Photocatalytic Membranes in Degradation of Organic Molecules


Photocatalytic Membranes in Degradation of Organic Molecules

Gisya Abdi, Mehdihasan I. Shekh, Jhaleh Amirian, Abdolhamid Alizadeh, Sirus Zinadini

Heterogeneous photocatalysis is a technology widely applied to water purification and wastewater treatment under ultraviolet (UV) or even sunlight irradiation for the removal of a variety of environmental pollutants into harmless species. Application of membrane for immobilization of semiconductors and their suitability in photocatalytic degradation of dyes have recently been developed. Integration of photocatalysis with membrane processes significantly improve the membrane separation performance with reducing membrane fouling and improving permeate quality. This paper reviews recent progress in the photocatalytic membranes for wastewater treatment and water purification with an emphasis on the type of membranes, membrane fabrication, and applications in pollutant removal.

Semiconductors, Organic Pollutants, Heterogeneous Photocatalysis, Ceramic Photocatalytic Membranes, Polymeric Photocatalytic Membranes

Published online 4/1/2021, 56 pages

Citation: Gisya Abdi, Mehdihasan I. Shekh, Jhaleh Amirian, Abdolhamid Alizadeh, Sirus Zinadini, Photocatalytic Membranes in Degradation of Organic Molecules, Materials Research Foundations, Vol. 100, pp 1-56, 2021


Part of the book on Photocatalysis

[1] O. Monfort, G. Plesch, Bismuth vanadate-based semiconductor photocatalysts: a short critical review on the efficiency and the mechanism of photodegradation of organic pollutants, Environmental Science and Pollution Research, 25 (2018) 19362-19379.
[2] S.-T. Yang, S. Chen, Y. Chang, A. Cao, Y. Liu, H. Wang, Removal of methylene blue from aqueous solution by graphene oxide, J. Colloid Interface Sci., 359 (2011) 24-29.
[3] J. Zhang, M. Yan, X. Yuan, M. Si, L. Jiang, Z. Wu, H. Wang, G. Zeng, Nitrogen doped carbon quantum dots mediated silver phosphate/bismuth vanadate Z-scheme photocatalyst for enhanced antibiotic degradation, Journal of Colloid and Interface Science, 529 (2018) 11-22.
[4] D.L. Zhao, T.-S. Chung, Applications of carbon quantum dots (CQDs) in membrane technologies: A review, Water research, (2018).
[5] J. Luo, J. Chen, R. Guo, Y. Qiu, W. Li, X. Zhou, X. Ning, L. Zhan, Rational construction of direct Z-scheme LaMnO3/g-C3N4 hybrid for improved visible-light photocatalytic tetracycline degradation, Separation and Purification Technology, 211 (2019) 882-894.
[6] W. Zhang, Z. Zhang, S. Kwon, F. Zhang, B. Stephen, K.K. Kim, R. Jung, S. Kwon, K.-B. Chung, W. Yang, Photocatalytic improvement of Mn-adsorbed g-C3N4, Applied Catalysis B: Environmental, 206 (2017) 271-281.
[7] R. Xie, L. Zhang, H. Xu, Y. Zhong, X. Sui, Z. Mao, Fabrication of Z-scheme photocatalyst Ag–AgBr@Bi20TiO32 and its visible-light photocatalytic activity for the degradation of isoproturon herbicide, Journal of Molecular Catalysis A: Chemical, 406 (2015) 194-203.
[8] J. Hou, C. Yang, Z. Wang, S. Jiao, H. Zhu, Hydrothermal synthesis of CdS/CdLa 2 S 4 heterostructures for efficient visible-light-driven photocatalytic hydrogen production, RSC Advances, 2 (2012) 10330-10336.
[9] S. Kohtani, E. Yoshioka, H. Miyabe, Photocatalytic hydrogenation on semiconductor particles, in: Hydrogenation, IntechOpen, 2012.
[10] A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films, Superlattices and Microstructures, 89 (2016) 153-169.
[11] R. Saravanan, V.K. Gupta, E. Mosquera, F. Gracia, Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application, Journal of Molecular Liquids, 198 (2014) 409-412.
[12] B.M. Pirzada, N.A. Mir, N. Qutub, O. Mehraj, S. Sabir, M. Muneer, Synthesis, characterization and optimization of photocatalytic activity of TiO2/ZrO2 nanocomposite heterostructures, Materials Science and Engineering: B, 193 (2015) 137-145.
[13] N. Kamarulzaman, M.F. Kasim, N.F. Chayed, Elucidation of the highest valence band and lowest conduction band shifts using XPS for ZnO and Zn0.99Cu0.01O band gap changes, Results in Physics, 6 (2016) 217-230.
[14] W. Zhang, C. Hu, W. Zhai, Z. Wang, Y. Sun, F. Chi, S. Ran, X. Liu, Y. Lv, Novel Ag3PO4/CeO2 pn hierarchical heterojunction with enhanced photocatalytic performance, Materials Research, 19 (2016) 673-679.
[15] H. Heng, Q. Gan, P. Meng, X. Liu, The visible-light-driven type III heterojunction H3PW12O40/TiO2-In2S3: A photocatalysis composite with enhanced photocatalytic activity, Journal of Alloys and Compounds, 696 (2017) 51-59.
[16] S. Issarapanacheewin, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, N. Wetchakun, A novel CeO2/Bi2WO6 composite with highly enhanced photocatalytic activity, Materials Letters, 156 (2015) 28-31.
[17] X. Zeng, Z. Wang, G. Wang, T.R. Gengenbach, D.T. McCarthy, A. Deletic, J. Yu, X. Zhang, Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection, Applied Catalysis B: Environmental, 218 (2017) 163-173.
[18] J. Cao, C. Zhou, H. Lin, B. Xu, S. Chen, Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to largely improve the visible light induced photocatalytic activity, Applied Surface Science, 284 (2013) 263-269.
[19] T.Q. Nguyen, A.K. Thapa, V.K. Vendra, J.B. Jasinski, G.U. Sumanasekera, M.K. Sunkara, High rate capacity retention of binder-free, tin oxide nanowire arrays using thin titania and alumina coatings, Rsc Advances, 4 (2014) 3312-3317.
[20] G.-H. He, C.-J. Liang, Y.-D. Ou, D.-N. Liu, Y.-P. Fang, Y.-H. Xu, Preparation of novel Sb2O3/WO3 photocatalysts and their activities under visible light irradiation, Materials Research Bulletin, 48 (2013) 2244-2249.
[21] H. Yuan, J. Liu, J. Li, Y. Li, X. Wang, Y. Zhang, J. Jiang, S. Chen, C. Zhao, D. Qian, Designed synthesis of a novel BiVO4–Cu2O–TiO2 as an efficient visible-light-responding photocatalyst, Journal of Colloid and Interface Science, 444 (2015) 58-66.
[22] M.A. Zarepour, M. Tasviri, Facile fabrication of Ag decorated TiO2 nanorices: Highly efficient visible-light-responsive photocatalyst in degradation of contaminants, Journal of Photochemistry and Photobiology A: Chemistry, 371 (2019) 166-172.
[23] H.L. Hoşgün, M.T.A. Aydın, Synthesis, characterization and photocatalytic activity of boron-doped titanium dioxide nanotubes, Journal of Molecular Structure, 1180 (2019) 676-682.
[24] M. Li, Z. Xing, J. Jiang, Z. Li, J. Kuang, J. Yin, N. Wan, Q. Zhu, W. Zhou, In-situ Ti3+/S doped high thermostable anatase TiO2 nanorods as efficient visible-light-driven photocatalysts, Materials Chemistry and Physics, 219 (2018) 303-310.
[25] B. Singaram, J. Jeyaram, R. Rajendran, P. Arumugam, K. Varadharajan, Visible light photocatalytic activity of tungsten and fluorine codoped TiO 2 nanoparticle for an efficient dye degradation, Ionics, (2018) 1-12.
[26] M. Ge, J. Li, L. Liu, Z. Zhou, Template-free synthesis and photocatalytic application of rutile TiO2 hierarchical nanostructures, Industrial & Engineering Chemistry Research, 50 (2011) 6681-6687.
[27] S. Mozia, D. Darowna, R. Wróbel, A.W. Morawski, A study on the stability of polyethersulfone ultrafiltration membranes in a photocatalytic membrane reactor, Journal of Membrane Science, 495 (2015) 176-186.
[28] K. Fischer, P. Schulz, I. Atanasov, A. Abdul Latif, I. Thomas, M. Kühnert, A. Prager, J. Griebel, A. Schulze, Synthesis of High Crystalline TiO2 Nanoparticles on a Polymer Membrane to Degrade Pollutants from Water, Catalysts, 8 (2018) 376.
[29] S. Singh, H. Mahalingam, P.K. Singh, Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review, Applied Catalysis A: General, 462-463 (2013) 178-195.
[30] J. Nikkola, J. Sievänen, M. Raulio, J. Wei, J. Vuorinen, C.Y. Tang, Surface modification of thin film composite polyamide membrane using atomic layer deposition method, Journal of membrane science, 450 (2014) 174-180.
[31] B.S. Lalia, C. Garlisi, G. Palmisano, R. Hashaikeh, Photocatalytic activity of an electrophoretically deposited composite titanium dioxide membrane using carbon cloth as a conducting substrate, RSC Advances, 6 (2016) 64219-64227.
[32] A.A. Muleja, B.B. Mamba, Development of calcined catalytic membrane for potential photodegradation of Congo red in aqueous solution, Journal of Environmental Chemical Engineering, 6 (2018) 4850-4863.
[33] M.I. Shekh, D.M. Patel, K.P. Patel, R.M. Patel, Electrospun Nanofibers of Poly(NPEMA-co.-CMPMA): Used as Heavy Metal Ion Remover and Water Sanitizer, Fibers and Polymers, 17 (2016) 358-370.
[34] G. Abdi, A. Alizadeh, S. Zinadini, G. Moradi, Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid, Journal of membrane science, 552 (2018) 326-335.
[35] F. Jin, W. Lv, C. Zhang, Z. Li, R. Su, W. Qi, Q.-H. Yang, Z. He, High-performance ultrafiltration membranes based on polyethersulfone–graphene oxide composites, Rsc Advances, 3 (2013) 21394-21397.
[36] A.L. Chibac, T. Buruiana, V. Melinte, E.C. Buruiana, Photocatalysis applications of some hybrid polymeric composites incorporating TiO2 nanoparticles and their combinations with SiO2/Fe2O3, Beilstein journal of nanotechnology, 8 (2017) 272-286.
[37] K. Monsef, M. Homayoonfal, F. Davar, Coating carboxylic and sulfate functional groups on ZrO2 nanoparticles: Antifouling enhancement of nanocomposite membranes during water treatment, Reactive and Functional Polymers, 131 (2018) 299-314.
[38] N. Maximous, G. Nakhla, W. Wan, K. Wong, Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration, Journal of Membrane Science, 341 (2009) 67-75.
[39] R.R. Darabi, M. Jahanshahi, M. Peyravi, A support assisted by photocatalytic Fe3O4/ZnO nanocomposite for thin-film forward osmosis membrane, Chemical Engineering Research and Design, 133 (2018) 11-25.
[40] N. Ma, X. Quan, Y. Zhang, S. Chen, H. Zhao, Integration of separation and photocatalysis using an inorganic membrane modified with Si-doped TiO2 for water purification, Journal of Membrane Science, 335 (2009) 58-67.
[41] Y. Yang, H. Zhang, P. Wang, Q. Zheng, J. Li, The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane, Journal of Membrane Science, 288 (2007) 231-238.
[42] K. Fischer, R. Gläser, A. Schulze, Nanoneedle and nanotubular titanium dioxide – PES mixed matrix membrane for photocatalysis, Applied Catalysis B: Environmental, 160-161 (2014) 456-464.
[43] K. Fischer, M. Kühnert, R. Gläser, A. Schulze, Photocatalytic degradation and toxicity evaluation of diclofenac by nanotubular titanium dioxide–PES membrane in a static and continuous setup, RSC Advances, 5 (2015) 16340-16348.
[44] S.L. Phua, L. Yang, C.L. Toh, D. Guoqiang, S.K. Lau, A. Dasari, X. Lu, Simultaneous Enhancements of UV Resistance and Mechanical Properties of Polypropylene by Incorporation of Dopamine-Modified Clay, ACS Applied Materials & Interfaces, 5 (2013) 1302-1309.
[45] H. Wu, Y. Liu, L. Mao, C. Jiang, J. Ang, X. Lu, Doping polysulfone ultrafiltration membrane with TiO2-PDA nanohybrid for simultaneous self-cleaning and self-protection, Journal of Membrane Science, 532 (2017) 20-29.
[46] K. Feng, L. Hou, B. Tang, P. Wu, A self-protected self-cleaning ultrafiltration membrane by using polydopamine as a free-radical scavenger, Journal of Membrane Science, 490 (2015) 120-128.
[47] H. Zangeneh, A.A. Zinatizadeh, S. Zinadini, M. Feyzi, D.W. Bahnemann, Preparation and characterization of a novel photocatalytic self-cleaning PES nanofiltration membrane by embedding a visible-driven photocatalyst boron doped-TiO2SiO2/CoFe2O4 nanoparticles, Separation and Purification Technology, 209 (2019) 764-775.
[48] H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, M. Hasnain Isa, Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review, Journal of Industrial and Engineering Chemistry, 26 (2015) 1-36.
[49] Y. Cong, J. Zhang, F. Chen, M. Anpo, D. He, Preparation, Photocatalytic Activity, and Mechanism of Nano-TiO2 Co-Doped with Nitrogen and Iron (III), The Journal of Physical Chemistry C, 111 (2007) 10618-10623.
[50] A. Moslehyani, A.F. Ismail, M.H.D. Othman, T. Matsuura, Design and performance study of hybrid photocatalytic reactor-PVDF/MWCNT nanocomposite membrane system for treatment of petroleum refinery wastewater, Desalination, 363 (2015) 99-111.
[51] Z. Xu, T. Wu, J. Shi, K. Teng, W. Wang, M. Ma, J. Li, X. Qian, C. Li, J. Fan, Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment, Journal of Membrane Science, 520 (2016) 281-293.
[52] N.N. Patel, M.I. Shekh, K.P. Patel, R.M. Patel, Electrospun nano silver embedded polystyrene composite nanofiber as a possible water disinfectant, Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 58 (2019) 288-293.
[53] Y. Sakatani, H. Ando, K. Okusako, H. Koike, J. Nunoshige, T. Takata, J.N. Kondo, M. Hara, K. Domen, Metal ion and N co-doped TiO 2 as a visible-light photocatalyst, Journal of materials research, 19 (2004) 2100-2108.
[54] A.T. Kuvarega, N. Khumalo, D. Dlamini, B.B. Mamba, Polysulfone/N,Pd co-doped TiO2 composite membranes for photocatalytic dye degradation, Separation and Purification Technology, 191 (2018) 122-133.
[55] Z.A. Mohd Hir, A.H. Abdullah, Z. Zainal, H.N. Lim, Visible light-active hybrid film photocatalyst of polyethersulfone–reduced TiO2: photocatalytic response and radical trapping investigation, Journal of Materials Science, 53 (2018) 13264-13279.
[56] M.M. Mahlambi, O.T. Mahlangu, G.D. Vilakati, B.B. Mamba, Visible Light Photodegradation of Rhodamine B Dye by Two Forms of Carbon-Covered Alumina Supported TiO2/Polysulfone Membranes, Industrial & Engineering Chemistry Research, 53 (2014) 5709-5717.
[57] Z.A.M. Hir, P. Moradihamedani, A.H. Abdullah, M.A. Mohamed, Immobilization of TiO2 into polyethersulfone matrix as hybrid film photocatalyst for effective degradation of methyl orange dye, Materials Science in Semiconductor Processing, 57 (2017) 157-165.
[58] Q. Wang, C. Yang, G. Zhang, L. Hu, P. Wang, Photocatalytic Fe-doped TiO2/PSF composite UF membranes: Characterization and performance on BPA removal under visible-light irradiation, Chemical Engineering Journal, 319 (2017) 39-47.
[59] N. Salim, N. Nor, J. Jaafar, A. Ismail, T. Matsuura, M. Qtaishat, M. Othman, M. Rahman, F. Aziz, N. Yusof, Performance of PES/LSMM-OGCN Photocatalytic Membrane for Phenol Removal: Effect of OGCN Loading, Membranes, 8 (2018) 42.
[60] R. Zhang, Y. Cai, X. Zhu, Q. Han, T. Zhang, Y. Liu, Y. Li, A. Wang, A novel photocatalytic membrane decorated with PDA/RGO/Ag3PO4 for catalytic dye decomposition, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 563 (2019) 68-76.
[61] A.T. Kuvarega, B.B. Mamba, Photocatalytic Membranes for Efficient Water Treatment, Semiconductor Photocatalysis – Materials, Mechanisms and Applications, (2016) 523-539.
[62] A. Rahimpour, S. Madaeni, A. Taheri, Y. Mansourpanah, Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes, Journal of Membrane Science, 313 (2008) 158-169.
[63] T.-H. Bae, T.-M. Tak, Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration, Journal of Membrane Science, 249 (2005) 1-8.
[64] S.-Y. Kwak, S.H. Kim, S.S. Kim, Hybrid Organic/Inorganic Reverse Osmosis (RO) Membrane for Bactericidal Anti-Fouling. 1. Preparation and Characterization of TiO2 Nanoparticle Self-Assembled Aromatic Polyamide Thin-Film-Composite (TFC) Membrane, Environmental Science & Technology, 35 (2001) 2388-2394.
[65] M.-L. Luo, J.-Q. Zhao, W. Tang, C.-S. Pu, Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles, Applied Surface Science, 249 (2005) 76-84.
[66] J.-H. Li, Y.-Y. Xu, L.-P. Zhu, J.-H. Wang, C.-H. Du, Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance, Journal of Membrane Science, 326 (2009) 659-666.
[67] A. Rahimpour, M. Jahanshahi, A. Mollahosseini, B. Rajaeian, Structural and performance properties of UV-assisted TiO2 deposited nano-composite PVDF/SPES membranes, Desalination, 285 (2012) 31-38.
[68] S.-J. You, G.U. Semblante, S.-C. Lu, R.A. Damodar, T.-C. Wei, Evaluation of the antifouling and photocatalytic properties of poly(vinylidene fluoride) plasma-grafted poly(acrylic acid) membrane with self-assembled TiO2, Journal of Hazardous Materials, 237-238 (2012) 10-19.
[69] H.-S. Choi, Y.-S. Kim, Y. Zhang, S. Tang, S.-W. Myung, B.-C. Shin, Plasma-induced graft co-polymerization of acrylic acid onto the polyurethane surface, Surface and Coatings Technology, 182 (2004) 55-64.
[70] R.A. Damodar, S.-J. You, H.-H. Chou, Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes, Journal of Hazardous Materials, 172 (2009) 1321-1328.
[71] O. Tahiri Alaoui, Q.T. Nguyen, C. Mbareck, T. Rhlalou, Elaboration and study of poly(vinylidene fluoride)–anatase TiO2 composite membranes in photocatalytic degradation of dyes, Applied Catalysis A: General, 358 (2009) 13-20.
[72] J.-H. Li, B.-F. Yan, X.-S. Shao, S.-S. Wang, H.-Y. Tian, Q.-Q. Zhang, Influence of Ag/TiO2 nanoparticle on the surface hydrophilicity and visible-light response activity of polyvinylidene fluoride membrane, Applied Surface Science, 324 (2015) 82-89.
[73] M.I. Shekh, N.N. Patel, K.P. Patel, R.M. Patel, A. Ray, Nano silver-embedded electrospun nanofiber of poly(4-chloro-3-methylphenyl methacrylate): use as water sanitizer, Environmental Science and Pollution Research, 24 (2017) 5701-5716.
[74] S. Teixeira, P.M. Martins, S. Lanceros-Méndez, K. Kühn, G. Cuniberti, Reusability of photocatalytic TiO2 and ZnO nanoparticles immobilized in poly(vinylidene difluoride)-co-trifluoroethylene, Applied Surface Science, 384 (2016) 497-504.
[75] J. Zhao, Y. Yang, C. Li, L.-a. Hou, Fabrication of GO modified PVDF membrane for dissolved organic matter removal: Removal mechanism and antifouling property, Separation and Purification Technology, 209 (2019) 482-490.
[76] G. Abdi, M. Ashokkumar, A. Alizadeh, Ultrasound-assisted oxidative-adsorptive desulfurization using highly acidic graphene oxide as a catalyst-adsorbent, Fuel, 210 (2017) 639-645.
[77] G. Abdi, A. Alizadeh, J. Amirian, S. Rezaei, G. Sharma, Polyamine-modified magnetic graphene oxide surface: Feasible adsorbent for removal of dyes, Journal of Molecular Liquids, 289 (2019) 111118.
[78] S. Muchtar, M.Y. Wahab, L.-F. Fang, S. Jeon, S. Rajabzadeh, R. Takagi, S. Mulyati, N. Arahman, M. Riza, H. Matsuyama, Polydopamine-coated poly(vinylidene fluoride) membranes with high ultraviolet resistance and antifouling properties for a photocatalytic membrane reactor, Journal of Applied Polymer Science, 136 (2019) 47312.
[79] Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, R.L. Withers, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nature Materials, 9 (2010) 559.
[80] F. Wang, W. Li, S. Gu, H. Li, X. Wu, X. Liu, Samarium and Nitrogen Co-Doped Bi2WO6 Photocatalysts: Synergistic Effect of Sm3+/Sm2+ Redox Centers and N-Doped Level for Enhancing Visible-Light Photocatalytic Activity, Chemistry – A European Journal, 22 (2016) 12859-12867.
[81] M.-A. Lavergne, C. Chanéac, D. Portehault, S. Cassaignon, O. Durupthy, Optimized Design of Pt-Doped Bi2WO6 Nanoparticle Synthesis for Enhanced Photocatalytic Properties, European Journal of Inorganic Chemistry, 2016 (2016) 2159-2165.
[82] X. Ding, K. Zhao, L. Zhang, Enhanced Photocatalytic Removal of Sodium Pentachlorophenate with Self-Doped Bi2WO6 under Visible Light by Generating More Superoxide Ions, Environmental Science & Technology, 48 (2014) 5823-5831.
[83] R. Tang, H. Su, Y. Sun, X. Zhang, L. Li, C. Liu, S. Zeng, D. Sun, Enhanced photocatalytic performance in Bi2WO6/SnS heterostructures: Facile synthesis, influencing factors and mechanism of the photocatalytic process, Journal of colloid and interface science, 466 (2016) 388-399.
[84] F. Chen, D. Li, B. Luo, M. Chen, W. Shi, Two-dimensional heterojunction photocatalysts constructed by graphite-like C3N4 and Bi2WO6 nanosheets: Enhanced photocatalytic activities for water purification, Journal of Alloys and Compounds, 694 (2017) 193-200.
[85] H. Huang, K. Liu, K. Chen, Y. Zhang, Y. Zhang, S. Wang, Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation, The Journal of Physical Chemistry C, 118 (2014) 14379-14387.
[86] Q.-S. Wu, Y. Cui, L.-M. Yang, G.-Y. Zhang, D.-Z. Gao, Facile in-situ photocatalysis of Ag/Bi2WO6 heterostructure with obviously enhanced performance, Separation and Purification Technology, 142 (2015) 168-175.
[87] S.M. López, M. Hidalgo, J. Navío, G. Colón, Novel Bi2WO6–TiO2 heterostructures for Rhodamine B degradation under sunlike irradiation, Journal of hazardous materials, 185 (2011) 1425-1434.
[88] M.-S. Gui, W.-D. Zhang, Y.-Q. Chang, Y.-X. Yu, One-step hydrothermal preparation strategy for nanostructured WO3/Bi2WO6 heterojunction with high visible light photocatalytic activity, Chemical Engineering Journal, 197 (2012) 283-288.
[89] H. Li, Y. Cui, W. Hong, High photocatalytic performance of BiOI/Bi2WO6 toward toluene and Reactive Brilliant Red, Applied Surface Science, 264 (2013) 581-588.
[90] X. Huang, H. Chen, One-pot hydrothermal synthesis of Bi2O2CO3/Bi2WO6 visible light photocatalyst with enhanced photocatalytic activity, Applied Surface Science, 284 (2013) 843-848.
[91] Q.-S. Wu, Y. Feng, G.-Y. Zhang, Y.-Q. Sun, Y.-Y. Xu, D.-Z. Gao, α-Fe2O3 modified Bi2WO6 flower-like mesostructures with enhanced photocatalytic performance, Materials Research Bulletin, 49 (2014) 440-447.
[92] J. Zhai, H. Yu, H. Li, L. Sun, K. Zhang, H. Yang, Visible-light photocatalytic activity of graphene oxide-wrapped Bi2WO6 hierarchical microspheres, Applied Surface Science, 344 (2015) 101-106.
[93] X. Meng, Z. Zhang, Synthesis and characterization of plasmonic and magnetically separable Ag/AgCl-Bi2WO6@ Fe3O4@ SiO2 core-shell composites for visible light-induced water detoxification, Journal of colloid and interface science, 485 (2017) 296-307.
[94] T. Wang, S. Zhong, S. Zou, F. Jiang, L. Feng, X. Su, Novel Bi2WO6‐coupled Fe3O4 Magnetic Photocatalysts: Preparation, Characterization and Photodegradation of Tetracycline Hydrochloride, Photochemistry and photobiology, 93 (2017) 1034-1042.
[95] Y. Zhu, Y. Wang, Q. Ling, Y. Zhu, Enhancement of full-spectrum photocatalytic activity over BiPO4/Bi2WO6 composites, Applied Catalysis B: Environmental, 200 (2017) 222-229.
[96] Y. Li, L. Zhu, Evaluation of the antifouling and photocatalytic properties of novel poly(vinylidene fluoride) membranes with a reduced graphene oxide–Bi2WO6 active layer, Journal of Applied Polymer Science, 134 (2017) 45426.
[97] X. Deng, Z. Li, H. García, Visible Light Induced Organic Transformations Using Metal-Organic-Frameworks (MOFs), Chemistry – A European Journal, 23 (2017) 11189-11209.
[98] F. Li, D. Wang, Q.-J. Xing, G. Zhou, S.-S. Liu, Y. Li, L.-L. Zheng, P. Ye, J.-P. Zou, Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: An efficient strategy to boost the visible-light-driven photocatalytic performance, Applied Catalysis B: Environmental, 243 (2019) 621-628.
[99] J. Qiu, L. Yang, M. Li, J. Yao, Metal nanoparticles decorated MIL-125-NH2 and MIL-125 for efficient photocatalysis, Materials Research Bulletin, 112 (2019) 297-306.
[100] X. Li, Y. Pi, L. Wu, Q. Xia, J. Wu, Z. Li, J. Xiao, Facilitation of the visible light-induced Fenton-like excitation of H2O2 via heterojunction of g-C3N4/NH2-Iron terephthalate metal-organic framework for MB degradation, Applied Catalysis B: Environmental, 202 (2017) 653-663.
[101] L. Hu, Y. Zhang, W. Lu, Y. Lu, H. Hu, Easily recyclable photocatalyst Bi2WO6/MOF/PVDF composite film for efficient degradation of aqueous refractory organic pollutants under visible-light irradiation, Journal of Materials Science, 54 (2019) 6238-6257.
[102] N. Li, Y. Tian, J. Zhang, Z. Sun, J. Zhao, J. Zhang, W. Zuo, Precisely-controlled modification of PVDF membranes with 3D TiO2/ZnO nanolayer: enhanced anti-fouling performance by changing hydrophilicity and photocatalysis under visible light irradiation, Journal of Membrane Science, 528 (2017) 359-368.
[103] M.I. Shekh, K.P. Patel, R.M. Patel, Electrospun ZnO Nanoparticles Doped Core–Sheath Nanofibers: Characterization and Antimicrobial Properties, Journal of Polymers and the Environment, 26 (2018) 4376-4387.
[104] D. Zhang, F. Dai, P. Zhang, Z. An, Y. Zhao, L. Chen, The photodegradation of methylene blue in water with PVDF/GO/ZnO composite membrane, Materials Science and Engineering: C, 96 (2019) 684-692.
[105] C. Yang, J. Wang, L. Mei, X. Wang, Enhanced photocatalytic degradation of rhodamine B by Cu2O coated silicon nanowire arrays in presence of H2O2, Journal of Materials Science & Technology, 30 (2014) 1124-1129.
[106] J. Du, Y. Tian, N. Li, J. Zhang, W. Zuo, Enhanced antifouling performance of ZnS/GO/PVDF hybrid membrane by improving hydrophilicity and photocatalysis, Polymers for Advanced Technologies, 30 (2019) 351-359.
[107] M.R.U.D. Biswas, W.-C. Oh, Synthesis of BiVO4-GO-PVDF nanocomposite: An excellent, newly designed material for high photocatalytic activity towards organic dye degradation by tuning band gap energies, Solid State Sciences, 80 (2018) 22-30.
[108] W.A. Yee, A.C. Nguyen, P.S. Lee, M. Kotaki, Y. Liu, B.T. Tan, S. Mhaisalkar, X. Lu, Stress-induced structural changes in electrospun polyvinylidene difluoride nanofibers collected using a modified rotating disk, Polymer, 49 (2008) 4196-4203.
[109] J.Z. Tan, N.M. Nursam, F. Xia, Y.B. Truong, I.L. Kyratzis, X. Wang, R.A. Caruso, Electrospun PVDF–TiO 2 with tuneable TiO 2 crystal phases: synthesis and application in photocatalytic redox reactions, Journal of Materials Chemistry A, 5 (2017) 641-648.
[110] J.A. Lee, K.C. Krogman, M. Ma, R.M. Hill, P.T. Hammond, G.C. Rutledge, Highly reactive multilayer‐assembled TiO2 coating on electrospun polymer nanofibers, Advanced Materials, 21 (2009) 1252-1256.
[111] P. Dong, Z. Huang, X. Nie, X. Cheng, Z. Jin, X. Zhang, Plasma enhanced decoration of nc-TiO2 on electrospun PVDF fibers for photocatalytic application, Materials Research Bulletin, 111 (2019) 102-112.
[112] E.-J. Lee, A.K. An, T. He, Y.C. Woo, H.K. Shon, Electrospun nanofiber membranes incorporating fluorosilane-coated TiO2 nanocomposite for direct contact membrane distillation, Journal of Membrane Science, 520 (2016) 145-154.
[113] S. Ramasundaram, A. Son, M.G. Seid, S. Shim, S.H. Lee, Y.C. Chung, C. Lee, J. Lee, S.W. Hong, Photocatalytic applications of paper-like poly(vinylidene fluoride)–titanium dioxide hybrids fabricated using a combination of electrospinning and electrospraying, Journal of Hazardous Materials, 285 (2015) 267-276.
[114] T. He, H. Ma, Z. Zhou, W. Xu, F. Ren, Z. Shi, J. Wang, Preparation of ZnS–Fluoropolymer nanocomposites and its photocatalytic degradation of methylene blue, Polymer Degradation and Stability, 94 (2009) 2251-2256.
[115] S. Ramasundaram, M.G. Seid, J.W. Choe, E.-J. Kim, Y.C. Chung, K. Cho, C. Lee, S.W. Hong, Highly reusable TiO2 nanoparticle photocatalyst by direct immobilization on steel mesh via PVDF coating, electrospraying, and thermal fixation, Chemical Engineering Journal, 306 (2016) 344-351.
[116] T. He, A. Bahi, W. Zhou, F. Ko, Electrospun Nanofibrous Ag–TiO2/Poly (vinylidene fluoride)(PVDF) Membranes with Enhanced Photocatalytic Activity, Journal of Nanoscience and Nanotechnology, 16 (2016) 7388-7394.
[117] C. Wang, Y. Wu, J. Lu, J. Zhao, J. Cui, X. Wu, Y. Yan, P. Huo, Bioinspired synthesis of photocatalytic nanocomposite membranes based on synergy of Au-TiO2 and polydopamine for degradation of tetracycline under visible light, ACS applied materials & interfaces, 9 (2017) 23687-23697.
[118] L. Aoudjit, P.M. Martins, F. Madjene, D.Y. Petrovykh, S. Lanceros-Mendez, Photocatalytic reusable membranes for the effective degradation of tartrazine with a solar photoreactor, Journal of Hazardous Materials, 344 (2018) 408-416.
[119] X. Meng, P. Yao, Y. Xu, H. Meng, X. Zhang, Fabrication of organic–inorganic hybrid membranes composed of poly (vinylidene fluoride) and silver cyanamide and their high photocatalytic activity under visible light irradiation, RSC Advances, 6 (2016) 61920-61926.
[120] J. Zhao, C. Liao, J. Liu, X. Shen, H. Tong, Development of mesoporous titanium dioxide hybrid poly (vinylidene fluoride) ultrafiltration membranes with photocatalytic properties, Journal of Applied Polymer Science, 133 (2016).
[121] N.A. Almeida, P.M. Martins, S. Teixeira, J.A.L. da Silva, V. Sencadas, K. Kühn, G. Cuniberti, S. Lanceros-Mendez, P.A. Marques, TiO 2/graphene oxide immobilized in P (VDF-TrFE) electrospun membranes with enhanced visible-light-induced photocatalytic performance, Journal of materials science, 51 (2016) 6974-6986.
[122] M. Wang, G. Yang, P. Jin, H. Tang, H. Wang, Y. Chen, Highly hydrophilic poly (vinylidene fluoride)/meso-titania hybrid mesoporous membrane for photocatalytic membrane reactor in water, Scientific reports, 6 (2016) 19148.
[123] N.A.M. Nor, J. Jaafar, A.F. Ismail, M.A. Mohamed, M.A. Rahman, M.H.D. Othman, W.J. Lau, N. Yusof, Preparation and performance of PVDF-based nanocomposite membrane consisting of TiO2 nanofibers for organic pollutant decomposition in wastewater under UV irradiation, Desalination, 391 (2016) 89-97.
[124] P. Martins, V. Gomez, A. Lopes, C. Tavares, G. Botelho, S. Irusta, S. Lanceros-Mendez, Improving photocatalytic performance and recyclability by development of Er-doped and Er/Pr-codoped TiO2/poly (vinylidene difluoride)–trifluoroethylene composite membranes, The Journal of Physical Chemistry C, 118 (2014) 27944-27953.
[125] S. Guo, H. Yoshioka, Y. Kato, H. Kakehi, M. Miura, N. Isu, A. Manseri, H. Sawada, B. Ameduri, Photocatalytic activity of vinylidene fluoride-containing copolymers/anatase titanium oxide/silica nanocomposites, European Polymer Journal, 58 (2014) 79-89.
[126] Y. Zhang, G. Zhang, S. Liu, C. Zhang, X. Xu, “Naked” TiO2 capsulated in nanovoid microcapsule of poly(vinylidene fluoride) supporter with enhanced photocatalytic activity, Chemical Engineering Journal, 204-206 (2012) 217-224.
[127] P. Raja, M. Bensimon, U. Klehm, P. Albers, D. Laub, L. Kiwi-Minsker, A. Renken, J. Kiwi, Highly dispersed PTFE/Co3O4 flexible films as photocatalyst showing fast kinetic performance for the discoloration of azo-dyes under solar irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 187 (2007) 332-338.
[128] W. Kang, J. Ju, H. He, F. Li, L. Tao, Y. Dong, B. Cheng, Photocatalytic Degradation Performance of TiO2/PTFE Membrane Catalyst to Methylene Blue, Chemistry Letters, 45 (2016) 1440-1443.
[129] D.E. Tsydenov, A.V. Vorontsov, Influence of Nafion loading on hydrogen production in a membrane photocatalytic system, Journal of Photochemistry and Photobiology A: Chemistry, 297 (2015) 8-13.
[130] P. Raja, M. Bensimon, U. Klehm, P. Albers, D. Laub, L. Kiwi-Minsker, A. Renken, J. Kiwi, Highly dispersed PTFE/Co3O4 flexible films as photocatalyst showing fast kinetic performance for the discoloration of azo-dyes under solar irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 187 (2007) 332-338.
[131] Z. Ding, Y. Dong, B. Li, Preparation of a modified PTFE fibrous photo-Fenton catalyst and its optimization towards the degradation of organic dye, International Journal of Photoenergy, 2012 (2012).
[132] M. Lombardi, P. Palmero, M. Sangermano, A. Varesano, Electrospun polyamide‐6 membranes containing titanium dioxide as photocatalyst, Polymer International, 60 (2011) 234-239.
[133] Z. Liu, Y.-E. Miao, M. Liu, Q. Ding, W.W. Tjiu, X. Cui, T. Liu, Flexible polyaniline-coated TiO2/SiO2 nanofiber membranes with enhanced visible-light photocatalytic degradation performance, Journal of Colloid and Interface Science, 424 (2014) 49-55.
[134] S.B. Teli, S. Molina, A. Sotto, E.G.a. Calvo, J.d. Abajob, Fouling resistant polysulfone–PANI/TiO2 ultrafiltration nanocomposite membranes, Industrial & Engineering Chemistry Research, 52 (2013) 9470-9479.
[135] D. Pathania, G. Sharma, A. Kumar, N.C. Kothiyal, Fabrication of nanocomposite polyaniline zirconium(IV) silicophosphate for photocatalytic and antimicrobial activity, Journal of Alloys and Compounds, 588 (2014) 668-675.
[136] H. Zhang, R. Zong, J. Zhao, Y. Zhu, Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI, Environmental Science and Technology, 42 (2008) 3803-3807.
[137] C. Leng, J. Wei, Z. Liu, R. Xiong, C. Pan, J. Shi, Facile synthesis of PANI-modified CoFe 2 O 4–TiO 2 hierarchical flower-like nanoarchitectures with high photocatalytic activity, Journal of nanoparticle research, 15 (2013) 1643.
[138] H. Ahmadizadegan, S. Esmaielzadeh, Investigating the effect of ultrasonic irradiation on preparation and properties of conductive nanocomposites, Solid State Sciences, 85 (2018) 9-20.
[139] M.R. Karim, H.W. Lee, I.W. Cheong, S.M. Park, W. Oh, J.H. Yeum, Conducting polyaniline‐titanium dioxide nanocomposites prepared by inverted emulsion polymerization, Polymer Composites, 31 (2010) 83-88.
[140] M. Shang, W. Wang, S. Sun, J. Ren, L. Zhou, L. Zhang, Efficient visible light-induced photocatalytic degradation of contaminant by spindle-like PANI/BiVO4, The Journal of Physical Chemistry C, 113 (2009) 20228-20233.
[141] L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang, S. Wu, Characterization and gas sensitivity study of polyaniline/SnO2 hybrid material prepared by hydrothermal route, Sensors and Actuators B: Chemical, 120 (2007) 568-572.
[142] M. Rabia, H. Mohamed, M. Shaban, S. Taha, Preparation of polyaniline/PbS core-shell nano/microcomposite and its application for photocatalytic H 2 electrogeneration from H 2 O, Scientific reports, 8 (2018) 1107.
[143] Y. Lin, D. Li, J. Hu, G. Xiao, J. Wang, W. Li, X. Fu, Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO 2 composite, Journal of Physical Chemistry C, 116 (2012) 5764-5772.
[144] X. Li, C. Shi, J. Wang, J. Wang, M. Li, H. Qiu, H. Sun, K. Ogino, Polyaniline-doped TiO 2/PLLA fibers with enhanced visible-light photocatalytic degradation performance, Fibers and Polymers, 18 (2017) 50-56.
[145] J. Li, Q. Ma, X. Dong, D. Li, X. Xi, W. Yu, J. Wang, G. Liu, Novel electrospun bilayered composite fibrous membrane endowed with tunable and simultaneous quadrifunctionality of electricity–magnetism at one layer and upconversion luminescence–photocatalysis at the other layer, RSC Advances, 6 (2016) 96084-96092.
[146] S. Neubert, D. Pliszka, V. Thavasi, E. Wintermantel, S. Ramakrishna, Conductive electrospun PANi-PEO/TiO2 fibrous membrane for photo catalysis, Materials Science and Engineering: B, 176 (2011) 640-646.
[147] S.H. Kim, S.-Y. Kwak, B.-H. Sohn, T.H. Park, Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem, Journal of Membrane Science, 211 (2003) 157-165.
[148] H. Zhang, L. Yang, Immobilization of nanoparticle titanium dioxide membrane on polyamide fabric by low temperature hydrothermal method, Thin Solid Films, 520 (2012) 5922-5927.
[149] N. Daels, M. Radoicic, M. Radetic, S.W.H. Van Hulle, K. De Clerck, Functionalisation of electrospun polymer nanofibre membranes with TiO2 nanoparticles in view of dissolved organic matter photodegradation, Separation and Purification Technology, 133 (2014) 282-290.
[150] J. Geltmeyer, H. Teixido, M. Meire, T. Van Acker, K. Deventer, F. Vanhaecke, S. Van Hulle, K. De Buysser, K. De Clerck, TiO2 functionalized nanofibrous membranes for removal of organic (micro)pollutants from water, Separation and Purification Technology, 179 (2017) 533-541.
[151] E. Cossich, R. Bergamasco, M.T. Pessoa de Amorim, P.M. Martins, J. Marques, C.J. Tavares, S. Lanceros-Méndez, V. Sencadas, Development of electrospun photocatalytic TiO2-polyamide-12 nanocomposites, Materials Chemistry and Physics, 164 (2015) 91-97.
[152] E.A. de Campos, S.D. de Campos, A.A. Roos, B.V. de Souza, J.M. Schneider, M.B. Uliana, R.C. de Oliveira, Titanium Dioxide Dispersed on Cellulose Acetate and its Application in Methylene Blue Photodegradation, Polymers and Polymer Composites, 21 (2013) 423-430.
[153] X. Yang, J. Ma, J. Ling, N. Li, D. Wang, F. Yue, S. Xu, Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation, Applied Surface Science, 435 (2018) 609-616.
[154] L. Zhang, W. Wang, J. Yang, Z. Chen, W. Zhang, L. Zhou, S. Liu, Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst, Applied Catalysis A: General, 308 (2006) 105-110.
[155] G. Liu, S. Li, Y. Lu, J. Zhang, Z. Feng, C. Li, Controllable synthesis of α-Bi2O3 and γ-Bi2O3 with high photocatalytic activity by α-Bi2O3→ γ-Bi2O3→ α-Bi2O3 transformation in a facile precipitation method, Journal of Alloys and Compounds, 689 (2016) 787-799.
[156] H.-Y. Jiang, K. Cheng, J. Lin, Crystalline metallic Au nanoparticle-loaded α-Bi 2 O 3 microrods for improved photocatalysis, Physical Chemistry Chemical Physics, 14 (2012) 12114-12121.
[157] S. Jiang, L. Wang, W. Hao, W. Li, H. Xin, W. Wang, T. Wang, Visible-light photocatalytic activity of S-doped α-Bi2O3, The Journal of Physical Chemistry C, 119 (2015) 14094-14101.
[158] H.-Y. Jiang, G. Liu, T. Wang, P. Li, J. Lin, J. Ye, In situ construction of α-Bi 2 O 3/gC 3 N 4/β-Bi 2 O 3 composites and their highly efficient photocatalytic performances, RSC Advances, 5 (2015) 92963-92969.
[159] S. Juntrapirom, D. Tantraviwat, S. Suntalelat, O. Thongsook, S. Phanichphant, B. Inceesungvorn, Visible light photocatalytic performance and mechanism of highly efficient SnS/BiOI heterojunction, Journal of colloid and interface science, 504 (2017) 711-720.
[160] C. Liu, Y. Yang, J. Li, S. Chen, W. Li, X. Tang, An in situ transformation approach for fabrication of BiVO4/WO3 heterojunction photoanode with high photoelectrochemical activity, Chemical Engineering Journal, 326 (2017) 603-611.
[161] L.M. Pastrana-Martínez, S. Morales-Torres, J.L. Figueiredo, J.L. Faria, A.M. Silva, Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water, Water research, 77 (2015) 179-190.
[162] G. He, C. Xing, X. Xiao, R. Hu, X. Zuo, J. Nan, Facile synthesis of flower-like Bi12O17Cl2/β-Bi2O3 composites with enhanced visible light photocatalytic performance for the degradation of 4-tert-butylphenol, Applied Catalysis B: Environmental, 170 (2015) 1-9.
[163] M. Zhao, L. Dong, Q. Zhang, H. Dong, C. Li, H. Tang, Novel plate-stratiform nanostructured Bi 12 O 17 Cl 2 with visible-light photocatalytic performance, Powder Diffraction, 31 (2016) 2-7.
[164] L.-C. Tien, Y.-L. Lin, S.-Y. Chen, Synthesis and characterization of Bi12O17Cl2 nanowires obtained by chlorination of α-Bi2O3 nanowires, Materials Letters, 113 (2013) 30-33.
[165] Z. Yu, X. Min, F. Li, D. Yin, Y. Peng, G. Zeng, A mussel-inspired method to fabricate a novel reduced graphene oxide/Bi12O17Cl2 composites membrane for catalytic degradation and oil/water separation, Polymers for Advanced Technologies, 30 (2019) 101-109.
[166] H. Tang, C.M. Hessel, J. Wang, N. Yang, R. Yu, H. Zhao, D. Wang, Two-dimensional carbon leading to new photoconversion processes, Chemical Society Reviews, 43 (2014) 4281-4299.
[167] A. Alizadeh, G. Abdi, M.M. Khodaei, M. Ashokkumar, J. Amirian, Graphene oxide/Fe 3 O 4/SO 3 H nanohybrid: a new adsorbent for adsorption and reduction of Cr (vi) from aqueous solutions, RSC Advances, 7 (2017) 14876-14887.
[168] Z. Zhou, X. Peng, L. Zhong, L. Wu, X. Cao, R.C. Sun, Electrospun cellulose acetate supported Ag@AgCl composites with facet-dependent photocatalytic properties on degradation of organic dyes under visible-light irradiation, Carbohydrate Polymers, 136 (2016) 322-328.
[169] R. Konwarh, N. Karak, M. Misra, Electrospun cellulose acetate nanofibers: The present status and gamut of biotechnological applications, Biotechnology Advances, 31 (2013) 421-437.
[170] Y. Li, J. Tian, C. Yang, B. Hsiao, Nanocomposite Film Containing Fibrous Cellulose Scaffold and Ag/TiO2 Nanoparticles and Its Antibacterial Activity, Polymers, 10 (2018) 1052.
[171] H.S. Barud, R.M.N. Assunção, M.A.U. Martines, J. Dexpert-Ghys, R.F.C. Marques, Y. Messaddeq, S.J.L. Ribeiro, Bacterial cellulose–silica organic–inorganic hybrids, Journal of Sol-Gel Science and Technology, 46 (2008) 363-367.
[172] H.S. Barud, C. Barrios, T. Regiani, R.F.C. Marques, M. Verelst, J. Dexpert-Ghys, Y. Messaddeq, S.J.L. Ribeiro, Self-supported silver nanoparticles containing bacterial cellulose membranes, Materials Science and Engineering: C, 28 (2008) 515-518.
[173] D. Zhang, L. Qi, Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes, Chemical Communications, (2005) 2735-2737.
[174] N.M. Bedford, A.J. Steckl, Photocatalytic Self Cleaning Textile Fibers by Coaxial Electrospinning, ACS Applied Materials & Interfaces, 2 (2010) 2448-2455.
[175] X. Zhang, W. Chen, Z. Lin, J. Shen, Photocatalytic degradation of a methyl orange wastewater solution using titanium dioxide loaded on bacterial cellulose, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 41 (2011) 1141-1147.
[176] E.A. de Campos, S.D. de Campos, A.A. Roos, B.V.C. de Souza, J.M. Schneider, M.B. Uliana, R.C. de Oliveira, Titanium Dioxide Dispersed on Cellulose Acetate and its Application in Methylene Blue Photodegradation, Polymers and Polymer Composites, 21 (2013) 423-430.
[177] W. Zheng, S. Chen, S. Zhao, Y. Zheng, H. Wang, Zinc sulfide nanoparticles template by bacterial cellulose and their optical properties, Journal of Applied Polymer Science, 131 (2014).
[178] A. Wittmar, H. Thierfeld, S. Köcher, M. Ulbricht, Routes towards catalytically active TiO 2 doped porous cellulose, RSC Advances, 5 (2015) 35866-35873.
[179] S.-D. Wang, Q. Ma, H. Liu, K. Wang, L.-Z. Ling, K.-Q. Zhang, Robust electrospinning cellulose acetate@ TiO 2 ultrafine fibers for dyeing water treatment by photocatalytic reactions, RSC Advances, 5 (2015) 40521-40530.
[180] H. Bai, X. Zan, J. Juay, D.D. Sun, Hierarchical heteroarchitectures functionalized membrane for high efficient water purification, Journal of Membrane Science, 475 (2015) 245-251.
[181] I. Chauhan, P. Mohanty, In situ decoration of TiO2 nanoparticles on the surface of cellulose fibers and study of their photocatalytic and antibacterial activities, Cellulose, 22 (2015) 507-519.
[182] M.A. Mohamed, W.N.W. Salleh, J. Jaafar, A.F. Ismail, M. Abd Mutalib, S.M. Jamil, Incorporation of N-doped TiO2 nanorods in regenerated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst, Carbohydrate Polymers, 133 (2015) 429-437.
[183] A.S. Monteiro, R.R. Domeneguetti, M. Wong Chi Man, H.S. Barud, E. Teixeira-Neto, S.J.L. Ribeiro, Bacterial cellulose–SiO2@TiO2 organic–inorganic hybrid membranes with self-cleaning properties, Journal of Sol-Gel Science and Technology, 89 (2019) 2-11.
[184] A. Rajeswari, E. Jackcina Stobel Christy, A. Pius, New insight of hybrid membrane to degrade Congo red and Reactive yellow under sunlight, Journal of Photochemistry and Photobiology B: Biology, 179 (2018) 7-17.
[185] B. Li, J. Chu, Y. Li, M. Meng, Y. Cui, Q. Li, Y. Feng, Preparation and Performance of Visible-Light-Driven Bi2O3/ZnS Heterojunction Functionalized Porous CA Membranes for Effective Degradation of Rhodamine B, physica status solidi (a), 215 (2018) 1701061.
[186] Q. Chen, Z. Yu, F. Li, Y. Yang, Y. Pan, Y. Peng, X. Yang, G. Zeng, A novel photocatalytic membrane decorated with RGO-Ag-TiO2 for dye degradation and oil–water emulsion separation, Journal of Chemical Technology & Biotechnology, 93 (2018) 761-775.
[187] A. Rajeswari, A. Pius, Preparation, Characterization and Application of Nano ZnO – Blended Polymeric Membrane, Materials Today: Proceedings, 5 (2018) 16814-16820.
[188] W. Li, T. Li, G. Li, L. An, F. Li, Z. Zhang, Electrospun H4SiW12O40/cellulose acetate composite nanofibrous membrane for photocatalytic degradation of tetracycline and methyl orange with different mechanism, Carbohydrate Polymers, 168 (2017) 153-162.
[189] F. Li, Z. Yu, H. Shi, Q. Yang, Q. Chen, Y. Pan, G. Zeng, L. Yan, A Mussel-inspired method to fabricate reduced graphene oxide/g-C3N4 composites membranes for catalytic decomposition and oil-in-water emulsion separation, Chemical Engineering Journal, 322 (2017) 33-45.
[190] A. Rajeswari, S. Vismaiya, A. Pius, Preparation, characterization of nano ZnO-blended cellulose acetate-polyurethane membrane for photocatalytic degradation of dyes from water, Chemical Engineering Journal, 313 (2017) 928-937.
[191] L. Song, B. Zhu, V. Jegatheesan, S.R. Gray, M.C. Duke, S. Muthukumaran, Effect of Hybrid Photocatalysis and Ceramic Membrane Filtration Process for Humic Acid Degradation, in: M. Pannirselvam, L. Shu, G. Griffin, L. Philip, A. Natarajan, S. Hussain (Eds.) Water Scarcity and Ways to Reduce the Impact: Management Strategies and Technologies for Zero Liquid Discharge and Future Smart Cities, Springer International Publishing, Cham, 2019, pp. 95-113.
[192] M.A. Anderson, M.J. Gieselmann, Q. Xu, Titania and alumina ceramic membranes, Journal of Membrane Science, 39 (1988) 243-258.
[193] R. Goei, T.-T. Lim, Asymmetric TiO2 hybrid photocatalytic ceramic membrane with porosity gradient: Effect of structure directing agent on the resulting membranes architecture and performances, Ceramics International, 40 (2014) 6747-6757.
[194] T. Yang, H. Xiong, F. Liu, Q. Yang, B. Xu, C. Zhan, Effect of UV/TiO2 pretreatment on fouling alleviation and mechanisms of fouling development in a cross-flow filtration process using a ceramic UF membrane, Chemical Engineering Journal, 358 (2019) 1583-1593.
[195] Q. Li, R. Jia, J. Shao, Y. He, Photocatalytic degradation of amoxicillin via TiO2 nanoparticle coupling with a novel submerged porous ceramic membrane reactor, Journal of Cleaner Production, 209 (2019) 755-761.
[196] B. Van der Bruggen, C. Vandecasteele, T. Van Gestel, W. Doyen, R. Leysen, A review of pressure‐driven membrane processes in wastewater treatment and drinking water production, Environmental progress, 22 (2003) 46-56.
[197] H. Imai, Y. Takei, K. Shimizu, M. Matsuda, H. Hirashima, Direct preparation of anatase TiO2 nanotubes in porous alumina membranes, Journal of Materials Chemistry, 9 (1999) 2971-2972.
[198] S. Liu, K. Li, Preparation TiO2/Al2O3 composite hollow fibre membranes, Journal of Membrane Science, 218 (2003) 269-277.
[199] N. Ma, Y. Zhang, X. Quan, X. Fan, H. Zhao, Performing a microfiltration integrated with photocatalysis using an Ag-TiO2/HAP/Al2O3 composite membrane for water treatment: Evaluating effectiveness for humic acid removal and anti-fouling properties, Water research, 44 (2010) 6104-6114.
[200] X.P. Cao, D. Li, W.H. Jing, W.H. Xing, Y.Q. Fan, Synthesis of visible-light responsive C, N and Ce co-doped TiO 2 mesoporous membranes via weak alkaline sol–gel process, Journal of Materials Chemistry, 22 (2012) 15309-15315.
[201] L. Liu, Z. Liu, H. Bai, D.D. Sun, Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane, Water research, 46 (2012) 1101-1112.
[202] X. Zhang, A.J. Du, P. Lee, D.D. Sun, J.O. Leckie, TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water, Journal of Membrane Science, 313 (2008) 44-51.
[203] X. Zhang, D.K. Wang, D.R.S. Lopez, J.C. Diniz da Costa, Fabrication of nanostructured TiO2 hollow fiber photocatalytic membrane and application for wastewater treatment, Chemical Engineering Journal, 236 (2014) 314-322.
[204] S. Liu, K. Li, Preparation TiO2/Al2O3 composite hollow fibre membranes, Journal of Membrane Science, 218 (2003) 269-277.
[205] J.E. Koresh, A. Soffer, Mechanism of permeation through molecular-sieve carbon membrane. Part 1.—The effect of adsorption and the dependence on pressure, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 82 (1986) 2057-2063.
[206] S. Liu, K. Li, R. Hughes, Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method, Ceramics International, 29 (2003) 875-881.
[207] X. Tan, S. Liu, K. Li, Preparation and characterization of inorganic hollow fiber membranes, Journal of Membrane Science, 188 (2001) 87-95.
[208] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chemical reviews, 107 (2007) 2891-2959.
[209] S.P. Albu, A. Ghicov, J.M. Macak, R. Hahn, P. Schmuki, Self-Organized, Free-Standing TiO2 Nanotube Membrane for Flow-through Photocatalytic Applications, Nano Letters, 7 (2007) 1286-1289.
[210] M. Guo, B. Ding, X. Li, X. Wang, J. Yu, M. Wang, Amphiphobic nanofibrous silica mats with flexible and high-heat-resistant properties, The Journal of Physical Chemistry C, 114 (2009) 916-921.
[211] D. Vu, Z. Li, H. Zhang, W. Wang, Z. Wang, X. Xu, B. Dong, C. Wang, Adsorption of Cu (II) from aqueous solution by anatase mesoporous TiO2 nanofibers prepared via electrospinning, Journal of colloid and interface science, 367 (2012) 429-435.
[212] H. Choi, E. Stathatos, D.D. Dionysiou, Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications, Applied Catalysis B: Environmental, 63 (2006) 60-67.
[213] X. Zhang, C. Shao, Z. Zhang, J. Li, P. Zhang, M. Zhang, J. Mu, Z. Guo, P. Liang, Y. Liu, In situ generation of well-dispersed ZnO quantum dots on electrospun silica nanotubes with high photocatalytic activity, ACS applied materials & interfaces, 4 (2012) 785-790.
[214] Z. Hosseini, N. Taghavinia, N. Sharifi, M. Chavoshi, M. Rahman, Fabrication of high conductivity TiO2/Ag fibrous electrode by the electrophoretic deposition method, The Journal of Physical Chemistry C, 112 (2008) 18686-18689.
[215] P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications, Angewandte Chemie International Edition, 50 (2011) 2904-2939.
[216] K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X. Feng, M. Paulose, J.A. Seabold, K.-S. Choi, C.A. Grimes, Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry, The Journal of Physical Chemistry C, 113 (2009) 6327-6359.
[217] S. Hoang, S. Guo, N.T. Hahn, A.J. Bard, C.B. Mullins, Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires, Nano letters, 12 (2011) 26-32.
[218] H. Tada, M. Fujishima, H. Kobayashi, Photodeposition of metal sulfide quantum dots on titanium (IV) dioxide and the applications to solar energy conversion, Chemical Society Reviews, 40 (2011) 4232-4243.
[219] Y.J. Hwang, C. Hahn, B. Liu, P. Yang, Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating, Acs Nano, 6 (2012) 5060-5069.
[220] I.S. Cho, Z. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production, Nano Letters, 11 (2011) 4978-4984.
[221] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting, Nano letters, 11 (2011) 3026-3033.
[222] Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang, Y. Li, Sn-doped hematite nanostructures for photoelectrochemical water splitting, Nano letters, 11 (2011) 2119-2125.
[223] M. Xu, P. Da, H. Wu, D. Zhao, G. Zheng, Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion, Nano letters, 12 (2012) 1503-1508.