Graphitic Carbon Nitride based Photocatalytic Systems for High Performance Hydrogen Production: A Review


Graphitic Carbon Nitride based Photocatalytic Systems for High Performance Hydrogen Production: A Review

Shweta Sharma, Amit Kumar, Gaurav Sharma, Anu Kumari, Mu. Naushad

Pectin cerium(IV) iodate (PcCeI) and cerium(IV) iodate (CeI) cation ion exchange materials were synthesized via sol–gel methods. The materials were characterized by using Fourier transform infrared spectroscopy, X-ray diffractometer, thermogravimetric analysis, and scanning electron microscopy. The ion exchange capacity (IEC), thermal stability, distribution coefficient (Kd), and pH titrations were investigated to recognize the cation exchange behavior of the materials. The IEC of pectin-cerium(IV) iodate (PcCeI and cerium(IV) iodate CeI were reported as 1.80 meq/g and 0.92 meq/g, respectively. The higher distribution coefficient values of 250.01 and 219.14 mg/L confirmed the selectivity of pectin-cerium(IV) iodate hybrid ion exchanger for As3+ and Zn2+. The antibacterial activity of synthesized ion exchangers was explored for E. coli bacteria and observed relatively higher for PcCeI as compared to CeI.

g-C3N4, Visible Light, Hydrogen Generation, Heterojunction, Photocatalytic

Published online 4/1/2021, 32 pages

Citation: Shweta Sharma, Amit Kumar, Gaurav Sharma, Anu Kumari, Mu. Naushad, Graphitic Carbon Nitride based Photocatalytic Systems for High Performance Hydrogen Production: A Review, Materials Research Foundations, Vol. 100, pp 161-192, 2021


Part of the book on Photocatalysis

[1] I. Staffell, D. Scamman, A.V. Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah, K.R. Ward, The role of hydrogen and fuel cells in the global energy system, Energy & Environmental Science 12 (2019) 463-491.
[2] N.S. Lewis, D.G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proceedings of the National Academy of Sciences 103 (2006) 15729-15735.
[3] I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability, International Journal of Hydrogen Energy 40 (2015) 11094-11111.
[4] C. Acar, I. Dincer, Review and evaluation of hydrogen production options for better environment, Journal of Cleaner Production 218 (2019) 835-849.
[5] D. Pathania, G. Sharma, A. Kumar, N. Kothiyal, Fabrication of nanocomposite polyaniline zirconium (IV) silicophosphate for photocatalytic and antimicrobial activity, Journal of alloys and compounds 588 (2014) 668-675.
[6] R. Malik, V.K. Tomer, State-of-the-art review of morphological advancements in graphitic carbon nitride (g-CN) for sustainable hydrogen production, Renewable and Sustainable Energy Reviews 135 (2017) 110235.
[7] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, nature 238 (1972) 37.
[8] D.Y. Leung, X. Fu, C. Wang, M. Ni, M.K. Leung, X. Wang, X. Fu, Hydrogen production over titania‐based photocatalysts, ChemSusChem 3 (2010) 681-694.
[9] G. Ma, T. Hisatomi, K. Domen, Semiconductors for photocatalytic and photoelectrochemical solar water splitting, From molecules to materials, Springer2015, pp. 1-56.
[10] J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts, Applied surface science 391 (2017) 72-123.
[11] A. Kumar, G. Sharma, M. Naushad, H. Ala’a, A. Kumar, I. Hira, T. Ahamad, A.A. Ghfar, F.J. Stadler, Visible photodegradation of ibuprofen and 2, 4-D in simulated waste water using sustainable metal free-hybrids based on carbon nitride and biochar, Journal of environmental management 231 (2019) 1164-1175.
[12] A. Kumar, S.K. Sharma, G. Sharma, M. Naushad, F.J. Stadler, CeO2/g-C3N4/V2O5 ternary nano hetero-structures decorated with CQDs for enhanced photo-reduction capabilities under different light sources: Dual Z-scheme mechanism, Journal of Alloys and Compounds (2020) 155692.
[13] A. Kumar, A. Kumar, G. Sharma, H. Ala’a, M. Naushad, A.A. Ghfar, F.J. Stadler, Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment, Chemical Engineering Journal 334 (2018) 462-478.
[14] G. Sharma, A. Kumar, S. Sharma, H. Ala’a, M. Naushad, A.A. Ghfar, T. Ahamad, F.J. Stadler, Fabrication and characterization of novel Fe0@ Guar gum-crosslinked-soya lecithin nanocomposite hydrogel for photocatalytic degradation of methyl violet dye, Separation and Purification Technology 211 (2019) 895-908.
[15] J. Fu, J. Yu, C. Jiang, B. Cheng, g‐C3N4‐Based heterostructured photocatalysts, Advanced Energy Materials 8 (2018) 1701503.
[16] S. Cao, J. Yu, g-C3N4-based photocatalysts for hydrogen generation, The journal of physical chemistry letters 5 (2014) 2101-2107.
[17] X. Yang, F. Qian, G. Zou, M. Li, J. Lu, Y. Li, M. Bao, Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation, Applied Catalysis B: Environmental 193 (2016) 22-35.
[18] W. Liu, M. Wang, C. Xu, S. Chen, Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties, Chemical Engineering Journal 209 (2012) 386-393.
[19] T. Tyborski, C. Merschjann, S. Orthmann, F. Yang, M.-C. Lux-Steiner, T. Schedel-Niedrig, Crystal structure of polymeric carbon nitride and the determination of its process-temperature-induced modifications, Journal of Physics: Condensed Matter 25 (2013) 395402.
[20] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, Journal of Materials Chemistry 18 (2008) 4893-4908.
[21] G. Sharma, B. Thakur, A. Kumar, S. Sharma, M. Naushad, F.J. Stadler, Gum Acacia‐cl‐poly (acrylamide)@ carbon nitride Nanocomposite Hydrogel for Adsorption of Ciprofloxacin and its Sustained Release in Artificial Ocular Solution, Macromolecular Materials and Engineering 305 (2020) 2000274.
[22] B. Wang, H. Yu, X. Quan, S. Chen, Ultra-thin g-C3N4 nanosheets wrapped silicon nanowire array for improved chemical stability and enhanced photoresponse, Materials Research Bulletin 59 (2014) 179-184.
[23] L. Sun, X. Zhao, C.-J. Jia, Y. Zhou, X. Cheng, P. Li, L. Liu, W. Fan, Enhanced visible-light photocatalytic activity of gC3N4–ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies, Journal of Materials Chemistry 22 (2012) 23428-23438.
[24] A. Kumari, A. Kumar, G. Sharma, J. Iqbal, M. Naushad, F.J. Stadler, Constructing Z-scheme LaTiO2N/g-C3N4@Fe3O4 magnetic nano heterojunctions with promoted charge separation for visible and solar removal of indomethacin, Journal of Water Process Engineering 36 (2020) 101391.
[25] G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 20 (2014) 33-50.
[26] Q. Dong, N. Mohamad Latiff, V. Mazánek, N.F. Rosli, H.L. Chia, Z.k. Sofer, M. Pumera, Triazine-and Heptazine-Based Carbon Nitrides: Toxicity, ACS Applied Nano Materials 1 (2018) 4442-4449.
[27] X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light, Journal of the American Chemical Society 131 (2009) 1680-1681.
[28] N. Mansor, A.B. Jorge, F. Corà, C. Gibbs, R. Jervis, P.F. McMillan, X. Wang, D.J. Brett, Graphitic carbon nitride supported catalysts for polymer electrolyte fuel cells, The Journal of Physical Chemistry C 118 (2014) 6831-6838.
[29] J. Wang, B. Yang, S. Li, B. Yan, H. Xu, K. Zhang, Y. Shi, C. Zhai, Y. Du, Enhanced photo-electrochemical response of reduced graphene oxide and C3N4 nanosheets for rutin detection, Journal of colloid and interface science 506 (2017) 329-337.
[30] Z. Jiang, X. Lv, D. Jiang, J. Xie, D. Mao, Natural leaves-assisted synthesis of nitrogen-doped, carbon-rich nanodots-sensitized, Ag-loaded anatase TiO2 square nanosheets with dominant {001} facets and their enhanced catalytic applications, Journal of Materials Chemistry A 1 (2013) 14963-14972.
[31] A. Kumar, A. Kumari, G. Sharma, B. Du, M. Naushad, F.J. Stadler, Carbon quantum dots and reduced graphene oxide modified self-assembled S@C3N4/B@C3N4 metal-free nano-photocatalyst for high performance degradation of chloramphenicol, Journal of Molecular Liquids 300 (2020) 112356.
[32] Y.-P. Zhu, T.-Z. Ren, Z.-Y. Yuan, Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance, ACS applied materials & interfaces 7 (2015) 16850-16856.
[33] X. Chen, X. Zhao, Z. Kong, W.-J. Ong, N. Li, Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atoms embedded in defective graphitic carbon nitride, Journal of Materials Chemistry A 6 (2018) 21941-21948.
[34] D. Zeng, P. Wu, W.-J. Ong, B. Tang, M. Wu, H. Zheng, Y. Chen, D.-L. Peng, Construction of network-like and flower-like 2H-MoSe2 nanostructures coupled with porous g-C3N4 for noble-metal-free photocatalytic H2 evolution under visible light, Applied Catalysis B: Environmental 233 (2018) 26-34.
[35] G. Sharma, A. Kumar, S. Sharma, M. Naushad, P. Dhiman, D.-V.N. Vo, F.J. Stadler, Fe3O4/ZnO/Si3N4 nanocomposite based photocatalyst for the degradation of dyes from aqueous solution, Materials Letters 278 (2020) 128359.
[36] J. Xu, L. Zhang, R. Shi, Y. Zhu, Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis, Journal of Materials Chemistry A 1 (2013) 14766-14772.
[37] Y. Zeng, C. Liu, L. Wang, S. Zhang, Y. Ding, Y. Xu, Y. Liu, S. Luo, A three-dimensional graphitic carbon nitride belt network for enhanced visible light photocatalytic hydrogen evolution, Journal of Materials Chemistry A 4 (2016) 19003-19010.
[38] X. Ma, Y. Lv, J. Xu, Y. Liu, R. Zhang, Y. Zhu, A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first-principles study, The Journal of Physical Chemistry C 116 (2012) 23485-23493.
[39] A. Mishra, A. Mehta, S. Basu, N.P. Shetti, K.R. Reddy, T.M. Aminabhavi, Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: a review, Carbon 149 (2019) 693-721.
[40] A. Kumar, G. Sharma, M. Naushad, H. Ala’a, A. Garcia-Penas, G.T. Mola, C. Si, F.J. Stadler, Bio-inspired and biomaterials-based hybrid photocatalysts for environmental detoxification: A review, Chemical Engineering Journal 382 (2020) 122937.
[41] K. Maeda, Z-scheme water splitting using two different semiconductor photocatalysts, Acs Catalysis 3 (2013) 1486-1503.
[42] J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al‐Ghamdi, J. Yu, A review of direct Z‐scheme photocatalysts, Small Methods 1 (2017) 1700080.
[43] Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, S-scheme heterojunction photocatalyst, Chem (2020).
[44] K. Maeda, K. Domen, Photocatalytic water splitting: recent progress and future challenges, The Journal of Physical Chemistry Letters 1 (2010) 2655-2661.
[45] Y. Cao, Z. Wu, J. Ni, W.A. Bhutto, J. Li, S. Li, K. Huang, J. Kang, Type-II core/shell nanowire heterostructures and their photovoltaic applications, Nano-Micro Letters 4 (2012) 135-141.
[46] Q. Xu, L. Zhang, J. Yu, S. Wageh, A.A. Al-Ghamdi, M. Jaroniec, Direct Z-scheme photocatalysts: Principles, synthesis, and applications, Materials Today 21 (2018) 1042-1063.
[47] R.B. Chandran, S. Breen, Y. Shao, S. Ardo, A.Z. Weber, Evaluating particle-suspension reactor designs for Z-scheme solar water splitting via transport and kinetic modeling, Energy & Environmental Science 11 (2018) 115-135.
[48] H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, All-solid-state Z-scheme in CdS–Au–TiO 2 three-component nanojunction system, Nature materials 5 (2006) 782-786.
[49] H. Li, H. Yu, X. Quan, S. Chen, Y. Zhang, Uncovering the key role of the fermi level of the electron mediator in a Z-scheme photocatalyst by detecting the charge transfer process of WO3-metal-gC3N4 (Metal= Cu, Ag, Au), ACS Applied Materials & Interfaces 8 (2016) 2111-2119.
[50] Y. Sasaki, H. Nemoto, K. Saito, A. Kudo, Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator, The Journal of Physical Chemistry C 113 (2009) 17536-17542.
[51] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews 38 (2009) 253-278.
[52] F.E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water, Chemistry of materials 20 (2007) 35-54.
[53] X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chemical reviews 110 (2010) 6503-6570.
[54] J.C. Colmenares, E. Kuna, Photoactive Hybrid Catalysts Based on Natural and Synthetic Polymers: A Comparative Overview, Molecules 22 (2017) 790.
[55] L. Song, C. Guo, T. Li, S. Zhang, C60/graphene/g-C3N4 composite photocatalyst and mutually-reinforcing synergy to improve hydrogen production in splitting water under visible light radiation, Ceramics International 43 (2017) 7901-7907.
[56] L. Ge, C. Han, J. Liu, Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange, Applied Catalysis B: Environmental 108-109 (2011) 100-107.
[57] S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments, Desalination 261 (2010) 3-18.
[58] W. Zou, B. Deng, X. Hu, Y. Zhou, Y. Pu, S. Yu, K. Ma, J. Sun, H. Wan, L. Dong, Crystal-plane-dependent metal oxide-support interaction in CeO2/g-C3N4 for photocatalytic hydrogen evolution, Applied Catalysis B: Environmental 238 (2018) 111-118.
[59] W. Chen, Z.-C. He, G.-B. Huang, C.-L. Wu, W.-F. Chen, X.-H. Liu, Direct Z-scheme 2D/2D MnIn2S4/g-C3N4 architectures with highly efficient photocatalytic activities towards treatment of pharmaceutical wastewater and hydrogen evolution, Chemical Engineering Journal 359 (2019) 244-253.
[60] D. Xu, L. Li, T. Xia, W. Fan, F. Wang, H. Bai, W. Shi, Heterojunction composites of g-C3N4/KNbO3 enhanced photocatalytic properties for water splitting, International Journal of Hydrogen Energy 43 (2018) 16566-16572.
[61] H. Li, M. Wang, Y. Wei, F. Long, Noble metal-free NiS2 with rich active sites loaded g-C3N4 for highly efficient photocatalytic H2 evolution under visible light irradiation, Journal of colloid and interface science 534 (2019) 343-349.
[62] G. Nagaraju, K. Manjunath, S. Sarkar, E. Gunter, S.R. Teixeira, J. Dupont, TiO2–RGO hybrid nanomaterials for enhanced water splitting reaction, International Journal of Hydrogen Energy 40 (2015) 12209-12216.
[63] M.R. Gholipour, F. Béland, T.-O. Do, Graphitic carbon nitride-titanium dioxide nanocomposite for photocatalytic hydrogen production under visible light, International Journal of Chemical Reactor Engineering 14 (2016) 851-858.
[64] H.Y. Hafeez, S.K. Lakhera, S. Bellamkonda, G.R. Rao, M. Shankar, D. Bahnemann, B. Neppolian, Construction of ternary hybrid layered reduced graphene oxide supported g-C3N4-TiO2 nanocomposite and its photocatalytic hydrogen production activity, international journal of hydrogen energy 43 (2018) 3892-3904.
[65] H. Liu, D. Chen, Z. Wang, H. Jing, R. Zhang, Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance, Applied Catalysis B: Environmental 203 (2017) 300-313.
[66] Y. Tachibana, L. Vayssieres, J.R. Durrant, Artificial photosynthesis for solar water-splitting, Nature Photonics 6 (2012) 511.
[67] S. Sun, W. Wang, D. Li, L. Zhang, D. Jiang, Solar light driven pure water splitting on quantum sized BiVO4 without any cocatalyst, ACS Catalysis 4 (2014) 3498-3503.
[68] Y. Zhang, T. Mori, J. Ye, M. Antonietti, Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation, Journal of the American Chemical Society 132 (2010) 6294-6295.
[69] J. Zhang, Y. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, J. Yu, Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires, ACS Applied Materials & Interfaces 5 (2013) 10317-10324.
[70] H. Liu, Z. Jin, Z. Xu, Z. Zhang, D. Ao, Fabrication of Zn2InS4–gC3N4 sheet-on-sheet nanocomposites for efficient visible-light photocatalytic H 2-evolution and degradation of organic pollutants, RSC Advances 5 (2015) 97951-97961.
[71] N. Ding, L. Zhang, H. Zhang, J. Shi, H. Wu, Y. Luo, D. Li, Q. Meng, Microwave-assisted synthesis of ZnIn2S4/g-C3N4 heterojunction photocatalysts for efficient visible light photocatalytic hydrogen evolution, Catalysis Communications 100 (2017) 173-177.
[72] Z. Zou, J. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, nature 414 (2001) 625.
[73] A. Kumar, G. Sharma, M. Naushad, T. Ahamad, R.C. Veses, F.J. Stadler, Highly visible active Ag2CrO4/Ag/BiFeO3@ RGO nano-junction for photoreduction of CO2 and photocatalytic removal of ciprofloxacin and bromate ions: The triggering effect of Ag and RGO, Chemical Engineering Journal 370 (2019) 148-165.
[74] F. Shi, L. Chen, M. Chen, D. Jiang, A gC3N4/nanocarbon/ZnIn2S4 nanocomposite: an artificial Z-scheme visible-light photocatalytic system using nanocarbon as the electron mediator, Chemical Communications 51 (2015) 17144-17147.
[75] L. Ge, C. Han, X. Xiao, L. Guo, In situ synthesis of cobalt–phosphate (Co–Pi) modified g-C3N4 photocatalysts with enhanced photocatalytic activities, Applied Catalysis B: Environmental 142 (2013) 414-422.
[76] C.-J. Chang, H.-T. Weng, C.-C. Chang, CuSZnS1− xOx/g-C3N4 heterostructured photocatalysts for efficient photocatalytic hydrogen production, International Journal of Hydrogen Energy 42 (2017) 23568-23577.
[77] S.-W. Cao, Y.-P. Yuan, J. Fang, M.M. Shahjamali, F.Y. Boey, J. Barber, S.C.J. Loo, C. Xue, In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation, International Journal of Hydrogen Energy 38 (2013) 1258-1266.
[78] S.-W. Cao, X.-F. Liu, Y.-P. Yuan, Z.-Y. Zhang, Y.-S. Liao, J. Fang, S.C.J. Loo, T.C. Sum, C. Xue, Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts, Applied Catalysis B: Environmental 147 (2014) 940-946.
[79] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets, Journal of the American Chemical Society 133 (2011) 10878-10884.
[80] J. Hou, C. Yang, H. Cheng, Z. Wang, S. Jiao, H. Zhu, Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production, Physical Chemistry Chemical Physics 15 (2013) 15660-15668.
[81] Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, L. Qu, Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution, ACS nano 10 (2016) 2745-2751.
[82] J. Ye, Z. Zou, M. Oshikiri, A. Matsushita, M. Shimoda, M. Imai, T. Shishido, A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation, Chemical Physics Letters 356 (2002) 221-226.
[83] L. Liao, Q. Zhang, Z. Su, Z. Zhao, Y. Wang, Y. Li, X. Lu, D. Wei, G. Feng, Q. Yu, Efficient solar water-splitting using a nanocrystalline CoO photocatalyst, Nature nanotechnology 9 (2014) 69.
[84] Y. Yan, F. Cai, Y. Song, W. Shi, InVO4 nanocrystal photocatalysts: Microwave-assisted synthesis and size-dependent activities of hydrogen production from water splitting under visible light, Chemical engineering journal 233 (2013) 1-7.
[85] Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties, The Journal of Physical Chemistry 95 (1991) 525-532.
[86] B. Hu, F. Cai, T. Chen, M. Fan, C. Song, X. Yan, W. Shi, Hydrothermal synthesis g-C3N4/Nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation, ACS applied materials & interfaces 7 (2015) 18247-18256.
[87] X. Shi, M. Fujitsuka, S. Kim, T. Majima, Faster Electron Injection and More Active Sites for Efficient Photocatalytic H2 Evolution in g‐C3N4/MoS2 Hybrid, Small 14 (2018) 1703277.
[88] H.-J. Li, D.-J. Qian, M. Chen, Templateless infrared heating process for fabricating carbon nitride nanorods with efficient photocatalytic H2 evolution, ACS Applied Materials & Interfaces 7 (2015) 25162-25170.
[89] Y. Tan, Z. Shu, J. Zhou, T. Li, W. Wang, Z. Zhao, One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution, Applied Catalysis B: Environmental 230 (2018) 260-268.
[90] Z. Dong, Y. Wu, N. Thirugnanam, G. Li, Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production, Applied Surface Science 430 (2018) 293-300.
[91] Z.-A. Lan, G. Zhang, X. Wang, A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting, Applied Catalysis B: Environmental 192 (2016) 116-125.
[92] F. Wei, Y. Liu, H. Zhao, X. Ren, J. Liu, T. Hasan, L. Chen, Y. Li, B.-L. Su, Oxygen self-doped gC3N 4 with tunable electronic band structure for unprecedentedly enhanced photocatalytic performance, Nanoscale 10 (2018) 4515-4522.
[93] J. Fang, H. Fan, M. Li, C. Long, Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution, Journal of Materials Chemistry A 3 (2015) 13819-13826.
[94] Q. Xiang, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites, The Journal of Physical Chemistry C 115 (2011) 7355-7363.
[95] J.-P. Zou, L.-C. Wang, J. Luo, Y.-C. Nie, Q.-J. Xing, X.-B. Luo, H.-M. Du, S.-L. Luo, S.L. Suib, Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst, Applied Catalysis B: Environmental 193 (2016) 103-109.
[96] F. He, G. Chen, Y. Zhou, Y. Yu, L. Li, S. Hao, B. Liu, ZIF-8 derived carbon (C-ZIF) as a bifunctional electron acceptor and HER cocatalyst for gC3N4: construction of a metal-free, all carbon-based photocatalytic system for efficient hydrogen evolution, Journal of Materials Chemistry A 4 (2016) 3822-3827.
[97] F. He, G. Chen, J. Miao, Z. Wang, D. Su, S. Liu, W. Cai, L. Zhang, S. Hao, B. Liu, Sulfur-mediated self-templating synthesis of tapered C-PAN/g-C3N4 composite nanotubes toward efficient photocatalytic H2 evolution, ACS Energy Letters 1 (2016) 969-975.
[98] X. Xu, G. Liu, C. Randorn, J.T. Irvine, g-C3N4 coated SrTiO3 as an efficient photocatalyst for H2 production in aqueous solution under visible light irradiation, international journal of hydrogen energy 36 (2011) 13501-13507.
[99] N. Xiao, S. Li, S. Liu, B. Xu, Y. Li, Y. Gao, L. Ge, G. Lu, Novel PtPd alloy nanoparticle-decorated g-C3N4 nanosheets with enhanced photocatalytic activity for H2 evolution under visible light irradiation, Chinese Journal of Catalysis 40 (2019) 352-361.
[100] X. She, L. Liu, H. Ji, Z. Mo, Y. Li, L. Huang, D. Du, H. Xu, H. Li, Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light, Applied Catalysis B: Environmental 187 (2016) 144-153.
[101] B. Wang, J. Zhang, F. Huang, Enhanced visible light photocatalytic H2 evolution of metal-free g-C3N4/SiC heterostructured photocatalysts, Applied Surface Science 391 (2017) 449-456.
[102] K. Qi, W. Lv, I. Khan, S.-y. Liu, Photocatalytic H2 generation via CoP quantum-dot-modified g-C3N4 synthesized by electroless plating, Chinese Journal of Catalysis 41 (2020) 114-121.
[103] Y. Zou, J.-W. Shi, L. Sun, D. Ma, S. Mao, Y. Lv, Y. Cheng, Energy-band-controlled ZnxCd1− xIn2S4 solid solution coupled with g-C3N4 nanosheets as 2D/2D heterostructure toward efficient photocatalytic H2 evolution, Chemical Engineering Journal 378 (2019) 122192.
[104] J. Zhang, F. Huang, Enhanced visible light photocatalytic H2 production activity of g-C3N4 via carbon fiber, Applied Surface Science 358 (2015) 287-295.
[105] C. Ji, S.-N. Yin, S. Sun, S. Yang, An in situ mediator-free route to fabricate Cu2O/g-C3N4 type-II heterojunctions for enhanced visible-light photocatalytic H2 generation, Applied Surface Science 434 (2018) 1224-1231.
[106] Y. Zhong, W. Chen, S. Yu, Z. Xie, S. Wei, Y. Zhou, CdSe quantum dots/g-C3N4 heterostructure for efficient H2 production under visible light irradiation, ACS omega 3 (2018) 17762-17769.
[107] J. Meng, Z. Lan, T. Chen, Q. Lin, H. Liu, X. Wei, Y. Lu, J. Li, Z. Zhang, Organic–Organic Hybrid g-C3N4/Ethanediamine Nanosheets for Photocatalytic H2 Evolution, The Journal of Physical Chemistry C 122 (2018) 24725-24731.
[108] Z. Mao, J. Chen, Y. Yang, D. Wang, L. Bie, B.D. Fahlman, Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution, ACS applied materials & interfaces 9 (2017) 12427-12435.
[109] M.S. Akple, J. Low, S. Wageh, A.A. Al-Ghamdi, J. Yu, J. Zhang, Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures, Applied Surface Science 358 (2015) 196-203.
[110] J. Wang, Y. Xia, H. Zhao, G. Wang, L. Xiang, J. Xu, S. Komarneni, Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution, Applied Catalysis B: Environmental 206 (2017) 406-416.
[111] R. Zhang, L. Bi, D. Wang, Y. Lin, X. Zou, T. Xie, Z. Li, Investigation on various photo-generated carrier transfer processes of SnS2/g-C3N4 heterojunction photocatalysts for hydrogen evolution, Journal of colloid and interface science 578 (2020) 431-440.
[112] Y. Liu, H. Liu, H. Zhou, T. Li, L. Zhang, A Z-scheme mechanism of N-ZnO/g-C3N4 for enhanced H2 evolution and photocatalytic degradation, Applied Surface Science 466 (2019) 133-140.
[113] W.-K. Jo, S. Moru, S. Tonda, Magnetically responsive SnFe2O4/g-C3N4 hybrid photocatalysts with remarkable visible-light-induced performance for degradation of environmentally hazardous substances and sustainable hydrogen production, Applied Surface Science 506 (2020) 144939.
[114] X. Han, D. Xu, L. An, C. Hou, Y. Li, Q. Zhang, H. Wang, WO3/g-C3N4 two-dimensional composites for visible-light driven photocatalytic hydrogen production, International Journal of Hydrogen Energy 43 (2018) 4845-4855.
[115] Y. Hong, Z. Fang, B. Yin, B. Luo, Y. Zhao, W. Shi, C. Li, A visible-light-driven heterojunction for enhanced photocatalytic water splitting over Ta2O5 modified g-C3N4 photocatalyst, International Journal of Hydrogen Energy 42 (2017) 6738-6745.
[116] L. Luo, Z. Gong, J. Ma, K. Wang, H. Zhu, K. Li, L. Xiong, X. Guo, J. Tang, Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water, Applied Catalysis B: Environmental (2020) 119742.
[117] X. Lin, X. Hou, L. Cui, S. Zhao, H. Bi, H. Du, Y. Yuan, Increasing π-electron availability in benzene ring incorporated graphitic carbon nitride for increased photocatalytic hydrogen generation, Journal of Materials Science & Technology 65 164-170.
[118] T. Song, L. Hou, B. Long, A. Ali, G.-J. Deng, Ultrathin MXene “bridge” to accelerate charge transfer in ultrathin metal-free 0D/2D black phosphorus/g-C3N4 heterojunction toward photocatalytic hydrogen production, Journal of colloid and interface science 584 (2020) 474-483.
[119] J. Yi, T. Fei, L. Li, Q. Yu, S. Zhang, Y. Song, J. Lian, X. Zhu, J. Deng, H. Xu, Large-scale production of ultrathin carbon nitride-based photocatalysts for high-yield hydrogen evolution, Applied Catalysis B: Environmental 281 119475.
[120] Z. Xie, S. Yu, X.-B. Fan, S. Wei, L. Yu, Y. Zhong, X.-W. Gao, F. Wu, Y. Zhou, Wavelength-sensitive photocatalytic H2 evolution from H2S splitting over g-C3N4 with S, N-codoped carbon dots as the photosensitizer, Journal of Energy Chemistry (2020).
[121] H.-X. Fang, H. Guo, C.-G. Niu, C. Liang, D.-W. Huang, N. Tang, H.-Y. Liu, Y.-Y. Yang, L. Li, Hollow tubular graphitic carbon nitride catalyst with adjustable nitrogen vacancy: Enhanced optical absorption and carrier separation for improving photocatalytic activity, Chemical Engineering Journal 402 (2020) 126185.