Carbon Nanotubes based Nanocomposites as Photocatalysts in Water Treatment

$30.00

Carbon Nanotubes based Nanocomposites as Photocatalysts in Water Treatment

Tong Ling Tan and Chin Wei Lai

The shortage of worldwide clean water and the increasing water demand are now ubiquitous problems around the world. Thus, efficient water treatment is an important research topic, of which phocatalysis is known as simplest and efficient technique utilized in the photocatalytic degradation of all major water pollutants, including heavy metal ion, organic and inorganic pollutants. In this context, the use of one- dimensional carbon nanotubes-based nanocomposites in water treatment have been widely demonstrated to be capable of removing persistent organic compounds due to their unique physical and electronic properties, large surface area, tunable morphology, biocompatible and chemical-environmental-thermal stability. This chapter begins with the discussion of the importance and properties of carbon nanotubes, and then briefs about the types and methods of preparation of carbon nanotubes-based nanocomposites in detail. The next section emphasizes the fundamentals of photocatalysis phenomenon and its proposed mechanism for the photocatalytic degradation of pollutants. The last section highlights the recent development in the carbon-based nanocomposites as photocatalyst in water treatment systems, supported by comprehensive literature account. Finally, the remaining challenges and perspectives for using carbon nanotubes-based nanocomposites are discussed.

Keywords
Carbon Nanotubes, Nanocomposites, Photocatalyst, Water Treatment

Published online 4/1/2021, 36 pages

Citation: Tong Ling Tan and Chin Wei Lai, Carbon Nanotubes based Nanocomposites as Photocatalysts in Water Treatment, Materials Research Foundations, Vol. 100, pp 77-112, 2021

DOI: https://doi.org/10.21741/9781644901359-3

Part of the book on Photocatalysis

References
[1] X. Liu, M. Wang, S. Zhang, B. Pan, Application potential of carbon nanotubes in water treatment: A review, 2013. https://doi.org/10.1016/S1001-0742(12)60161-2
[2] L. Ma, X. Dong, M. Chen, L. Zhu, C. Wang, F. Yang, Y. Dong, Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review, Membranes 7 (2017) 16. https://doi.org/10.3390/membranes7010016
[3] M.S. Mauter, I. Zucker, F. Perreault, J.R. Werber, J.-H. Kim, M. Elimelech, The role of nanotechnology in tackling global water challenges, Nature Sustainability 1 (2018) 166-175. https://doi.org/10.1038/s41893-018-0046-8
[4] A. Kumar, G. Sharma, M. Naushad, A.a.H. Al-Muhtaseb, A. García-Peñas, G.T. Mola, C. Si, F.J. Stadler, Bio-inspired and biomaterials-based hybrid photocatalysts for environmental detoxification: A review, Chemical Engineering Journal 382 (2020) 122937. https://doi.org/10.1016/j.cej.2019.122937
[5] R.P. Schwarzenbach, T. Egli, T.B. Hofstetter, U.v. Gunten, B. Wehrli, Global Water Pollution and Human Health, Annual Review of Environment and Resources 35 (2010) 109-136. https://doi.org/10.1146/annurev-environ-100809-125342
[6] V.K. Sharma, R. Zboril, R.S. Varma, Ferrates: Greener Oxidants with Multimodal Action in Water Treatment Technologies, Accounts of Chemical Research 48 (2015) 182-191. https://doi.org/10.1021/ar5004219
[7] S. Kar, R.C. Bindal, P.K. Tewari, Carbon nanotube membranes for desalination and water purification: Challenges and opportunities, Nano Today 7 (2012) 385-389. https://doi.org/10.1016/j.nantod.2012.09.002
[8] O.M. Rodriguez-Narvaez, J.M. Peralta-Hernandez, A. Goonetilleke, E.R. Bandala, Treatment technologies for emerging contaminants in water: A review, Chemical Engineering Journal 323 (2017) 361-380. https://doi.org/10.1016/j.cej.2017.04.106
[9] X. Mao, W. Tian, Y. Ren, D. Chen, S.E. Curtis, M.T. Buss, G.C. Rutledge, T.A. Hatton, Energetically efficient electrochemically tunable affinity separation using multicomponent polymeric nanostructures for water treatment, Energy & Environmental Science 11 (2018) 2954-2963. https://doi.org/10.1039/C8EE02000K
[10] I.S. Yunus, Harwin, A. Kurniawan, D. Adityawarman, A. Indarto, Nanotechnologies in water and air pollution treatment, Environmental Technology Reviews 1 (2012) 136-148. https://doi.org/10.1080/21622515.2012.733966
[11] S. Sharma, A. Bhattacharya, Drinking water contamination and treatment techniques, Applied Water Science 7 (2017) 1043-1067. https://doi.org/10.1007/s13201-016-0455-7
[12] B.R. Johnston, The political ecology of water: an introduction, Capitalism Nature Socialism 14 (2003) 73-90. https://doi.org/10.1080/10455750308565535
[13] C. Santhosh, V. Velmurugan, G. Jacob, S.K. Jeong, A.N. Grace, A. Bhatnagar, Role of nanomaterials in water treatment applications: A review, Chemical Engineering Journal 306 (2016) 1116-1137. https://doi.org/10.1016/j.cej.2016.08.053
[14] A.S. Adeleye, J.R. Conway, K. Garner, Y. Huang, Y. Su, A.A. Keller, Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability, Chemical Engineering Journal 286 (2016) 640-662. https://doi.org/10.1016/j.cej.2015.10.105
[15] G. Sharma, A. Kumar, S. Sharma, A.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, T. Ahamad, F.J. Stadler, Fabrication and characterization of novel Fe0@Guar gum-crosslinked-soya lecithin nanocomposite hydrogel for photocatalytic degradation of methyl violet dye, Separation and Purification Technology 211 (2019) 895-908. https://doi.org/10.1016/j.seppur.2018.10.028
[16] P. Dhiman, J. Chand, A. Kumar, R.K. Kotnala, K.M. Batoo, M. Singh, Synthesis and characterization of novel Fe@ZnO nanosystem, Journal of Alloys and Compounds 578 (2013) 235-241. https://doi.org/10.1016/j.jallcom.2013.05.015
[17] F. Petronella, A. Truppi, C. Ingrosso, T. Placido, M. Striccoli, M.L. Curri, A. Agostiano, R. Comparelli, Nanocomposite materials for photocatalytic degradation of pollutants, Catalysis Today 281 (2017) 85-100. https://doi.org/10.1016/j.cattod.2016.05.048
[18] S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, J. Sun, Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review, Rsc Advances 5 (2015) 14610-14630. https://doi.org/10.1039/C4RA13734E
[19] A. Kumar, S.K. Sharma, G. Sharma, C. Guo, D.-V.N. Vo, J. Iqbal, M. Naushad, F.J. Stadler, Silicate glass matrix@Cu2O/Cu2V2O7 p-n heterojunction for enhanced visible light photo-degradation of sulfamethoxazole: High charge separation and interfacial transfer, Journal of Hazardous Materials 402 (2021) 123790. https://doi.org/10.1016/j.jhazmat.2020.123790
[20] M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A.W. Daud, Application of doped photocatalysts for organic pollutant degradation – A review, Journal of Environmental Management 198 (2017) 78-94. https://doi.org/10.1016/j.jenvman.2017.04.099
[21] A. Kumar, A. Rana, G. Sharma, M. Naushad, A.a.H. Al-Muhtaseb, C. Guo, A. Iglesias-Juez, F.J. Stadler, High-Performance Photocatalytic Hydrogen Production and Degradation of Levofloxacin by Wide Spectrum-Responsive Ag/Fe3O4 Bridged SrTiO3/g-C3N4 Plasmonic Nanojunctions: Joint Effect of Ag and Fe3O4, ACS Applied Materials & Interfaces 10 (2018) 40474-40490. https://doi.org/10.1021/acsami.8b12753
[22] Ihsanullah, Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future, Separation and Purification Technology 209 (2019) 307-337. https://doi.org/10.1016/j.seppur.2018.07.043
[23] B.S. Al-anzi, O.C. Siang, Recent developments of carbon based nanomaterials and membranes for oily wastewater treatment, RSC Advances 7 (2017) 20981-20994. https://doi.org/10.1039/C7RA02501G
[24] M.F. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications, science 339 (2013) 535-539. https://doi.org/10.1126/science.1222453
[25] A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, S.W. Joo, Carbon nanotubes: properties, synthesis, purification, and medical applications, Nanoscale Res Lett 9 (2014) 393. https://doi.org/10.1186/1556-276X-9-393
[26] Y.-L. Zhao, J.F. Stoddart, Noncovalent Functionalization of Single-Walled Carbon Nanotubes, Accounts of Chemical Research 42 (2009) 1161-1171. https://doi.org/10.1021/ar900056z
[27] X. An, J.C. Yu, Graphene-based photocatalytic composites, RSC Advances 1 (2011) 1426-1434. https://doi.org/10.1039/c1ra00382h
[28] C.P. Bergmann, F.M. Machado, Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, Springer2015. https://doi.org/10.1007/978-3-319-18875-1
[29] R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis, Carbon 49 (2011) 741-772. https://doi.org/10.1016/j.carbon.2010.10.010
[30] F. Perreault, A.F. de Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials, Chemical Society Reviews 44 (2015) 5861-5896. https://doi.org/10.1039/C5CS00021A
[31] L. Dai, D.W. Chang, J.-B. Baek, W. Lu, Carbon Nanomaterials for Advanced Energy Conversion and Storage, Small 8 (2012) 1130-1166. https://doi.org/10.1002/smll.201101594
[32] V. Choudhary, A. Gupta, Polymer/carbon nanotube nanocomposites, Carbon nanotubes-polymer nanocomposites, IntechOpen2011. https://doi.org/10.5772/18423
[33] Y.T. Ong, A.L. Ahmad, S.H.S. Zein, S.H. Tan, A review on carbon nanotubes in an environmental protection and green engineering perspective, Brazilian Journal of Chemical Engineering 27 (2010) 227-242. https://doi.org/10.1590/S0104-66322010000200002
[34] S.B.A. Hamid, T.L. Tan, C.W. Lai, E.M. Samsudin, Multiwalled carbon nanotube/TiO2 nanocomposite as a highly active photocatalyst for photodegradation of Reactive Black 5 dye, Chinese Journal of Catalysis 35 (2014) 2014-2019. https://doi.org/10.1016/S1872-2067(14)60210-2
[35] V. Gupta, T.A. Saleh, Syntheses of carbon nanotube-metal oxides composites; adsorption and photo-degradation, Carbon Nanotubes-From Research to Applications, IntechOpen2011. https://doi.org/10.5772/18009
[36] A.A. Ashkarran, M. Fakhari, H. Hamidinezhad, H. Haddadi, M.R. Nourani, TiO2 nanoparticles immobilized on carbon nanotubes for enhanced visible-light photo-induced activity, Journal of Materials Research and Technology 4 (2015) 126-132. https://doi.org/10.1016/j.jmrt.2014.10.005
[37] M. Barberio, P. Barone, A. Imbrogno, S.A. Ruffolo, M. La Russa, N. Arcuri, F. Xu, Study of band gap of carbon nanotube-titanium dioxide heterostructures, Journal of Chemistry and Chemical Engineering 8 (2014) 36.
[38] Y.-J. Xu, Y. Zhuang, X. Fu, New Insight for Enhanced Photocatalytic Activity of TiO2 by Doping Carbon Nanotubes: A Case Study on Degradation of Benzene and Methyl Orange, The Journal of Physical Chemistry C 114 (2010) 2669-2676. https://doi.org/10.1021/jp909855p
[39] J. Yu, T. Ma, S. Liu, Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel, Physical Chemistry Chemical Physics 13 (2011) 3491-3501. https://doi.org/10.1039/C0CP01139H
[40] M. Tavakkoli, T. Kallio, O. Reynaud, A.G. Nasibulin, J. Sainio, H. Jiang, E.I. Kauppinen, K. Laasonen, Maghemite nanoparticles decorated on carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction, Journal of Materials Chemistry A 4 (2016) 5216-5222. https://doi.org/10.1039/C6TA01472K
[41] S. Darbari, Y. Abdi, F. Haghighi, S. Mohajerzadeh, N. Haghighi, Investigating the antifungal activity of TiO2 nanoparticles deposited on branched carbon nanotube arrays, Journal of Physics D: Applied Physics 44 (2011) 245401. https://doi.org/10.1088/0022-3727/44/24/245401
[42] P. Chen, L. Wang, P. Wang, A. Kostka, M. Wark, M. Muhler, R. Beranek, CNT-TiO2−δ Composites for Improved Co-Catalyst Dispersion and Stabilized Photocatalytic Hydrogen Production, Catalysts 5 (2015) 270. https://doi.org/10.3390/catal5010270
[43] Y. Zhao, Y. Hu, Y. Li, H. Zhang, S. Zhang, L. Qu, G. Shi, L. Dai, Super-long aligned TiO2/carbon nanotube arrays, Nanotechnology 21 (2010) 505702. https://doi.org/10.1088/0957-4484/21/50/505702
[44] D.M. Nguyen, Q.B. Bui, Three-dimensional mesoporous hierarchical carbon nanotubes/nickel foam-supported gold nanoparticles as a free-standing sensor for sensitive hydrazine detection, Journal of Electroanalytical Chemistry 832 (2019) 444-452. https://doi.org/10.1016/j.jelechem.2018.11.053
[45] A. Kumar, G. Sharma, A. Kumari, C. Guo, M. Naushad, D.-V.N. Vo, J. Iqbal, F.J. Stadler, Construction of dual Z-scheme g-C3N4/Bi4Ti3O12/Bi4O5I2 heterojunction for visible and solar powered coupled photocatalytic antibiotic degradation and hydrogen production: Boosting via I−/I3− and Bi3+/Bi5+ redox mediators, Applied Catalysis B: Environmental 284 (2021) 119808. https://doi.org/10.1016/j.apcatb.2020.119808
[46] R.S. Kalubarme, Y.-H. Kim, C.-J. Park, One step hydrothermal synthesis of a carbon nanotube/cerium oxide nanocomposite and its electrochemical properties, Nanotechnology 24 (2013) 365401. https://doi.org/10.1088/0957-4484/24/36/365401
[47] K. Dai, X. Zhang, K. Fan, P. Zeng, T. Peng, Multiwalled carbon nanotube-TiO2 nanocomposite for visible-light-induced photocatalytic hydrogen evolution, Journal of Nanomaterials 2014 (2014) 4. https://doi.org/10.1155/2014/694073
[48] K.D. Shitole, R.K. Nainani, P. Thakur, Preparation, characterisation and photocatalytic applications of TiO2-MWCNTs composite, Defence Science Journal 63 (2013) 435-441. https://doi.org/10.14429/dsj.63.4870
[49] Q. Yang, Z. Lu, J. Liu, X. Lei, Z. Chang, L. Luo, X. Sun, Metal oxide and hydroxide nanoarrays: Hydrothermal synthesis and applications as supercapacitors and nanocatalysts, Progress in Natural Science: Materials International 23 (2013) 351-366. https://doi.org/10.1016/j.pnsc.2013.06.015
[50] H. Köse, Ş. Karaal, A.O. Aydın, H. Akbulut, A facile synthesis of zinc oxide/multiwalled carbon nanotube nanocomposite lithium ion battery anodes by sol–gel method, Journal of Power Sources 295 (2015) 235-245. https://doi.org/10.1016/j.jpowsour.2015.06.135
[51] J.E. Ellis, U. Green, D.C. Sorescu, Y. Zhao, A. Star, Indium Oxide—Single-Walled Carbon Nanotube Composite for Ethanol Sensing at Room Temperature, The Journal of Physical Chemistry Letters 6 (2015) 712-717. https://doi.org/10.1021/jz502631a
[52] M. Wongaree, S. Chiarakorn, S. Chuangchote, Photocatalytic Improvement under Visible Light in Nanoparticles by Carbon Nanotube Incorporation, Journal of Nanomaterials 2015 (2015) 10. https://doi.org/10.1155/2015/689306
[53] C.-H. Wu, C.-Y. Kuo, S.-T. Chen, Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation, Environmental technology 34 (2013) 2513-2519. https://doi.org/10.1080/09593330.2013.774058
[54] E. Soroodan Miandoab, S. Fatemi, Upgrading TiO2 photoactivity under visible light by synthesis of MWCNT/TiO2 nanocomposite, International Journal of Nanoscience and Nanotechnology 11 (2015) 1-12.
[55] N. Serpone, A. Emeline, Suggested terms and definitions in photocatalysis and radiocatalysis, International Journal of Photoenergy 4 (2002) 91-131. https://doi.org/10.1155/S1110662X02000144
[56] J.-M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catalysis Today 53 (1999) 115-129. https://doi.org/10.1016/S0920-5861(99)00107-8
[57] A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications, Catalysts 3 (2013) 189-218. https://doi.org/10.3390/catal3010189
[58] G. Sharma, Z.A. ALOthman, A. Kumar, S. Sharma, S.K. Ponnusamy, M. Naushad, Fabrication and characterization of a nanocomposite hydrogel for combined photocatalytic degradation of a mixture of malachite green and fast green dye, Nanotechnology for Environmental Engineering 2 (2017) 4. https://doi.org/10.1007/s41204-017-0014-y
[59] M.M. Khan, S.F. Adil, A. Al-Mayouf, Metal oxides as photocatalysts, Journal of Saudi Chemical Society 19 (2015) 462-464. https://doi.org/10.1016/j.jscs.2015.04.003
[60] S.H.S. Chan, T. Yeong Wu, J.C. Juan, C.Y. Teh, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste‐water, Journal of Chemical Technology and Biotechnology 86 (2011) 1130-1158. https://doi.org/10.1002/jctb.2636
[61] A. Kumar, G. Sharma, M. Naushad, A.H. Al-Muhtaseb, A. Kumar, I. Hira, T. Ahamad, A.A. Ghfar, F.J. Stadler, Visible photodegradation of ibuprofen and 2,4-D in simulated waste water using sustainable metal free-hybrids based on carbon nitride and biochar, Journal of Environmental Management 231 (2019) 1164-1175. https://doi.org/10.1016/j.jenvman.2018.11.015
[62] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1 (2000) 1-21. https://doi.org/10.1016/S1389-5567(00)00002-2
[63] G.G. Bessegato, T.T. Guaraldo, J.F. de Brito, M.F. Brugnera, M.V.B. Zanoni, Achievements and Trends in Photoelectrocatalysis: from Environmental to Energy Applications, Electrocatalysis 6 (2015) 415-441. https://doi.org/10.1007/s12678-015-0259-9
[64] S. Bagheri, N. Muhd Julkapli, S. Bee Abd Hamid, Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis, The Scientific World Journal 2014 (2014) 21. https://doi.org/10.1155/2014/727496
[65] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 Photocatalysis: Mechanisms and Materials, Chemical Reviews 114 (2014) 9919-9986. https://doi.org/10.1021/cr5001892
[66] D.K. Tiwari, J. Behari, P. Sen, Application of Nanoparticles in Waste Water Treatment 1, (2008).
[67] B.H. Nguyen, V.H. Nguyen, D.L. Vu, Photocatalytic composites based on titania nanoparticles and carbon nanomaterials, Advances in Natural Sciences: Nanoscience and Nanotechnology 6 (2015) 033001. https://doi.org/10.1088/2043-6262/6/3/033001
[68] K. Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic carbon‐nanotube–TiO2 composites, Advanced Materials 21 (2009) 2233-2239. https://doi.org/10.1002/adma.200802738
[69] S. Da Dalt, A.K. Alves, C.P. Bergmann, Photocatalytic degradation of methyl orange dye in water solutions in the presence of MWCNT/TiO2 composites, Materials Research Bulletin 48 (2013) 1845-1850. https://doi.org/10.1016/j.materresbull.2013.01.022
[70] X. Zhang, D. Shi, J. Fan, One stone two birds: novel carbon nanotube/Bi4VO8Cl photocatalyst for simultaneous organic pollutants degradation and Cr (VI) reduction, Environmental Science and Pollution Research 24 (2017) 23309-23320. https://doi.org/10.1007/s11356-017-9969-2
[71] R. Zouzelka, Y. Kusumawati, M. Remzova, J. Rathousky, T. Pauporté, Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation, Journal of Hazardous Materials 317 (2016) 52-59. https://doi.org/10.1016/j.jhazmat.2016.05.056
[72] M. Ahmadi, H. Ramezani Motlagh, N. Jaafarzadeh, A. Mostoufi, R. Saeedi, G. Barzegar, S. Jorfi, Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite, Journal of Environmental Management 186 (2017) 55-63. https://doi.org/10.1016/j.jenvman.2016.09.088
[73] G. Zhu, H. Wang, G. Yang, L. Chen, P. Guo, L. Zhang, A facile synthesis of ZnO/CNT hierarchical microsphere composites with enhanced photocatalytic degradation of methylene blue, RSC Advances 5 (2015) 72476-72481. https://doi.org/10.1039/C5RA11873E
[74] W. Zhu, Z. Li, C. He, S. Faqian, Y. Zhou, Enhanced photodegradation of sulfamethoxazole by a novel WO3-CNT composite under visible light irradiation, Journal of Alloys and Compounds 754 (2018) 153-162. https://doi.org/10.1016/j.jallcom.2018.04.286
[75] A. Payan, M. Fattahi, S. Jorfi, B. Roozbehani, S. Payan, Synthesis and characterization of titanate nanotube/single-walled carbon nanotube (TNT/SWCNT) porous nanocomposite and its photocatalytic activity on 4-chlorophenol degradation under UV and solar irradiation, Applied Surface Science 434 (2018) 336-350. https://doi.org/10.1016/j.apsusc.2017.10.149
[76] M. Oveisi, M. Alinia Asli, N.M. Mahmoodi, Carbon nanotube based metal-organic framework nanocomposites: Synthesis and their photocatalytic activity for decolorization of colored wastewater, Inorganica Chimica Acta 487 (2019) 169-176. https://doi.org/10.1016/j.ica.2018.12.021
[77] S. Zaman, K. Zhang, A. Karim, J. Xin, T. Sun, J.R. Gong, Sonocatalytic degradation of organic pollutant by SnO2/MWCNT nanocomposite, Diamond and Related Materials 76 (2017) 177-183. https://doi.org/10.1016/j.diamond.2017.05.009
[78] A.M. Kamil, H.T. Mohammed, A.A. Balakit, F.H. Hussein, D.W. Bahnemann, G.A. El-Hiti, Synthesis, characterization and photocatalytic activity of carbon nanotube/titanium dioxide nanocomposites, Arabian Journal for Science and Engineering 43 (2018) 199-210. https://doi.org/10.1007/s13369-017-2861-z
[79] N.F. Khusnun, A.A. Jalil, S. Triwahyono, C.N.C. Hitam, N.S. Hassan, F. Jamian, W. Nabgan, T.A.T. Abdullah, M.J. Kamaruddin, D. Hartanto, Directing the amount of CNTs in CuO–CNT catalysts for enhanced adsorption-oriented visible-light-responsive photodegradation of p-chloroaniline, Powder Technology 327 (2018) 170-178. https://doi.org/10.1016/j.powtec.2017.12.052
[80] Y. Wu, H. Liao, M. Li, CNTs modified graphitic C3N4 with enhanced visible-light photocatalytic activity for the degradation of organic pollutants, Micro & Nano Letters 13 (2018) 752-757. https://doi.org/10.1049/mnl.2017.0864
[81] C.H. Park, C.M. Lee, J.W. Choi, G.C. Park, J. Joo, Enhanced photocatalytic activity of porous single crystal TiO2/CNT composites by annealing process, Ceramics International 44 (2018) 1641-1645. https://doi.org/10.1016/j.ceramint.2017.10.086