Biodegradable Plastics from Renewable Raw Materials


Biodegradable Plastics from Renewable Raw Materials

Pravin D. Patil, Manishkumar S. Tiwari, Vivek P. Bhange

Fossil oil prices are soaring steeply due to the depleting petroleum raw materials. Extensive research has been carried out around the globe to develop efficient processes that can replace oil-derived polymers (conventional plastic) with bio-based polymers that originate from renewable resources. Fossil-oil based plastic products take decades to degrade, leading to the unwanted accumulation of plastic waste that can be seen all around. Further, greenhouse gases emission occurs during the production and destruction of synthetic plastic. Therefore, plastic waste has become a massive threat to the biosphere and needs to be addressed immediately. To overcome this issue, a new type of plastic can be produced from bio-resources that can fulfill even the energy demand in today’s world. This new form of plastic must be accommodated fast in daily life, considering the range of applications of plastics. Biodegradable plastics made from renewable raw materials can retain all the benefits of petroleum-based plastic without having any negative impacts on the environment. Bioplastics are not toxic in nature and can easily decay back into carbon dioxide via degradation. The products made from bioplastics may be commercialized, considering their superior properties over conventional plastic. The discovery and implementation of plastic made from renewable raw material resources could be a giant leap into the sustainable future.

Bio-Degradable Plastics, Biopolymer, Bio-Based Polymers, Renewable Resources

Published online 4/1/2021, 44 pages

Citation: Pravin D. Patil, Manishkumar S. Tiwari, Vivek P. Bhange, Biodegradable Plastics from Renewable Raw Materials, Materials Research Foundations, Vol. 99, pp 37-80, 2021


Part of the book on Degradation of Plastics

[1] J. Farrin, Biodegradable plastics from natural resources, Rochester Institute of Technology report for the Institute of Packaging Professionals, (2005).
[2] A. Jering, J. Günther, A. Raschka, M. Carus, Use of renewable raw materials with special emphasis on chemical industry, ETC/SCP Rep. (2010) 1–58.
[3] N. Cioica, C.Ń. Co, M. Nagy, G. Fodorean, Plastics made from renewable sources – potential and perspectives for the environment and agriculture of the third millenium, Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca – Agric. 65 (2008) 23–28.
[4] Global Bioplastics Market Research & Industry Trends Report, Available at: (accessed January 19, 2020).
[5] P. Kumar, Sonia, Green Plastic: A new plastic for packaging, Int. J. Eng. Sci. Res. Technol. 5 (2016) 778–781.
[6] M.G.A. Vieira, M.A. Da Silva, L.O. Dos Santos, M.M. Beppu, Natural-based plasticizers and biopolymer films: A review, Eur. Polym. J. 47 (2011) 254–263.
[7] R.N. Tharanathan, Biodegradable films and composite coatings: past, present and future, Trends Food Sci. Technol. 14 (2003) 71–78.
[8] J.F. Martucci, R.A. Ruseckaite, Biodegradable bovine gelatin/Na+-montmorillonite nanocomposite films, structure, barrier and dynamic mechanical properties, Polym. Plast. Technol. Eng. 49 (2010) 581–588.
[9] M. Flieger, M. Kantorová, A. Prell, T. Řezanka, J. Votruba, Biodegradable plastics from renewable sources, Folia Microbiol. (Praha). 48 (2003) 27–44.
[10] J.W.Hill, T.W. McCreary, Chemistry for changing times, Forteenth ed., Prentice Hall, New Jersey, 2015
[11] K. Marsh, B. Bugusu, Food packaging-roles, materials, and environmental issues, J. Food Sci. 72 (2007) 39–55.
[12] I. Odegard, S. Nusselder, E. Lindgreen, G. Bergsma, L. Graaff, Biobased plastics in a circular economy, (2017) 1–136.
[13] D. Verma, E. Fortunati, Biobased and biodegradable plastics, Handb. Ecomater. (2018) 1–23.
[14] B. Choi, S. Yoo, S. Il Park, Carbon footprint of packaging films made from LDPE, PLA, and PLA/PBAT blends in South Korea, Sustainability 10 (2018), 2369.
[15] F. Gu, J. Guo, W. Zhang, P.A. Summers, P. Hall, From waste plastics to industrial raw materials: a life cycle assessment of mechanical plastic recycling practice based on a real-world case study, Sci. Total Environ. 601–602 (2017) 1192–1207.
[16] D. Jyoti Sen, P.N. Patel, K.G. Parmar, A.N. Nakum, M.N. Patel, P.R. Patel, V.R. Patel, Biodegradable polymers: an ecofriendly approach in newer millenium, Asian J. Biomed. Pharm. Sci. 1 (2011) 23–39.
[17] A. Rudin, P. Choi, Chapter 13 – Biopolymers, in: A. Rudin, P.B.T.-T.E. of P.S.& E. (Third E. Choi (Eds.), Academic Press, Boston, 2013: pp. 521–535.
[18] R.C. Thompson, C.J. Moore, F.S.V. Saal, S.H. Swan, Plastics, the environment and human health: current consensus and future trends, Philos. Trans. R. Soc. B Biol. Sci. 364 (2009) 2153–2166.
[19] S. Kumar, K. Thakur, Bioplastics – classification, production and their potential food applications, J. Hill Agric. 8 (2017) 118.
[20] R. Porta, Plastic Pollution and the Challenge of Bioplastics, J. Appl. Biotechnol. Bioeng. 2 (2017).
[21] R.F.T. Stepto, Thermoplastic starch, in: Macromol. Symp., John Wiley and Sons Ltd, 2000: pp. 73–82.<73::AID-MASY73>3.0.CO;2-1
[22] G. Della Valle, A. Buleon, P.J. Carreau, P.A. Lavoie, B. Vergnes, Relationship between structure and viscoelastic behavior of plasticized starch, J. Rheol. 42 (1998) 507–525.
[23] Isroi, A. Rahman, K. Syamsu, Biodegradability of oil palm cellulose-based bioplastics, IOP Conf. Ser. Earth Environ. Sci. 183 (2018).
[24] W.J. Orts, J. Shey, S.H. Imam, G.M. Glenn, M.E. Guttman, J.F. Revol, Application of cellulose microfibrils in polymer nanocomposites, J. Polym. Environ. 13 (2005) 301–306.
[25] V. Bátori, M. Jabbari, D. Åkesson, P.R. Lennartsson, M.J. Taherzadeh, A. Zamani, Production of pectin-cellulose biofilms: a new approach for citrus waste recycling, Int. J. Polym. Sci. 2017 (2017).
[26] S. Kumar, K. Thakur, Bioplastics – classification, production and their potential food applications, J. Hill Agric. 8 (2017) 118.
[27] L. Avérous, E. Pollet, Environmental silicate nano-biocomposites, Green Energy Technol. 50 (2012).
[28] A. Jerez, P. Partal, I. Martínez, C. Gallegos, A. Guerrero, Protein-based bioplastics: effect of thermo-mechanical processing, Rheol. Acta. 46 (2007) 711–720.
[29] B. Vergnes, G. Della Valle, J. Tayeb, A specific slit die rheometer for extruded starchy products. Design, validation and application to maize starch, Rheol. Acta. 32 (1993) 465–476.
[30] R. Gu, M. Sain, Green polyurethanes and bio-fiber-based products and processes, in : Z. Liu, G. Kraus (Eds.), Green materials from plant oils, RSC publishing, Cambridge, 2014. 77–87.
[31] M.Thielen, Bioplastics MAGAZINE In: Bioplastics – Plants and crops, raw materials. Published in Berlin: Fachagentur Nachwachsende Rohstoffe e.V. (FNR). Order No. 237, 2014.
[32] M. Rinaudo, Chitin and chitosan: properties and applications, Prog. Polym. Sci. 31 (2006) 603–632.
[33] Y.J. Chen, Bioplastics and their role in achieving global sustainability, J. Chem. Pharm. Res. 6 (2014) 226–231.
[34] M. Brodin, M. Vallejos, M.T. Opedal, M.C. Area, G. Chinga-Carrasco, Lignocellulosics as sustainable resources for production of bioplastics – A review, J. Clean. Prod. 162 (2017) 646–664.
[35] M. Zinn, B. Witholt, T. Egli, Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate, Adv. Drug Deliv. Rev. 53 (2001) 5–21.
[36] L. Chen, R.E.O. Pelton, T.M. Smith, Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate (PET) bottles, J. Clean. Prod. 137 (2016) 667–676.
[37] S.deVos, Improving heat-resistance of PLA using poly (D-lactide), Bioplastics Mag. 3 (2008) 21–25.
[38] E. Castro-Aguirre, F. Iñiguez-Franco, H. Samsudin, X. Fang, R. Auras, Poly(lactic acid)—Mass production, processing, industrial applications, and end of life, Adv. Drug Deliv. Rev. 107 (2016) 333–366.
[39] Y. Chen, L.M. Geever, J.A. Killion, J.G. Lyons, C.L. Higginbotham, D.M. Devine, Review of multifarious applications of poly (lactic acid), Polym. Plast. Technol. Eng. 55 (2016) 1057–1075.
[40] J. Gotro, Polyethylene Furanoate (PEF): 100% Biobased Polymer to Compete with PET, (2013). Available at: accessed January 15, 2020)
[41] C. Sarathchandran, C. Chan, S.R. Karim, Poly(Trimethylene Terephthalate)—The new generation of engineering thermoplastic polyester, in: Phys. Chem. Macromol., Apple Academic Press, 2014: pp. 573–617.
[42] Li Zhao, Hong Hu, S. Wang, Fuzzy-integrative judgment on the end-use performance of knitted fabrics made with polytrimethylene terephthalate blended yarns, Text. Res. J. 81 (2011) 1739–1747.
[43] J. van Haveren, E.A. Oostveen, F. Miccichè, B.A.J. Noordover, C.E. Koning, R.A.T.M. van Benthem, A.E. Frissen, J.G.J. Weijnen, Resins and additives for powder coatings and alkyd paints, based on renewable resources, J. Coatings Technol. Res. 4 (2007) 177–186.
[44] J.S. Ling, I. Ahmed Mohammed, A. Ghazali, M. Khairuddean, Novel poly(alkyd-urethane)from vegetable oils: Synthesis and properties, Ind. Crops Prod. 52 (2014) 74–84.
[45] J. Xu, B.H. Guo, Poly(butylene succinate) and its copolymers: research, development and industrialization, Biotechnol. J. 5 (2010) 1149–1163.
[46] A. Oishi, M. Zhang, K. Nakayama, T. Masuda, Y. Taguchi, Synthesis of poly(butylene succinate) and poly(ethylene succinate) including diglycollate moiety, Polym. J. 38 (2006) 710–715.
[47] H. Nakajima, P. Dijkstra, K. Loos, The recent developments in biobased polymers toward general and engineering applications: polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed, Polymers (Basel). 9 (2017) 523.
[48] Y. Xia, R.C. Larock, Vegetable oil-based polymeric materials: synthesis, properties, and applications, Green Chem. 12 (2010) 1893.
[49] N. Karak, Vegetable oil-based polymers: Properties, Processing and Applications, Woodhead Publishing Limited, Sawston, 2012.
[50] M. Winnacker, B. Rieger, Biobased polyamides: recent advances in basic and applied research, macromol. Rapid Commun. 37 (2016) 1391–1413.
[51] M. Kyulavska, N. Toncheva-Moncheva, J. Rydz, Biobased Polyamide Ecomaterials and Their Susceptibility to Biodegradation BT – Handbook of Ecomaterials, in: L.M.T. Martínez, O.V. Kharissova, B.I. Kharisov (Eds.), Springer International Publishing, Cham, 2019: pp. 2901–2934.
[52] I.B. Page, Polyamides as engineering thermoplastic materials, Smithers Rapra Publishing, Shropshire, 2000.
[53] A. Noreen, K.M. Zia, M. Zuber, S. Tabasum, A.F. Zahoor, Bio-based polyurethane: an efficient and environment friendly coating systems: A review, Prog. Org. Coatings. 91 (2016) 25–32.
[54] M. Alinejad, C. Henry, S. Nikafshar, A. Gondaliya, S. Bagheri, N. Chen, S.K. Singh, D.B. Hodge, M. Nejad, Lignin-based polyurethanes: opportunities for bio-based foams, elastomers, coatings and adhesives, Polymers (Basel). 11 (2019), 1202.
[55] V. Grimm, M. Braun, O. Teichert, A. Zweck, Biomasse–Rohstoff der Zukunft für die chemische Industrie, Zukünftige Technol. (2011).
[56] P. Gontia, M. Janssen, Life cycle assessment of bio-based sodium polyacrylate production from pulp mill side streams: case study of thermo-mechanical and sulfite pulp mills, J. Clean. Prod. 131 (2016) 475–484.
[57] A. Morschbacker, Basics of bio-polyolefins, Bioplastics. 5 (2010) 52–55.
[58] R.P. Babu, K. O’Connor, R. Seeram, Current progress on bio-based polymers and their future trends, Prog. Biomater. 2 (2013) 8.
[59] S. Kumar, S.K. Samal, S. Mohanty, S.K. Nayak, Recent development of biobased epoxy resins: a review, Polym. – Plast. Technol. Eng. 57 (2018) 133–155.
[60] P. Geada, V. Vasconcelos, A. Vicente, B. Fernandes, Chapter 13 – Microalgal Biomass Cultivation A2 – Rastogi, Rajesh Prasad, in: D. Madamwar, A.B.T.-A.G.C. Pandey (Eds.), Elsevier, Amsterdam, 2017, 257–284.
[61] A. Rouilly, L. Rigal, Agro-materials: a bibliographic review, J. Macromol. Sci. – Polym. Rev. 42 (2002) 441–479.
[62] G.O. Aspinall, eds, The Polysaccharides, Elsevier, Amsterdam, 1983.
[63] A. Dufresne, S. Thomas, L.A. Pothen, eds., Biopolymer Nanocomposites, John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2013.
[64] N.L. Lacourse, P.A. Altieri, Biodegradable shaped products and the method of preparation thereof, US Patent No. 5043196, 1991.
[65] C. Bastioli, Properties and applications of mater-Bi starch-based materials, Polym. Degrad. Stab. 59 (1998) 263–272.
[66] J.K. Jang, Y.R. Pyun, Effect of moisture content on the melting of wheat starch, Starch – Starke. 48 (1996) 48–51.
[67] R.L. Shogren, Effect of moisture content on the melting and subsequent physical aging of cornstarch, Carbohydr. Polym. 19 (1992) 83–90.
[68] C.L. Swanson, R.L. Shogren, G.F. Fanta, S.H. Imam, Starch-plastic materials-preparation, physical properties, and biodegradability (a review of recent USDA research), J. Environ. Polym. Degrad. 1 (1993) 155–166.
[69] I. Tomka, Thermoplastic starch, in: Adv. Exp. Med. Biol., 1991: pp. 627–637.
[70] Bio-based products – overview of standards, (2011).
[71] L. Avérous, Biodegradable multiphase systems based on plasticized starch: a review, J. Macromol. Sci. – Polym. Rev. 44 (2004) 231–274.
[72] N.L. Lacourse, P.A. Altieri, Biodegradable packaging material and the method of preparation thereof, US Patent No. 4863655, 1989
[73] A.K. Mohanty, M. Misra, G. Hinrichsen, Biofibres, biodegradable polymers and biocomposites: an overview, Macromol. Mater. Eng. 276–277 (2000) 1–24.<1::AID-MAME1>3.0.CO;2-W
[74] A. Chaudhari, R. Kulkarni, P. Mahulikar, D. Sohn, V. Gite, Development of PU coatings from neem oil based alkyds prepared by the monoglyceride route, JAOCS, J. Am. Oil Chem. Soc. 92 (2015) 733–741.
[75] F. Bilo, S. Pandini, L. Sartore, L.E. Depero, G. Gargiulo, A. Bonassi, S. Federici, E. Bontempi, A sustainable bioplastic obtained from rice straw, J. Clean. Prod. 200 (2018) 357–368.
[76] A.B.M. Sharif Hossain, M.M. Uddin, V.N. Veettil, M. Fawzi, Nano-cellulose based nano-coating biomaterial dataset using corn leaf biomass: an innovative biodegradable plant biomaterial, Data Br. 17 (2018) 162–168.
[77] C.R. Fordyce, Cellulose Esters of Organic Acids, Adv. Carbohydr. Chem. 1 (1945) 309–327.
[78] J.A. Reilly, Celluloid objects: their chemistry and preservation, J. Am. Inst. Conserv. 30 (1991) 145.
[79] S. Sarkanen, Y. Chen, Y.Y. Wang, Journey to polymeric materials composed exclusively of simple lignin derivatives, ACS Sustain. Chem. Eng. 4 (2016) 5223–5229.
[80] H. Chen , J. Shu, P. Li, B. Chen , N. Li, L. Li, Application of coating chitosan film-forming solution combined β-cd-citral inclusion complex on beef fillet, J. Food Nutr. Res. 2 (2014) 692–697.
[81] V. Epure, M. Griffon, E. Pollet, L. Avérous, Structure and properties of glycerol-plasticized chitosan obtained by mechanical kneading, Carbohydr. Polym. 83 (2011) 947–952.
[82] A. Prinz, K. Koch, A. Górak, T. Zeiner, Multi-stage laccase extraction and separation using aqueous two-phase systems: experiment and model, Process Biochem. 49 (2014) 1020–1031.
[83] R. Shukla, M. Cheryan, Zein: The industrial protein from corn, Ind. Crops Prod. 13 (2001) 171–192.
[84] M.S. Helgeson, “Horticultural evaluation of zein-based bioplastic containers” (2009). Graduate Theses and Dissertations.10554.
[85] S. Guilbert, C. Guillaume, N. Gontard, New Packaging Materials Based on Renewable Resources: Properties, Applications, and Prospects, in: J.M. Aguilera, R. Simpson, J. Welti-Chanes, D. Bermudez-Aguirre, G. Barbosa-Canovas, eds., Food Engineering Interfaces, Springer, New York, 2011 pp. 619–630.
[86] A. Gennadios,eds, Protein-based films and coatings, CRC Press, Boca Raton, 2002.
[87] S. Nakai, Structure-function relationships of food proteins: with an emphasis on the importance of protein hydrophobicity, J. Agric. Food Chem. 31 (1983) 676–683.
[88] I. Arvanitoyannis, E. Psomiadou, A. Nakayama, Edible films made from sodium caseinate, starches, sugars or glycerol. Part 1, Carbohydr. Polym. 31 (1996) 179–192.
[89] D. Brault, M. LaCroix, M. Ressouany, Biodegradable films containing caseinate and their method of manufacture by irradiation,US Patent No. 6120592, 2000 .
[90] M. Delgado, M. Felix, C. Bengoechea, Development of bioplastic materials: from rapeseed oil industry by products to added-value biodegradable biocomposite materials, Ind. Crops Prod. 125 (2018) 401–407.
[91] L.L. Madison, G.W. Huisman, Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic., Microbiol. Mol. Biol. Rev. 63 (1999) 21–53.
[92] G.J.. De Koning, Prospects of bacterial poly[(R)-3-(hydroxyalkanoates)], Eindhoven: Technische Universiteit Eindhoven. 1993.
[93] L.G. Donaruma, Microbial polyesters, by Yoshiharu Doi, VCH, New York, 1990, 156 pp., J. Polym. Sci. Part A Polym. Chem. 29 (1991) 1365–1365.
[94] Y. Kathiraser, M.K. Aroua, K.B. Ramachandran, I.K.P. Tan, Chemical characterization of medium-chain-length polyhydroxyalkanoates (PHAs) recovered by enzymatic treatment and ultrafiltration, J. Chem. Technol. Biotechnol. 82 (2007) 847–855.
[95] G.Q. Chen, M.K. Patel, Plastics derived from biological sources: present and future: a technical and environmental review, Chem. Rev. 112 (2012) 2082–2099.
[96] H.J. Endres, A. Siebert-Raths, Engineering Biopolymers, Carl Hanser Verlag GmbH & Co. KG, München, 2011.
[97] D. Garlotta, A Literature Review of Poly(Lactic Acid), J. Polym. Environ. 9 (2001) 63–84.
[98] L. Avérous, E. Pollet, Biodegradable Polymers. In: L. Avérous, E. Pollet, (eds) Environmental Silicate Nano-Biocomposites. Green Energy and Technology. Springer, London, 2012, 13-39
[99] Y.J. Wee, J.N. Kim, H.W. Ryu, Biotechnological production of lactic acid and its recent applications, Food Technol. Biotechnol. 44 (2006) 163–172.
[100] S. Il Moon, C.W. Lee, M. Miyamoto, Y. Kimura, Melt polycondensation ofL-lactic acid with Sn(II) catalysts activated by various proton acids: A direct manufacturing route to high molecular weight Poly(L-lactic acid), J. Polym. Sci. Part A Polym. Chem. 38 (2000) 1673–1679.<1673::AID-POLA33>3.0.CO;2-T
[101] S.Il. Moon, C.W. Lee, I. Taniguchi, M. Miyamoto, Y. Kimura, Melt/solid polycondensation of l -lactic acid: an alternative route to poly( l -lactic acid) with high molecular weight, Polymer (Guildf). 42 (2001) 5059–5062.
[102] M. Jamshidian, E.A. Tehrany, M. Imran, M. Jacquot, S. Desobry, Poly-Lactic acid: production, applications, nanocomposites, and release studies, Compr. Rev. Food Sci. Food Saf. 9 (2010) 552–571.
[103] L. V. Labrecque, R.A. Kumar, V. Dav, R.A. Gross, S.P. McCarthy, Citrate esters as plasticizers for poly(lactic acid), J. Appl. Polym. Sci. 66 (1997) 1507–1513.<1507::AID-APP11>3.0.CO;2-0
[104] S. Jacobsen, H.G. Fritz, Plasticizing polylactide-the effect of different plasticizers on the mechanical properties, Polym. Eng. Sci. 39 (1999) 1303–1310.
[105] O. Martin, L. Avérous, Poly(lactic acid): plasticization and properties of biodegradable multiphase systems, Polymer (Guildf). 42 (2001) 6209–6219.
[106] A. Steinbüchel, eds, Biopolymers, General Aspects and Special Applications v. 10,Wiley-Vch, Weinheim, 2003.
[107] A. Albertsson, U. Edlund, I.K. Varma, Synthesis, chemistry and properties of hemicelluloses, Biopolym. Mater. Sustain. Film. Coatings. (2011) 133–150.
[108] R.G. Sinclair, The Case for Polylactic Acid as a Commodity Packaging Plastic, J. Macromol. Sci. Part A. 33 (1996) 585–597.
[109] G. Kale, R. Auras, S.P. Singh, Degradation of commercial biodegradable packages under real composting and ambient exposure conditions, J. Polym. Environ. 14 (2006) 317–334.
[110] E.S. Stevens, Green plastics: an introduction to the new science of biodegradable plastics, Princeton University Press, New Jersey, 2002.
[111] T. Rieckmann, S. Völker, Micro-kinetics and mass transfer in poly(ethylene terephthalate) synthesis, Chem. Eng. Sci. 56 (2001) 945–953.
[112] D. Komula, Completing the puzzle: 100% plant-derived PET, Bioplastics Mag. 6 (2011) 14–17.
[113] D.I. Collias, A.M. Harris, V. Nagpal, I.W. Cottrell, M.W. Schultheis, Biobased terephthalic acid technologies: a literature review, Ind. Biotechnol. 10 (2014) 91–105.
[114] A. Bušić, N. Marđetko, S. Kundas, G. Morzak, H. Belskaya, M. Ivančić Šantek, D. Komes, S. Novak, B. Šantek, Bioethanol production from renewable raw materials and its separation and purification: a review, Food Technol. Biotechnol. 56 (2018).
[115] Q. Xie, X. Hu, T. Hu, P. Xiao, Y. Xu, K.W. Leffew, Polytrimethylene terephthalate: an example of an industrial polymer platform development in China, Macromol. React. Eng. 9 (2015) 401–408.
[116] C. Saricam, N. Okur, Polyester Usage for Automotive Applications, in: Polyest. – Prod. Charact. Innov. Appl., InTech, London, 2018.
[117] C. Sarathchandran, C. Chan, S.R. Karim, Poly(Trimethylene Terephthalate)-The New Generation of Engineering Thermoplastic Polyester, in: Phys. Chem. Macromol., Apple Academic Press, New Jersey, 2014: pp. 573–617.
[118] J. van Haveren, E.A. Oostveen, F. Miccichè, B.A.J. Noordover, C.E. Koning, R.A.T.M. van Benthem, A.E. Frissen, J.G.J. Weijnen, Resins and additives for powder coatings and alkyd paints, based on renewable resources, J. Coatings Technol. Res. 4 (2007) 177–186.
[119] M. Bautista, A. de Ilarduya, A. Alla, S. Muñoz-Guerra, Poly(butylene succinate) Ionomers with enhanced hydrodegradability, Polymers (Basel). 7 (2015) 1232–1247.
[120] J. Xu, B.H. Guo, Microbial Succinic Acid, Its Polymer Poly(butylene succinate), and Applications, in: Chen GQ. (eds) Plastics from Bacteria. Microbiology Monographs, vol 14. Springer, Berlin, 2010: pp. 347–388.
[121] B. Bai, J. Zhou, M. Yang, Y. Liu, X. Xu, J. Xing, Efficient production of succinic acid from macroalgae hydrolysate by metabolically engineered Escherichia coli, Bioresour. Technol. 185 (2015) 56–61.
[122] C.T. Brunner, E.T. Baran, E.D. Pinho, R.L. Reis, N.M. Neves, Performance of biodegradable microcapsules of poly(butylene succinate), poly(butylene succinate-co-adipate) and poly(butylene terephthalate-co-adipate) as drug encapsulation systems, Colloids Surfaces B Biointerfaces. 84 (2011) 498–507.
[123] C. Lavilla, A. Alla, A. Martínez de Ilarduya, E. Benito, M.G. García-Martín, J.A. Galbis, S. Muñoz-Guerra, Bio-based poly(butylene terephthalate) copolyesters containing bicyclic diacetalized galactitol and galactaric acid: Influence of composition on properties, Polymer (Guildf). 53 (2012) 3432–3445.
[124] A. Künkel, J. Becker, L. Börger, J. Hamprecht, S. Koltzenburg, R. Loos, M.B. Schick, K. Schlegel, C. Sinkel, G. Skupin, M. Yamamoto, Polymers, Biodegradable, in: Ullmann’s Encycl. Ind. Chem., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2016: pp. 1–29.
[125] M. Gobin, P. Loulergue, J.-L. Audic, L. Lemiègre, Synthesis and characterisation of bio-based polyester materials from vegetable oil and short to long chain dicarboxylic acids, Ind. Crops Prod. 70 (2015) 213–220.
[126] S. Miao, P. Wang, Z. Su, S. Zhang, Vegetable-oil-based polymers as future polymeric biomaterials, Acta Biomater. 10 (2014) 1692–1704.
[127] D. Ogunniyi, Castor oil: a vital industrial raw material, Bioresour. Technol. 97 (2006) 1086–1091.
[128] M. Genas, Rilsan (Polyamid 11), Synthese und Eigenschaften, Angew. Chemie. 74 (1962) 535–540.
[129] M. Kyulavska, N. Toncheva-Moncheva, J. Rydz, Biobased Polyamide Ecomaterials and Their Susceptibility to Biodegradation, in: Handb. Ecomater., Springer International Publishing, Cham, 2017: pp. 1–34.
[130] R. Holsti-Miettinen, J. Seppälä, O.T. Ikkala, Effects of compatibilizers on the properties of polyamide/polypropylene blends, Polym. Eng. Sci. 32 (1992) 868–877.
[131] F.E. Golling, R. Pires, A. Hecking, J. Weikard, F. Richter, K. Danielmeier, D. Dijkstra, Polyurethanes for coatings and adhesives – chemistry and applications, Polym. Int. 68 (2019) 848–855.
[132] J. D’Souza, N. Yan, Producing bark-based polyols through liquefaction: effect of liquefaction temperature, ACS Sustain. Chem. Eng. 1 (2013) 534–540.
[133] G.M. Yee, M.A. Hillmyer, I.A. Tonks, Bioderived acrylates from alkyl lactates via pd-catalyzed hydroesterification, ACS Sustain. Chem. Eng. 6 (2018) 9579–9584.
[134] A. Morschbacker, Bio-ethanol based ethylene, J. Macromol. Sci. Part C Polym. Rev. 49 (2009) 79–84.
[135] J. Jane, Starch properties, modifications, and applications, J. Macromol. Sci. Part A Pure Appl. Chem. 32 (1995) 751–757.
[136] H. Eslami, M.R. Kamal, Elongational rheology of biodegradable poly (lactic acid)/poly [(butylene succinate)‐co‐adipate] binary blends and poly (lactic acid)/poly [(butylene succinate)‐co‐adipate]/clay ternary nanocomposites, J. Appl. Polym. Sci. 127 (2013) 2290–2306.
[137] K. Bula, Ł. Klapiszewski, T. Jesionowski, A novel functional silica/lignin hybrid material as a potential bio-based polypropylene filler, Polym. Compos. 36 (2015) 913–922.
[138] V. Koncar, Composites and hybrid structures, in: Smart Text. Situ Monit. Compos., Elsevier, Amsterdam, 2019: pp. 153–215.
[139] A. Rudin, P. Choi, Chapter 13 – Biopolymers, in: A. Rudin, P.B.T.-T.E. of P.S.& E. (Third E. Choi (Eds.), Academic Press, Boston, 2013: pp. 521–535.
[140] C. Smith, Braskem commits to producing bio-based polypropylene, Plast. News. 28 (2010).
[141] S.A. Solvay, Solvay Indupa will produce bioethanol-based vinyl in Brasil & considers state-of-the-art power generation in Argentina, Brussels, Belgium, December. (2007).Avilable at : (accessed January 15, 2020)
[142] F.L. Jin, X. Li, S.J. Park, Synthesis and application of epoxy resins: A review, J. Ind. Eng. Chem. 29 (2015) 1–11.
[143] V. Muralidharan, M.S. Arokianathan, M. Balaraman, S. Palanivel, Tannery trimming waste based biodegradable bioplastic: facile synthesis and characterization of properties, Polym. Test. 81 (2020).
[144] S. Huda, Y. Yang, Feather fiber reinforced light-weight composites with good acoustic properties, J. Polym. Environ. 17 (2009) 131–142.
[145] N. Reddy, Y. Yang, Structure and properties of chicken feather barbs as natural structure and properties of chicken feather barbs as natural protein fibers protein fibers, J. Polym. Environ. 15 (2007) 81–87.
[146] W.I.A. Saber, M.M. El-Metwally, M.S. El-Hersh, Keratinase production and biodegradation of some keratinous wastes by alternaria tenuissima and Aspergillus nidulans, Res. J. Microbiol. 5 (2010) 21–35.
[147] A. Ullah, T. Vasanthan, D. Bressler, A.L. Elias, J. Wu, Bioplastics from feather quill, Biomacromolecules. 12 (2011) 3826–3832.
[148] J. Yaradoddi, V. Patil, S. Ganachari, N. Banapurmath, A. Hunashyal, A. Shettar, J.S. Yaradoddi, Biodegradable plastic production from fruit waste material and its sustainable use for green application ,Int. J. Pharm. Res. Allied Sci. 5 (2016) 56–66.
[149] L De las Fuentes “AWARENET: Agro-food wastes minimization and reduction network.” WIT Transactions on Ecology and the Environment 56 (2002).
[150] I.S. Bayer, S. Guzman-Puyol, J.A. Heredia-Guerrero, L. Ceseracciu, F. Pignatelli, R. Ruffilli, R. Cingolani, A. Athanassiou, Direct transformation of edible vegetable waste into bioplastics, Macromolecules. 47 (2014) 5135–5143.
[151] S. Obruca, I. Marova, O. Snajdar, L. Mravcova, Z. Svoboda, Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate, Biotechnol. Lett. 32 (2010) 1925–1932.
[152] R.A.J. Verlinden, D.J. Hill, M.A. Kenward, C.D. Williams, Z. Piotrowska-Seget, I.K. Radecka, Production of polyhydroxyalkanoates from waste frying oil by cupriavidus necator, AMB Express. 1 (2011) 1–8.
[153] Y. Jiang, L. Marang, J. Tamis, M.C.M. van Loosdrecht, H. Dijkman, R. Kleerebezem, Waste to resource: converting paper mill wastewater to bioplastic, Water Res. 46 (2012) 5517–5530.