Zou, J. Ye, 2-Propanol photodegradation over nitrogen-doped NaNbO3 powders under visible-light irradiation, J. Phys. Chem. Solids 70 (2009) 931-935.
[77] R. Wang, Y. Zhu, Y. Qiu, C.-F. Leung, J. He, G. Liu, T.-C. Lau, Synthesis of nitrogen-doped KNbO3 nanocubes with high photocatalytic activity for water splitting and degradation of organic pollutants under visible light, Chemical Engineering Journal 226 (2013) 123-130.
[78] R. Konta, H. Kato, H. Kobayashi, A. Kudo, Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates, Physical Chemistry Chemical Physics 5 (2003) 3061-3065.
[79] W. Jia, H. Dong, J. Zhao, S. Dang, Z. Zhang, T. Li, X. Liu, B. Xu, p-Cu2O/n-ZnO heterojunction fabricated by hydrothermal method, Applied Physics A 109 (2012) 751-756.
[80] Y. Sang, L. Kuai, C. Chen, Z. Fang, B. Geng, Fabrication of a visible-light-driven plasmonic photocatalyst of AgVO3@ AgBr@ Ag nanobelt heterostructures, ACS applied materials & interfaces 6 (2014) 5061-5068.
[81] J. Wang, X. Wang, B. Liu, X. Li, M. Cao, Facile synthesis of SrNbO2N nanoparticles with excellent visible-light photocatalytic performances, Materials Letters 152 (2015) 131-134.
[82] A. Kasahara, K. Nukumizu, G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Photoreactions on LaTiO2N under visible light irradiation, The Journal of Physical Chemistry A 106 (2002) 6750-6753.
[83] R. Aguiar, A. Kalytta, A. Reller, A. Weidenkaff, S.G. Ebbinghaus, Photocatalytic decomposition of acetone using LaTi(O,N)3 nanoparticles under visible light irradiation, Journal of Materials Chemistry 18 (2008) 4260-4265.
[84] M. Higashi, R. Abe, T. Takata, K. Domen, Photocatalytic overall water splitting under visible light using ATaO2N (A= Ca, Sr, Ba) and WO3 in a IO3−/I− shuttle redox mediated system, Chemistry of Materials 21 (2009) 1543-1549.
[85] B. Siritanaratkul, K. Maeda, T. Hisatomi, K. Domen, Synthesis and photocatalytic activity of perovskite niobium oxynitrides with wide visible‐light absorption bands, ChemSusChem 4 (2011) 74-78.
[86] B. Anitha, L.G. Devi, Study of reaction dynamics of photocatalytic degradation of 4-chlorophenol using SrTiO3, sulfur doped SrTiO3, silver metallized SrTiO3 and silver metallized sulfur doped SrTiO3 catalysts: Detailed analysis of kinetic results, Surfaces and Interfaces 16 (2019) 50-58.
[87] O. Amiri, K. Salar, P. Othman, T. Rasul, D. Faiq, M. Saadat, Purification of wastewater by the piezo-catalyst effect of PbTiO3 nanostructures under ultrasonic vibration, Journal of Hazardous Materials (2020) 122514.
[88] A. Shawky, R. Mohamed, I. Mkhalid, M. Youssef, N. Awwad, Visible light-responsive Ag/LaTiO3 nanowire photocatalysts for efficient elimination of atrazine herbicide in water, Journal of Molecular Liquids 299 (2020) 112163.
[89] Y. Li, H. Sun, N. Wang, W. Fang, Z. Li, Effects of pH and temperature on photocatalytic activity of PbTiO3 synthesized by hydrothermal method, Solid state sciences 37 (2014) 18-22.
[90] T.B. Wermuth, S. Arcaro, J. Venturini, T.M.H. Ribeiro, A.d.A.L. Rodriguez, E.L. Machado, T.F. de Oliveira, S.E.F. de Oliveira, M.N. Baibich, C.P. Bergmann, Microwave-synthesized KNbO3 perovskites: photocatalytic pathway on the degradation of rhodamine B, Ceramics International 45 (2019) 24137-24145.
[91] H. Zhang, C. Wei, Y. Huang, J. Wang, Preparation of cube micrometer potassium niobate (KNbO3) by hydrothermal method and sonocatalytic degradation of organic dye, Ultrasonics sonochemistry 30 (2016) 61-69.
[92] M. Ismael, M. Wark, Perovskite-type LaFeO3: photoelectrochemical properties and photocatalytic degradation of organic pollutants under visible light irradiation, Catalysts 9 (2019) 342.
[93] W. Meng, Y. Wang, Y. Zhang, C. Liu, Z. Wang, Z. Song, B. Xu, D.C. Tsang, F. Qi, A. Ikhlaq, Degradation Rhodamine B dye wastewater by sulfate radical-based visible light-fenton mediated by LaFeO3: Reaction mechanism and empirical modeling, Journal of the Taiwan Institute of Chemical Engineers (2020).
[94] L. Lozano-Sánchez, S. Obregón, L. Díaz-Torres, S.-W. Lee, V. Rodríguez-González, Visible and near-infrared light-driven photocatalytic activity of erbium-doped CaTiO3 system, Journal of Molecular Catalysis A: Chemical 410 (2015) 19-25.
[95] B. Boruah, R. Gupta, J.M. Modak, G. Madras, Novel insights into the properties of AgBiO3 photocatalyst and its application in immobilized state for 4-nitrophenol degradation and bacteria inactivation, Journal of photochemistry and photobiology A: Chemistry 373 (2019) 105-115.
[96] M. Bradha, T. Vijayaraghavan, S. Suriyaraj, R. Selvakumar, A.M. Ashok, Synthesis of photocatalytic La(1–x)AxTiO3.5–δ (A= Ba, Sr, Ca) nano perovskites and their application for photocatalytic oxidation of congo red dye in aqueous solution, Journal of Rare Earths 33 (2015) 160-167.
[97] A. Shawky, M. Alhaddad, K. Al-Namshah, R. Mohamed, N.S. Awwad, Synthesis of Pt-decorated CaTiO3 nanocrystals for efficient photoconversion of nitrobenzene to aniline under visible light, Journal of Molecular Liquids 304 (2020) 112704.
[98] S. Alkaykh, A. Mbarek, E.E. Ali-Shattle, Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation, Heliyon 6 (2020) e03663.
[99] C. Luo, J. Zhao, Y. Li, W. Zhao, Y. Zeng, C. Wang, Photocatalytic CO2 reduction over SrTiO3: Correlation between surface structure and activity, Applied Surface Science 447 (2018) 627-635.
[100] J. Jang, J. Lee, P.H. Borse, K. Lim, O. Jung, E. Jeong, M. Won, H. Kim, Platinum nanoparticle co-catalyst-induced improved photoelectrical properties in a chromium-doped SrTiO3 photocatalyst, Journal of the Korean Physical Society 55 (2009) 2470-2475.
[101] S. Wan, M. Chen, M. Ou, Q. Zhong, Plasmonic Ag nanoparticles decorated SrTiO3 nanocubes for enhanced photocatalytic CO2 reduction and H2 evolution under visible light irradiation, Journal of CO2 Utilization 33 (2019) 357-364.
[102] P. Demircivi, B. Gulen, E.B. Simsek, D. Berek, Enhanced photocatalytic degradation of tetracycline using hydrothermally synthesized carbon fiber decorated BaTiO3, Materials Chemistry and Physics 241 (2020) 122236.
[103] X. Yu, J. Zhou, Z. Wang, W. Cai, Preparation of visible light-responsive AgBiO3 bactericide and its control effect on the Microcystis aeruginosa, Journal of Photochemistry and Photobiology B: Biology 101 (2010) 265-270.
[104] P.S. Tang, H. Sun, F. Cao, J.T. Yang, S.L. Ni, H.F. Chen, Visible-light driven LaNiO3 nanosized photocatalysts prepared by a sol-gel process, Advanced Materials Research, Trans Tech Publ, 2011, pp. 83-87.
[105] J. Singh, S. Uma, Efficient photocatalytic degradation of organic compounds by ilmenite AgSbO3 under visible and UV light irradiation, The Journal of Physical Chemistry C 113 (2009) 12483-12488.
[106] K. Parida, A. Nashim, S.K. Mahanta, Visible-light driven Gd2Ti2O7/GdCrO3 composite for hydrogen evolution, Dalton Transactions 40 (2011) 12839-12845.
[107] H. Kato, K. Asakura, A. Kudo, Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure, J. Am. Chem. Soc. 125 (2003) 3082-3089.
[108] A. Gubanov, Theory of the contact of two semiconductors of the same type of conductivity, Zh. Tekh. Fiz 21 (1951) 304.
[109] S.J. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting–a critical review, Energy & Environmental Science 8 (2015) 731-759.
[110] A. Kumar, A. Kumar, G. Sharma, A.a.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, F.J. Stadler, Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment, Chemical Engineering Journal 334 (2018) 462-478.
[111] S.K. Sharma, A. Kumar, G. Sharma, M. Naushad, D.-V.N. Vo, M. Alam, F.J. Stadler, Fe3O4 mediated Z-scheme BiVO4/Cr2V4O13 strongly coupled nano-heterojunction for rapid degradation of fluoxetine under visible light, Materials Letters 281 (2020) 128650.
[112] A. Kumar, G. Sharma, M. Naushad, T. Ahamad, R.C. Veses, F.J. Stadler, Highly visible active Ag2CrO4/Ag/BiFeO3@RGO nano-junction for photoreduction of CO2 and photocatalytic removal of ciprofloxacin and bromate ions: The triggering effect of Ag and RGO, Chemical Engineering Journal 370 (2019) 148-165.
[113] N.X. Huy, D.T.T. Phuong, N. Van Minh, A study on structure, morphology, optical properties, and photocatalytic ability of SrTiO3/TiO2 granular composites, Physica B: Condensed Matter 532 (2018) 37-41.
[114] S. Jin, G. Dong, J. Luo, F. Ma, C. Wang, Improved photocatalytic NO removal activity of SrTiO3 by using SrCO3 as a new co-catalyst, Applied Catalysis B: Environmental 227 (2018) 24-34.
[115] T. Kanagaraj, S. Thiripuranthagan, Photocatalytic activities of novel SrTiO3–BiOBr heterojunction catalysts towards the degradation of reactive dyes, Applied Catalysis B: Environmental 207 (2017) 218-232.
[116] H. Che, J. Chen, K. Huang, W. Hu, H. Hu, X. Liu, G. Che, C. Liu, W. Shi, Construction of SrTiO3/Bi2O3 heterojunction towards to improved separation efficiency of charge carriers and photocatalytic activity under visible light, Journal of Alloys and Compounds 688 (2016) 882-890.
[117] J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang, D.D. Sun, Self‐assembling TiO2 nanorods on large graphene oxide sheets at a two‐phase interface and their anti‐recombination in photocatalytic applications, Adv. Funct. Mater. 20 (2010) 4175-4181.
[118] M.S.A. Sher Shah, A.R. Park, K. Zhang, J.H. Park, P.J. Yoo, Green synthesis of biphasic TiO2–reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity, ACS applied materials & interfaces 4 (2012) 3893-3901.
[119] L. Yue, S. Wang, G. Shan, W. Wu, L. Qiang, L. Zhu, Novel MWNTs–Bi2WO6 composites with enhanced simulated solar photoactivity toward adsorbed and free tetracycline in water, Applied Catalysis B: Environmental 176 (2015) 11-19.
[120] Y.-n. Zhang, N. Qin, J. Li, S. Han, P. Li, G. Zhao, Facet exposure-dependent photoelectrocatalytic oxidation kinetics of bisphenol A on nanocrystalline {001} TiO2/carbon aerogel electrode, Applied Catalysis B: Environmental 216 (2017) 30-40.
[121] L. Shi, Y. Yin, L.-C. Zhang, S. Wang, M. Sillanpää, H. Sun, Design and engineering heterojunctions for the photoelectrochemical monitoring of environmental pollutants: A review, Applied Catalysis B: Environmental (2019).
[122] W. Hou, S.B. Cronin, A review of surface plasmon resonance‐enhanced photocatalysis, Adv. Funct. Mater. 23 (2013) 1612-1619.
[123] A. Tanaka, K. Fuku, T. Nishi, K. Hashimoto, H. Kominami, Functionalization of Au/TiO2 plasmonic photocatalysts with Pd by formation of a core–shell structure for effective dechlorination of chlorobenzene under irradiation of visible light, The Journal of Physical Chemistry C 117 (2013) 16983-16989.
[124] A. Kumar, S.K. Sharma, G. Sharma, H. Ala’a, M. Naushad, A.A. Ghfar, F.J. Stadler, Wide spectral degradation of Norfloxacin by Ag@BiPO4/BiOBr/BiFeO3 nano-assembly: Elucidating the photocatalytic mechanism under different light sources, Journal of hazardous materials 364 (2019) 429-440.
[125] A. Lagesson, M. Saaristo, T. Brodin, J. Fick, J. Klaminder, J. Martin, B. Wong, Fish on steroids: temperature-dependent effects of 17β-trenbolone on predator escape, boldness, and exploratory behaviors, Environmental pollution 245 (2019) 243-252.
[126] Q. Liang, J. Jin, C. Liu, S. Xu, Z. Li, Constructing a novel pn heterojunction photocatalyst LaFeO3/g-C3N4 with enhanced visible-light-driven photocatalytic activity, J. Alloys Compd. 709 (2017) 542-548.
[127] A. Kumar, A. Rana, G. Sharma, M. Naushad, A.a.H. Al-Muhtaseb, C. Guo, A. Iglesias-Juez, F.J. Stadler, High-performance photocatalytic hydrogen production and degradation of levofloxacin by wide spectrum-responsive Ag/Fe3O4 bridged SrTiO3/g-C3N4 plasmonic nanojunctions: joint effect of Ag and Fe3O4, ACS applied materials & interfaces 10 (2018) 40474-40490.
[128] H. Kooshki, A. Sobhani-Nasab, M. Eghbali-Arani, F. Ahmadi, V. Ameri, M. Rahimi-Nasrabadi, Eco-friendly synthesis of PbTiO3 nanoparticles and PbTiO3/carbon quantum dots binary nano-hybrids for enhanced photocatalytic performance under visible light, Separation and Purification Technology 211 (2019) 873-881.
[129] V. Corral-Flores, D. Bueno-Baques, R. Ziolo, Synthesis and characterization of novel CoFe2O4–BaTiO3 multiferroic core–shell-type nanostructures, Acta Mater. 58 (2010) 764-769.
[130] F. Wang, T. Wang, J. Lang, Y. Su, X. Wang, Improved photocatalytic activity and durability of AgTaO3/AgBr heterojunction: the relevance of phase and electronic structure, J. Mol. Catal. A: Chem. 426 (2017) 52-59.
[131] K.S. Ranjith, T. Uyar, Conscientious Design of Zn-S/Ti-N Layer by Transformation of ZnTiO3 on Electrospun ZnTiO3@TiO2 Nanofibers: Stability and Reusable Photocatalytic Performance under Visible Irradiation, ACS Sustainable Chemistry & Engineering 6 (2018) 12980-12992.
[132] Y. Yang, Y. Liu, B. Huang, R. Zhang, Y. Dai, X. Qin, X. Zhang, Enhanced visible photocatalytic activity of a BiVO4@β-AgVO3 composite synthesized by an in situ growth method, RSC Advances 4 (2014) 20058-20061.
[133] P. Dhiman, T. Mehta, A. Kumar, G. Sharma, M. Naushad, T. Ahamad, G.T. Mola, Mg0.5NixZn0.5-xFe2O4 spinel as a sustainable magnetic nano-photocatalyst with dopant driven band shifting and reduced recombination for visible and solar degradation of Reactive Blue-19, Advanced Powder Technology (2020).
[134] A. Kumar, G. Sharma, M. Naushad, A.a.H. Al-Muhtaseb, A. Kumar, I. Hira, T. Ahamad, A.A. Ghfar, F.J. Stadler, Visible photodegradation of ibuprofen and 2,4-D in simulated waste water using sustainable metal free-hybrids based on carbon nitride and biochar, Journal of Environmental Management 231 (2019) 1164-1175.
[135] A. Kumar, G. Sharma, A. Kumari, C. Guo, M. Naushad, D.-V.N. Vo, J. Iqbal, F.J. Stadler, Construction of dual Z-scheme g-C3N4/Bi4Ti3O12/Bi4O5I2 heterojunction for visible and solar powered coupled photocatalytic antibiotic degradation and hydrogen production: Boosting via I−/I3− and Bi3+/Bi5+ redox mediators, Applied Catalysis B: Environmental 284 (2021) 119808.
[136] A. Kumar, S.K. Sharma, G. Sharma, C. Guo, D.-V.N. Vo, J. Iqbal, M. Naushad, F.J. Stadler, Silicate glass matrix@Cu2O/Cu2V2O7 p-n heterojunction for enhanced visible light photo-degradation of sulfamethoxazole: High charge separation and interfacial transfer, Journal of Hazardous Materials 402 (2021) 123790.
[137] S.K. Sharma, A. Kumar, G. Sharma, F.J. Stadler, M. Naushad, A.A. Ghfar, T. Ahamad, LaTiO2N/Bi2S3 Z-scheme nano heterostructures modified by rGO with high interfacial contact for rapid photocatalytic degradation of tetracycline, Journal of Molecular Liquids 311 (2020) 113300.
[138] B. Huang, C. Lei, C. Wei, G. Zeng, Chlorinated volatile organic compounds (Cl-VOCs) in environment—sources, potential human health impacts, and current remediation technologies, Environment international 71 (2014) 118-138.
[139] H. Huang, H. Huang, Q. Feng, G. Liu, Y. Zhan, M. Wu, H. Lu, Y. Shu, D.Y. Leung, Catalytic oxidation of benzene over Mn modified TiO2/ZSM-5 under vacuum UV irradiation, Applied Catalysis B: Environmental 203 (2017) 870-878.
[140] J. Guo, S. Ouyang, P. Li, Y. Zhang, T. Kako, J. Ye, A new heterojunction Ag3PO4/Cr-SrTiO3 photocatalyst towards efficient elimination of gaseous organic pollutants under visible light irradiation, Applied Catalysis B: Environmental 134 (2013) 286-292.
[141] Y. Huo, Y. Jin, Y. Zhang, Citric acid assisted solvothermal synthesis of BiFeO3 microspheres with high visible-light photocatalytic activity, J. Mol. Catal. A: Chem. 331 (2010) 15-20.
[142] J. Zhuang, Q. Tian, S. Lin, W. Yang, L. Chen, P. Liu, Precursor morphology-controlled formation of perovskites CaTiO3 and their photo-activity for As (III) removal, Applied Catalysis B: Environmental 156 (2014) 108-115.
[143] H. Dang, D.V. Trinh, N.K. Nguyen, T.T. Le, D.D. Nguyen, H.V. Tran, M.-H. Phan, C.D. Huynh, Enhanced Photocatalytic Activity for Degradation of Organic Dyes Using Magnetite CoFe2O4/BaTiO3 Composite, Journal of Nanoscience and Nanotechnology 18 (2018) 7850-7857.
[144] C. Kang, K. Xiao, Z. Yao, Y. Wang, D. Huang, L. Zhu, F. Liu, T. Tian, Hydrothermal synthesis of graphene-ZnTiO3 nanocomposites with enhanced photocatalytic activities, Res. Chem. Intermed. 44 (2018) 6621-6636.
[145] T. Montalvo-Herrera, D. Sánchez-Martínez, D. Hernandez-Uresti, L.M. Torres-Martínez, The role of the reactive oxygen species and the influence of KBiO3 synthesis method in the photodegradation of methylene blue and ciprofloxacin, Reaction Kinetics, Mechanisms and Catalysis 126 (2019) 561-573.
[146] P. Chen, P. Xing, Z. Chen, X. Hu, H. Lin, L. Zhao, Y. He, In-situ synthesis of AgNbO3/g-C3N4 photocatalyst via microwave heating method for efficiently photocatalytic H2 generation, Journal of colloid and interface science 534 (2019) 163-171.
[147] L. Cheng, Y. Kang, Synthesis of NaBiO3/Bi2O3 heterojunction-structured photocatalyst and its photocatalytic mechanism, Mater. Lett. 117 (2014) 94-97.
[148] R.R. Ray, Adverse hematological effects of hexavalent chromium: an overview, Interdisciplinary toxicology 9 (2016) 55-65.
[149] P. Dhiman, S. Sharma, A. Kumar, M. Shekh, G. Sharma, M. Naushad, Rapid visible and solar photocatalytic Cr(VI) reduction and electrochemical sensing of dopamine using solution combustion synthesized ZnO–Fe2O3 nano heterojunctions: Mechanism Elucidation, Ceramics International (2020).
[150] G. Sharma, A. Kumar, S. Sharma, A.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, T. Ahamad, F.J. Stadler, Fabrication and characterization of novel Fe0@Guar gum-crosslinked-soya lecithin nanocomposite hydrogel for photocatalytic degradation of methyl violet dye, Separation and Purification Technology 211 (2019) 895-908.
[151] Y. Zhang, W. Cui, W. An, L. Liu, Y. Liang, Y. Zhu, Combination of photoelectrocatalysis and adsorption for removal of bisphenol A over TiO2-graphene hydrogel with 3D network structure, Applied Catalysis B: Environmental 221 (2018) 36-46.
[152] G. Sharma, Z.A. ALOthman, A. Kumar, S. Sharma, S.K. Ponnusamy, M. Naushad, Fabrication and characterization of a nanocomposite hydrogel for combined photocatalytic degradation of a mixture of malachite green and fast green dye, Nanotechnology for Environmental Engineering 2 (2017) 4.
[153] J. Li, F. Wang, L. Meng, M. Han, Y. Guo, C. Sun, Controlled synthesis of BiVO4/SrTiO3 composite with enhanced sunlight-driven photofunctions for sulfamethoxazole removal, Journal of colloid and interface science 485 (2017) 116-122.
[154] X. Yu, Y. Lin, H. Liu, C. Yang, Y. Peng, C. Du, S. Wu, X. Li, Y. Zhong, Photocatalytic performances of heterojunction catalysts of silver phosphate modified by PANI and Cr-doped SrTiO3 for organic pollutant removal from high salinity wastewater, Journal of Colloid and Interface Science 561 (2020) 379-395.
[155] X.-J. Wen, C.-G. Niu, L. Zhang, C. Liang, G.-M. Zeng, An in depth mechanism insight of the degradation of multiple refractory pollutants via a novel SrTiO3/BiOI heterojunction photocatalysts, Journal of Catalysis 356 (2017) 283-299.
[156] P. Eghbali, A. Hassani, B. Sündü, Ö. Metin, Strontium titanate nanocubes assembled on mesoporous graphitic carbon nitride (SrTiO3/mpg-C3N4): preparation, characterization and catalytic performance, Journal of Molecular Liquids 290 (2019) 111208.
[157] N. Eskandari, G. Nabiyouni, S. Masoumi, D. Ghanbari, Preparation of a new magnetic and photo-catalyst CoFe2O4–SrTiO3 perovskite nanocomposite for photo-degradation of toxic dyes under short time visible irradiation, Composites Part B: Engineering 176 (2019) 107343.
[158] H. Ramezanalizadeh, F. Manteghi, Design and development of a novel BiFeO3/CuWO4 heterojunction with enhanced photocatalytic performance for the degradation of organic dyes, Journal of Photochemistry and Photobiology A: Chemistry 338 (2017) 60-71.
[159] X. Zhang, X. Wang, J. Chai, S. Xue, R. Wang, L. Jiang, J. Wang, Z. Zhang, D.D. Dionysiou, Construction of novel symmetric double Z-scheme BiFeO3/CuBi2O4/BaTiO3 photocatalyst with enhanced solar-light-driven photocatalytic performance for degradation of norfloxacin, Applied Catalysis B: Environmental (2020) 119017.
[160] X. Hu, W. Wang, G. Xie, H. Wang, X. Tan, Q. Jin, D. Zhou, Y. Zhao, Ternary assembly of g-C3N4/graphene oxide sheets/BiFeO3 heterojunction with enhanced photoreduction of Cr (VI) under visible-light irradiation, Chemosphere 216 (2019) 733-741.
[161] Z. Qu, Z. Liu, A. Wu, C. Piao, S. Li, J. Wang, Y. Song, Preparation of a coated Z-scheme and H-type SrTiO3/(BiFeO3@ ZnS) composite photocatalyst and application in degradation of 2, 4-dichlorophenol with simultaneous conversion of Cr (VI), Separation and Purification Technology 240 (2020) 116653.
[162] D. Chen, B. Li, Q. Pu, X. Chen, G. Wen, Z. Li, Preparation of Ag-AgVO3/g-C3N4 composite photo-catalyst and degradation characteristics of antibiotics, Journal of Hazardous Materials 373 (2019) 303-312.
[163] Z.-d. Lei, J.-j. Wang, L. Wang, X.-y. Yang, G. Xu, L. Tang, Efficient photocatalytic degradation of ibuprofen in aqueous solution using novel visible-light responsive graphene quantum dot/AgVO3 nanoribbons, Journal of Hazardous Materials 312 (2016) 298-306.
[164] L. Zhang, X. Yuan, H. Wang, X. Chen, Z. Wu, Y. Liu, S. Gu, Q. Jiang, G. Zeng, Facile preparation of an Ag/AgVO3/BiOCl composite and its enhanced photocatalytic behavior for methylene blue degradation, RSC advances 5 (2015) 98184-98193.
[165] R. Abazari, A.R. Mahjoub, Potential applications of magnetic β-AgVO3/ZnFe2O4 nanocomposites in dyes, photocatalytic degradation, and catalytic thermal decomposition of ammonium perchlorate, Industrial & engineering chemistry research 56 (2017) 623-634.
[166] A.Y. Malkhasian, Synthesis and characterization of Pt/AgVO3 nanowires for degradation of atrazine using visible light irradiation, Journal of Alloys and Compounds 649 (2015) 394-399.
[167] S. Song, K. Wu, H. Wu, J. Guo, L. Zhang, Synthesis of Z-scheme multi-shelled ZnO/AgVO3 spheres as photocatalysts for the degradation of ciprofloxacin and reduction of chromium (VI), Journal of Materials Science 55 (2020) 4987-5007.
[168] M.F.R. Samsudin, C. Frebillot, Y. Kaddoury, S. Sufian, W.-J. Ong, Bifunctional Z-Scheme Ag/AgVO3/g-C3N4 photocatalysts for expired ciprofloxacin degradation and hydrogen production from natural rainwater without using scavengers, Journal of Environmental Management 270 (2020) 110803.
[169] L. Cao, Novel MoS2-modified AgVO3 composites with remarkably enhanced photocatalytic activity under visible-light irradiation, Materials Letters 188 (2017) 252-256.
[170] R. Ran, X. Meng, Z. Zhang, Facile preparation of novel graphene oxide-modified Ag2O/Ag3VO4/AgVO3 composites with high photocatalytic activities under visible light irradiation, Applied Catalysis B: Environmental 196 (2016) 1-15.
[171] X. Chen, L. Di, H. Yang, T. Xian, A magnetically recoverable CaTiO3/reduced graphene oxide/NiFe2O4 nanocomposite for the dye degradation under simulated sunlight irradiation, Journal of the Ceramic Society of Japan 127 (2019) 221-231.
[172] A. Kumar, C. Schuerings, S. Kumar, A. Kumar, V. Krishnan, Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation, Beilstein journal of nanotechnology 9 (2018) 671-685.
[173] J. Qiao, M. Lv, Z. Qu, M. Zhang, X. Cui, D. Wang, C. Piao, Z. Liu, J. Wang, Y. Song, Preparation of a novel Z-scheme KTaO3/FeVO4/Bi2O3 nanocomposite for efficient sonocatalytic degradation of ceftriaxone sodium, Science of The Total Environment 689 (2019) 178-192.