Plastics Versus Bioplastics


Plastics Versus Bioplastics

Faizan Muneer, Sabir Hussain, Sidra-tul-Muntaha, Muhammad Riaz, Habibullah Nadeem

Plastics are polymers of long chain hydrocarbons based on petrochemicals. Due to their physiochemical properties these are almost non-degradable and their complete recycling is impossible. High production rate and less disposal capacities have made plastic environmental pollutant resulting in severe impacts on the health of organisms and destruction of habitats thus effecting the biosphere in different ways. Biodegradation, thermal and catalytic degradation of plastics is widely studied to ensure a sustainable disposal of plastic waste with limited results until the present however, a new field where ecofriendly polymers obtained from natural biomass are used to make materials is flourishing. Bioplastics are polymers derived from biomass such as cellulose, starch, chitin and microbial polyhydroxyalkanoates that have the ability to produce products of daily use that can replace their counter parts made from the synthetic plastics. Bioplastics degrade easily in natural environment and replace the petrochemical based plastic polymers, thus saving the natural environment from plastic pollution and ensuring a sustainable environment.

Polyhydroxyalkanoates, Biopolymers, Biodegradation, Polyethylene, Plastic Pollution

Published online 4/1/2021, 45 pages

Citation: Faizan Muneer, Sabir Hussain, Sidra-tul-Muntaha, Muhammad Riaz, Habibullah Nadeem, Plastics Versus Bioplastics, Materials Research Foundations, Vol. 99, pp 193-237, 2021


Part of the book on Degradation of Plastics

[1] S. Thakur, A. Verma, B. Sharma, J. Chaudhary, S. Tamulevicius, V.K. Thakur, Recent developments in recycling of polystyrene based plastics, Curr. Opin. Green Sustain. Chem. 13 (2018) 32–38.
[2] R. Wei, W. Zimmermann, Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?, Microb. Biotechnol. 10 (2017) 1308–1322.
[3] R. Porta, The plastics sunset and the bio-plastics sunrise, Coatings. 9 (2019) 526.
[4] A. Malizia, A.C. Monmany-Garzia, Terrestrial ecologists should stop ignoring plastic pollution in the anthropocene time, Sci. Total Environ. 668 (2019) 1025–1029.
[5] A.M. Brandon, C.S. Criddle, Can biotechnology turn the tide on plastics?, Curr. Opin. Biotechnol. 57 (2019) 160–166.
[6] S. Kumar, K. Thakur, Bioplastics – classification, production and their potential food applications, J. Hill Agric. 8 (2017) 118.
[7] E.B. Arikan, H.D. Ozsoy, A Review: Investigation of bioplastics, J. Civ. Eng. Archit. 9 (2015) 188–192.
[8] M.W. Ryberg, A. Laurent, M. Hauschild, Mapping of global plastics value chain and plastics losses to the environment, United Nations Environ. Program. (2018) 5–99
[9] F. Alshehrei, Biodegradation of synthetic and natural plastic by microorganisms, J. Appl. Environ. Microbiol. Vol. 5, 2017, Pages 8-19. 5 (2017) 8–19.
[10] (WEF) World Economic Forum, Top 10 Emerging Technologies 2019, World Econ. Forum Annu. Meet. 2019. (2019) 4–15.
[11] R. Devi, V. Kannan, K. Natarajan, D. Nivas, K. Kannan, S. Chandru, A. Antony, The role of microbes in plastic degradation, 2015.
[12] X. Jia, C. Qin, T. Friedberger, Z. Guan, Z. Huang, Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions, Sci. Adv. 2 (2016) 1–8.
[13] B. Kunwar, H.N. Cheng, S.R. Chandrashekaran, B.K. Sharma, Plastics to fuel: a review, Renew. Sustain. Energy Rev. 54 (2016) 421–428.
[14] S. Skariyachan, A.A. Patil, A. Shankar, M. Manjunath, N. Bachappanavar, S. Kiran, Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants, Polym. Degrad. Stab. 149 (2018) 52–68.
[15] L. Giacomucci, N. Raddadi, M. Soccio, N. Lotti, F. Fava, Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus, N. Biotechnol. 52 (2019) 35–41.
[16] C. Andreeßen, A. Steinbüchel, Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives, Appl. Microbiol. Biotechnol. 103 (2019) 143–157.
[17] M.C.M. Blettler, M.A. Ulla, A.P. Rabuffetti, N. Garello, Plastic pollution in freshwater ecosystems: macro-, meso-, and microplastic debris in a floodplain lake, Environ. Monit. Assess. 189 (2017).
[18] C. Wabnitz, W.J. Nichols, Editorial: Plastic pollution: An ocean emergency, Mar. Turt. Newsl. (2010) 1–4.
[19] M. Vert, Y. Doi, K.-H. Hellwich, M. Hess, P. Hodge, P. Kubisa, M. Rinaudo, F. Schué, Terminology for biorelated polymers and applications (IUPAC Recommendations 2012), Pure Appl. Chem. 84 (2012) 377–410.
[20] L. Godfrey, Waste plastic, the challenge facing developing countries—Ban it, change it, collect it?, Recycling. 4 (2019) 3.
[21] N.J. Beaumont, M. Aanesen, M.C. Austen, T. Börger, J.R. Clark, M. Cole, T. Hooper, P.K. Lindeque, C. Pascoe, K.J. Wyles, Global ecological, social and economic impacts of marine plastic, Mar. Pollut. Bull. 142 (2019) 189–195.
[22] R. Scalenghe, Resource or waste? A perspective of plastics degradation in soil with a focus on end-of-life options, Heliyon. 4 (2018) e00941.
[23] S. Karbalaei, P. Hanachi, T.R. Walker, M. Cole, Occurrence, sources, human health impacts and mitigation of microplastic pollution, Environ. Sci. Pollut. Res. 25 (2018) 36046–36063.
[24] J.R. Jambeck, R. Geyer, C. Wilcox, T.R. Siegler, M. Perryman, A. Andrady, R. Narayan, K.L. Law, Plastic waste inputs from land into the ocean, Science 80;347 (2015) 768–771.
[25] O.S. Ogunola, O.A. Onada, A.E. Falaye, Mitigation measures to avert the impacts of plastics and microplastics in the marine environment (a review), Environ. Sci. Pollut. Res. 25 (2018) 9293–9310.
[26] M. Valentukevičienė, E. Brannvall, Marine pollution: an overviewJūros Geologija. 50 (2008) 17–23.
[27] S. Sharma, S. Chatterjee, Microplastic pollution, a threat to marine ecosystem and human health: a short review, Environ. Sci. Pollut. Res. 24 (2017) 21530–21547.
[28] L. Ivanova, K. Sokolov, G. Kharitonova, Plastic pollution tendencies of the Barents sea and adjacent waters under the climate change, Arct. North. 32 (2018) 121–145.
[29] L.G.A. Barboza, A. Dick Vethaak, B.R.B.O. Lavorante, A.K. Lundebye, L. Guilhermino, Marine microplastic debris: An emerging issue for food security, food safety and human health, Mar. Pollut. Bull. 133 (2018) 336–348.
[30] Y.H. Yang, C.J. Brigham, C.F. Budde, P. Boccazzi, L.B. Willis, M.A. Hassan, Z.A.M. Yusof, C. Rha, A.J. Sinskey, Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha, Appl. Microbiol. Biotechnol. 87 (2010) 2037–2045.
[31] Y. Yu, D. Zhou, Z. Li, C. Zhu, Advancement and challenges of microplastic pollution in the aquatic environment: A review, Water. air. soil Pollut. 229 (2018) 2–18.
[32] A.C. Vegter, M. Barletta, C. Beck, J. Borrero, H. Burton, M.L. Campbell, M.F. Costa, M. Eriksen, C. Eriksson, A. Estrades, K.V.K. Gilardi, B.D. Hardesty, J.A. Ivar do Sul, J.L. Lavers, B. Lazar, L. Lebreton, W.J. Nichols, C.A. Ribic, P.G. Ryan, Q.A. Schuyler, S.D.A. Smith, H. Takada, K.A. Townsend, C.C.C. Wabnitz, C. Wilcox, L.C. Young, M. Hamann, Global research priorities to mitigate plastic pollution impacts on marine wildlife, Endanger. Species Res. 25 (2014) 225–247.
[33] A.L. Andrady, Microplastics in the marine environment, Mar. Pollut. Bull. 62 (2011) 1596–1605.
[34] S.G. Tetu, I. Sarker, V. Schrameyer, R. Pickford, L.D.H. Elbourne, L.R. Moore, I.T. Paulsen, Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean’s most abundant photosynthetic bacteria, Commun. Biol. 2 (2019) 1–9.
[35] D. Danso, J. Chow, W.R. Streita, Plastics: Environmental and biotechnological perspectives on microbial degradation, Appl. Environ. Microbiol. 85 (2019) 1–14.
[36] G.J. Palm, L. Reisky, D. Böttcher, H. Müller, E.A.P. Michels, M.C. Walczak, L. Berndt, M.S. Weiss, U.T. Bornscheuer, G. Weber, Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate, Nat. Commun. 10 (2019) 1–10.
[37] M. Furukawa, N. Kawakami, A. Tomizawa, K. Miyamoto, Efficient degradation of Poly(ethylene terephthalate) with Thermobifida fuscacutinase exhibiting improved catalytic activity generated using mutagenesis and additive-based approaches, Sci. Rep. 9 (2019) 1–9.
[38] T. Volova, E. Kiselev, N. Zhila, E. Shishatskaya, Synthesis of polyhydroxyalkanoates by hydrogen-oxidizing bacteria in apilot production process, Biomacromolecules. (2019).
[39] A. Iles, A.N. Martin, Expanding bioplastics production: Sustainable business innovation in the chemical industry, J. Clean. Prod. 45 (2013) 38–49.
[40] H. Karan, C. Funk, M. Grabert, M. Oey, B. Hankamer, Green bioplastics as part of a circular bioeconomy, Trends Plant Sci. 24 (2019) 237–249.
[41] S. Beucker, F. Marscheider-Weidemann, Potentials and challenges of bioplastics – Insights from a German survey on “ GreenFuture Markets”, Borderstep Inst. Innov. Sustain. (2007) 1–7.
[42] M.V. Reddy, Y. Mawatari, R. Onodera, Y. Nakamura, Y. Yajima, Y.-C. Chang, Bacterial conversion of waste into polyhydroxybutyrate (PHB): A new approach of bio-circular economy for treating waste and energy generation, Bioresour. Technol. Reports. 7 (2019) 100246.
[43] M.. Paridah, A. Moradbak, A. Mohamed, F. abdulwahab taiwo Owolabi, M. Asniza, S.H.. Abdul Khalid, Prospective biodegradable plastics from biomass conversion processes. Intech. 13 (2016)
[44] R.J.K. Helmes, A.M. López-Contreras, M. Benoit, H. Abreu, J. Maguire, F. Moejes, S.W.K. van den Burg, Environmental impacts of experimental production of lactic acid for bioplastics from Ulva spp, Sustain. 10 (2018) 1–15.
[45] S. Spierling, C. Röttger, V. Venkatachalam, M. Mudersbach, C. Herrmann, H.J. Endres, Bio-based Plastics – A building block for the circular economy?, Procedia CIRP. 69 (2018) 573–578.
[46] M. He, X. Wang, Z. Wang, L. Chen, Y. Lu, X. Zhang, M. Li, Z. Liu, Y. Zhang, H. Xia, L. Zhang, Biocompatible and biodegradable bioplastics constructed from chitin via a “green” pathway for bone repair, ACS Sustain. Chem. Eng. 5 (2017) 9126–9135.
[47] P. Trivedi, A. Hasan, S. Akhtar, M. Haris Siddiqui, U. Sayeed, M. Kalim, A. Khan, Role of microbes in degradation of synthetic plastics and manufacture of bioplastics, J. Chem. Pharm. Res. 8 (2016) 211–216.
[48] C. Rajendran, N. , Sharanya Puppala, Sneha Raj M., Ruth Angeeleena B., and Rajam, Seaweeds can be a new source for bioplastics, J. Pharm. Res. 5 (2012) 1476–1479
[49] O. Valerio, J.M. Pin, M. Misra, A.K. Mohanty, Synthesis of glycerol-based biopolyesters as toughness enhancers for polylactic acid bioplastic through reactive extrusion, ACS Omega. 1 (2016) 1284–1295.
[50] M.N. Somleva, K.D. Snell, J.J. Beaulieu, O.P. Peoples, B.R. Garrison, N.A. Patterson, Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop, Plant Biotechnol. J. 6 (2008) 663–678.
[51] B.T. Ho, T.K. Roberts, S. Lucas, An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach, Crit. Rev. Biotechnol. 38 (2018) 308–320.
[52] Maulida, M. Siagian, P. Tarigan, Production of starch based bioplastic from cassava peel reinforced with microcrystalline cellulose avicel PH101 using sorbitol as plasticizer, J. Phys. Conf. Ser. 710 (2016).
[53] S. Mohapatra, S. Maity, H.R. Dash, S. Das, S. Pattnaik, C.C. Rath, D. Samantaray, Bacillus and biopolymer: Prospects and challenges, Biochem. Biophys. Reports. 12 (2017) 206–213.
[54] J. Gonzalez-Gutierrez, P. Partal, M. Garcia-Morales, C. Gallegos, Development of highly-transparent protein/starch-based bioplastics, Bioresour. Technol. 101 (2010) 2007–2013.
[55] I. Reiniati, A.N. Hrymak, A. Margaritis, Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals, Crit. Rev. Biotechnol. 37 (2017) 510–524.
[56] M. Brodin, M. Vallejos, M.T. Opedal, M.C. Area, G. Chinga-Carrasco, Lignocellulosics as sustainable resources for production of bioplastics – A review, J. Clean. Prod. 162 (2017) 646–664.
[57] Isroi, A. Cifriadi, T. Panji, N.A. Wibowo, K. Syamsu, Bioplastic production from cellulose of oil palm empty fruit bunch, IOP Conf. Ser. Earth Environ. Sci. 65 (2017).
[58] R. Villa-Rojas, A. Valdez-Fragoso, H. Mújica-Paz, Manufacturing Methods and Engineering properties of pectin-based nanobiocomposite films, Food Eng. Rev. 10 (2018) 46–56.
[59] S. Chodijah, A. Husaini, M. Zaman, Hilwatulisan, Extraction of pectin from banana peels (Musa Paradiasica Fomatypica) for biodegradable plastic films, J. Phys. Conf. Ser. 1167 (2019).
[60] S.L. Pandharipande, P.H. Bhagat, Synthesis of chitin from crab shells and its utilization in preparation of nanostructured film, Int. J. Sci. Eng. Technol. Res. 5 (2016) 2278–7798
[61] Z.A. Raza, S. Abid, I.M. Banat, Polyhydroxyalkanoates: Characteristics, production, recent developments and applications, Int. Biodeterior. Biodegrad. 126 (2018) 45–56.
[62] C.J.R. Verbeek, L.E. van den Berg, Recent developments in thermo-mechanicalprocessing of proteinous bioplastics, recent patents Mater. Sci. 2 (2010) 171–189.
[63] M.P. Ryan, G. Walsh, The biotechnological potential of whey, Rev. Environ. Sci. Biotechnol. 15 (2016) 479–498.
[64] S. Sharma, I. Luzinov, Whey based binary bioplastics, J. Food Eng. 119 (2013) 404–410.
[65] A. Jerez, P. Partal, I. Martínez, C. Gallegos, A. Guerrero, Protein-based bioplastics: Effect of thermo-mechanical processing, Rheol. Acta. 46 (2007) 711–720.
[66] B. Chalermthai, W.Y. Chan, J.R. Bastidas-Oyanedel, H. Taher, B.D. Olsen, J.E. Schmidt, Preparation and characterization of whey protein-based polymers produced from residual dairy streams, Polymers (Basel). 11 (2019).
[67] M. Javanmard, Biodegradable whey protein edible films as a new biomaterials for food and drug packaging, Iran. J. Pharm. Sci. 5 (2009) 129–134.
[68] M. Helgeson, W. Graves, D. Grewell, G. Srinivasan, Degradation and ntrogen release of zein-based bioplastic containers, J. Environ. Hortic. 27 (2009) 123–127. 27-2-123-127.pdf
[69] S. Aziz, L. Hosseinzadeh, E. Arkan, A.H. Azandaryani, Preparation of electrospun nanofibers based on wheat gluten containing azathioprine for biomedical application, Int. J. Polym. Mater. Polym. Biomater. 68 (2019) 639–646.
[70] M. Koller, A. Salerno, M. Dias, A. Reiterer, G. Braunegg, Modern biotechnological polymer synthesis: A review, Food Technol. Biotechnol. 48 (2010) 255–269
[71] R. Jain, S. Kosta, A. Tiwari, Polyhydroxyalkanoates: A way to sustainable development of bioplastics, Chronicles Young Sci. 1 (2010) 10–15.
[72] M.E. Grigore, R.M. Grigorescu, L. Iancu, R.M. Ion, C. Zaharia, E.R. Andrei, Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: a review, J. Biomater. Sci. Polym. Ed. 30 (2019) 695–712.
[73] B. Johnston, I. Radecka, D. Hill, E. Chiellini, V.I. Ilieva, W. Sikorska, M. Musioł, M. Ziȩba, A.A. Marek, D. Keddie, B. Mendrek, S. Darbar, G. Adamus, M. Kowalczuk, The microbial production of Polyhydroxyalkanoates from waste polystyrene fragments attained using oxidative degradation, Polymers (Basel). 10 (2018).
[74] J. Mozejko-Ciesielska, K. Szacherska, P. Marciniak, Pseudomonas species as producers of eco-friendly polyhydroxyalkanoates, J. Polym. Environ. 27 (2019) 1151–1166.
[75] T. Keshavarz, I. Roy, Polyhydroxyalkanoates: bioplastics with a green agenda, Curr. Opin. Microbiol. 13 (2010) 321–326.
[76] M. Kootstra, H. Elissen, S. Huurman, PHA’s (Polyhydroxyalkanoates): General information on structure and raw materials for their production, 2017.
[77] T.V. Ojumu, J. Yu, B.O. Solomon, Production of polyhydroxyalkanoates , a bacterial biodegradable polymer, African J. Biotechnol. 3 (2004) 18–24
[78] L. Favaro, M. Basaglia, J.E.G. Rodriguez, A. Morelli, O. Ibraheem, V. Pizzocchero, S. Casella, Bacterial production of PHAs from lipid-rich by-products, Appl. Food Biotechnol. 6 (2019) 45–52.
[79] K. Dietrich, M.J. Dumont, L.F. Del Rio, V. Orsat, Producing PHAs in the bioeconomy — towards a sustainable bioplastic, Sustain. Prod. Consum. 9 (2017) 58–70.
[80] K.M. Nampoothiri, N.R. Nair, R.P. John, An overview of the recent developments in polylactide (PLA) research, Bioresour. Technol. 101 (2010) 8493–8501.
[81] R. Coles, M. Kay, J. Song, Bioplastics, Adv. Biochem. Eng. Biotechnol. 166 (2010) 427–468.
[82] S.M. Emadian, T.T. Onay, B. Demirel, Biodegradation of bioplastics in natural environments, Waste Manag. 59 (2017) 526–536.
[83] P. Scarfato, L. Di Maio, L. Incarnato, Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging, J. Appl. Polym. Sci. 132 (2015).
[84] N. Benn, D. Zitomer, Pretreatment and Anaerobic Co-digestion of Selected PHB and PLA Bioplastics, Front. Environ. Sci. 5 (2018) 1–9.
[85] R. Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made., Sci. Adv. 3 (2017) e1700782.
[86] S. Mangaraj, A. Yadav, L.M. Bal, S.K. Dash, N.K. Mahanti, Application of Biodegradable polymers in food packaging industry: A comprehensive review, J. Packag. Technol. Res. 3 (2019) 77–96.
[87] L.A.M. Van Den Broek, R.J.I. Knoop, F.H.J. Kappen, C.G. Boeriu, Chitosan films and blends for packaging material, Carbohydr. Polym. 116 (2015) 237–242.
[88] J.W. Rhim, H.M. Park, C.S. Ha, Bio-nanocomposites for food packaging applications, Prog. Polym. Sci. 38 (2013) 1629–1652.
[89] V.V.T. Padil, C. Senan, S. Waclawek, M. Černík, S. Agarwal, R.S. Varma, Bioplastic fibers from gum arabic for greener food wrapping applications, ACS Sustain. Chem. Eng. 7 (2019) 5900–5911.
[90] J. Rydz, W. Sikorska, M. Kyulavska, D. Christova, Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development, Int. J. Mol. Sci. 16 (2015) 564–596.
[91] H.Y. Sintim, M. Flury, Is biodegradable plastic mulch the solution to agriculture’s plastic problem?, Environ. Sci. Technol. 51 (2017) 1068–1069.
[92] T.S.M. Amelia, A.M. Sharumathiy Govindasamy, Tamothran, and K.B. Sevakumaran Vigneswari, Biotechnological applications of polyhydroxyalkanoates. Applications of PHA in Agriculture, (2019) 347–361.
[93] B.S. Hungund, S.G. Umloti, K.P. Upadhyaya, J. Manjanna, S. Yallappa, N.H. Ayachit, Development and characterization of polyhydroxybutyrate biocomposites and their application in the removal of heavy metals, Mater. Today Proc. 5 (2018) 21023–21029.
[94] F. Alshehrei, Biodegradation of synthetic and natural plastic by microorganisms, J. Appl. Environ. Microbiol. Vol. 5, 2017, Pages 8-19. 5 (2017) 8–19.
[95] N.A. Mostafa, A.A. Farag, H.M. Abo-dief, A.M. Tayeb, Production of biodegradable plastic from agricultural wastes, Arab. J. Chem. 11 (2018) 546–553.
[96] T. Ahmed, M. Shahid, F. Azeem, I. Rasul, A.A. Shah, M. Noman, A. Hameed, N. Manzoor, M. Muhammad, Irfan Manzoor Sher, Biodegradation of plastics: current scenario and future prospects for environmental safety, Environ. Sci. Pollut. Res. 25 (2018) 7287–7298.
[97] R.A. Wilkes, L. Aristilde, Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges, J. Appl. Microbiol. 123 (2017) 582–593.
[98] A.K. Urbanek, W. Rymowicz, A.M. Mirończuk, Degradation of plastics and plastic-degrading bacteria in cold marine habitats, Appl. Microbiol. Biotechnol. 102 (2018) 7669–7678.
[99] G. Caruso, Plastic degrading microorganisms as a tool for bioremediation of plastic contamination in aquatic environments, J. Pollut. Eff. Control. 03 (2015).
[100] R. Patil, U.S. Bagde, Isolation of polyvinyl chloride degrading bacterial strains from environmental samples using enrichment culture technique, African J. Biotechnol. 11 (2012) 7947–7956.
[101] T.C.H. Dang, D.T. Nguyen, H. Thai, T.C. Nguyen, T.T.H. Tran, V.H. Le, V.H. Nguyen, X.B. Tran, . T. P. T. Pham, T. G Nguyen, Plastic degradation by thermophilic Bacillus sp. BCBT21 isolated from composting agricultural residual in Vietnam, Adv. Nat. Sci. Nanosci. Nanotechnol. 9 (2018) 015014.
[102] P. Sriyapai, K. Chansiri, T. Sriyapai, Isolation and characterization of polyester-based plastics-degrading bacteria from compost soils, Microbio. 87 (2018) 290–300.
[103] S. Pathak, C.L.Rp. Sneha, B.B. Mathew, Bioplastics : Its timeline based scenario &challengesJ. Polym. Biopolym. Chem. 2 (2014) 84–90.
[104] R. Mülhaupt, Green polymer chemistry and bio-based plastics: Dreams and reality, Macromol. Chem. Phys. 214 (2013) 159–174.
[105] N. Jabeen, I. Majid, G.A. Nayik, Bioplastics and food packaging: A review, Cogent Food Agric. 1 (2015) 1–6.
[106] F.I. Khan, L. Aktar, T. Islam, M.L. Saha, Isolation and Identification of Indigenouspoly-β-Hydroxybutyrate (PHB) producing bacteria from different waste materials, Plant Tissue Cult. Biotechnol. 29 (2019) 15–24.
[107] S. Rohner, J. Humphry, C.M. Chaléat, L.J. Vandi, D.J. Martin, N. Amiralian, M.T. Heitzmann, Mechanical properties of polyamide 11 reinforced with cellulose nanofibres from Triodia pungens, Cellulose. 25 (2018) 2367–2380.
[108] T.M.M.M. Amaro, D. Rosa, G. Comi, L. Iacumin, Prospects for the use of whey for polyhydroxyalkanoate (PHA) production, Front. Microbiol. 10 (2019) 1–12.
[109] P. Carlozzi, A. Giovannelli, M.L. Traversi, E. Touloupakis, T. Di Lorenzo, Poly-3-hydroxybutyrate and H2 production by Rhodopseudomonas sp. S16-VOGS3 grown in a new generation photobioreactor under single or combined nutrient deficiency, Int. J. Biol. Macromol. 135 (2019) 821–828.
[110] A.H.M. Fauzi, L.W. Yoon, T. Nittami, H.K. Yeohd, Enrichment of PHA-accumulators for sustainable PHA production from crude glycerol, Process Saf. Environ. Prot. 122 (2019) 200–208.
[111] H. Al-Battashi, N. Annamalai, S. Al-Kindi, A.S. Nair, S. Al-Bahry, J.P. Verma, N. Sivakumar, Production of bioplastic (poly-3-hydroxybutyrate) using waste paper as a feedstock: Optimization of enzymatic hydrolysis and fermentation employing Burkholderia sacchari, J. Clean. Prod. 214 (2019) 236–247.
[112] R.R. Dalsasso, F.A. Pavan, S.E. Bordignon, G.M.F. de Aragão, P. Poletto, Polyhydroxybutyrate (PHB) production by Cupriavidus necator from sugarcane vinasse and molasses as mixed substrate, Process Biochem. (2019) 0–1.
[113] A.O. Pérez-Arauz, A.E. Aguilar-Rabiela, A. Vargas-Torres, A.I. Rodríguez-Hernández, N. Chavarría-Hernández, B. Vergara-Porras, M.R. López-Cuellar, Production and characterization of biodegradable films of a novel polyhydroxyalkanoate (PHA) synthesized from peanut oil, Food Packag. Shelf Life. 20 (2019) 100297.
[114] T.H. Nguyen, F. Ishizuna, Y. Sato, H. Arai, M. Ishii, Physiological characterization of poly-β-hydroxybutyrate accumulation in the moderately thermophilic hydrogen-oxidizing bacterium Hydrogenophilus thermoluteolus TH-1, J. Biosci. Bioeng. 127 (2019) 686–689.
[115] T. Yamaguchi, J. Narsico, T. Kobayashi, A. Inoue, T. Ojima, Production of poly(3-hydroyxybutylate) by a novel alginolytic bacterium Hydrogenophaga sp. strain UMI-18 using alginate as a sole carbon source, J. Biosci. Bioeng. 128 (2019) 203–208.
[116] I. Pernicova, Vojtech Enev, Ivana Marova, Stanislav Obruca, Interconnection of waste chicken feather biodegradation and keratinase and mcl-PHA production employing Pseudomonas putida KT2440, Appl. Food Biotechnol. 6 (2018) 83–90.
[117] Z.N. Terzopoulou, G.Z. Papageorgiou, E. Papadopoulou, E. Athanassiadou, E. Alexopoulou, D.N. Bikiaris, Green composites prepared from aliphatic polyesters and bast fibers, Ind. Crops Prod. 68 (2015) 60–79.
[118] K. Preethi, M. Umesh, Water Hyacinth : A potential substrate for bioplastic ( PHA ) production using Pseudomonas aeruginosa, Int. Joural Appl. Res. 1 (2015) 349–354
[119] J. Yaradoddi, V. Patil, S. Ganachari, N. Banapurmath, A. Hunashyal, A. Shettar, Biodegradable plastic production from fruit waste material and its sustainable use for green applications, Int. J. Pharm. Res. Allied Sci. 5 (2016) 55–66
[120] R.G. Saratale, G.D. Saratale, S.K. Cho, D.S. Kim, G.S. Ghodake, A. Kadam, G. Kumar, R.N. Bharagava, R. Banu, H.S. Shin, Pretreatment of kenaf (Hibiscus cannabinus L.) biomass feedstock for polyhydroxybutyrate (PHB) production and characterization, Bioresour. Technol. 282 (2019) 75–80.
[121] C. Choi, J.P. Nam, J.W. Nah, Application of chitosan and chitosan derivatives as biomaterials, J. Ind. Eng. Chem. 33 (2016) 1–10.
[122] Y.E. Agustin, K.S. Padmawijaya, Effect of glycerol and zinc oxide addition on antibacterial activity of biodegradable bioplastics from chitosan-kepok banana peel starch, IOP Conf. Ser. Mater. Sci. Eng. 223 (2017).
[123] S. Domenek, P. Feuilloley, J. Gratraud, M.H. Morel, S. Guilbert, Biodegradability of wheat gluten based bioplastics, Chemosphere. 54 (2004) 551–559.
[124] N. Ramakrishnan, S. Sharma, A. Gupta, B.Y. Alashwal, Keratin based bioplastic film from chicken feathers and its characterization, Int. J. Biol. Macromol. 111 (2018) 352–358.
[125] S. Van Vlierberghe, E. Vanderleyden, V. Boterberg, P. Dubruel, Gelatin functionalization of biomaterial surfaces: Strategies for immobilization and visualization, Polymers (Basel). 3 (2011) 114–130.
[126] S. Khalid, L. Yu, L. Meng, H. Liu, A. Ali, L. Chen, Poly(lactic acid)/starch composites: Effect of microstructure and morphology of starch granules on performance, J. Appl. Polym. Sci. 134 (2017) 1–12.
[127] S.F. Williams, S. Rizk, D.P. Martin, Poly-4-hydroxybutyrate (P4HB): A new generation of resorbable medical devices for tissue repair and regeneration, Biomed. Tech. 58 (2013) 439–452.
[128] I.S. Sidek, S. Fauziah, S. Draman, S. Rozaimah, S. Abdullah, N. Anuar,Current development on bioplastics and its future: An introductory review, I Tech Mag. 1 (2019) 3-8. CURRENT
[129] V. Mehta, M. Darshan, D. Nishith, Can a starch based plastic be an option of environmental friendly plastic?, J. Glob. Biosci. 3 (2014) 681–685.
[130] W.J. Orts, J. Shey, S.H. Imam, G.M. Glenn, M.E. Guttman, J.F. Revol, Application of cellulose microfibrils in polymer nanocomposites, J. Polym. Environ. 13 (2005) 301–306.
[131] V.K. Modi, Y. Shrives, C. Sharma, P.K. Sen, Review on green polymer nanocomposite and their applications, Int. J. Innov. Res. Sci. Eng. Technol. 2014 (2015) 17651–17656.
[132] K. Khosravi-Darani, D.Z. Bucci, Application of poly(hydroxyalkanoate) in food packaging: Improvements by nanotechnology, Chem. Biochem. Eng. Q. 29 (2015) 275–285.
[133] I.M. Shamsuddin, J.A. Jafar, A.S.A. Shawai, S. Yusuf, M. Lateefah, I. Aminu, Bioplastics as better alternative to petroplastics and their role in national sustainability: A review, Adv. Biosci. Bioeng. 5 (2017) 63.
[134] F. Muneer, I. Rasul, F. Azeem, M.H. Siddique, M. Zubair, H. Nadeem, Microbial Polyhydroxyalkanoates (PHAs): Efficient Replacement of Synthetic Polymers, J PolymEnviron. (2020)28: 2301–2323.