Aerogels as Pesticides

$30.00

Aerogels as Pesticides

Sajjad Ali, Waseem Akram, Asif Sajjad, Qaiser Shakeel, Muhammad Irfan Ullah

Aerogels, composed of complex network of interlinked nanostructures, show 50% non-solid volume. Due to their unique properties, they are used as a carrier for active ingredients used to control agricultural pests as well as veterinary medicines. They can also be used as a carrier material for the application of entomopathogenic bacteria and viruses for the biological control of pests. Many aerogel-based formulations of herbicides, insecticides, acaricides, fungicides, bactericides, rodenticides, nematicides, piscicides and molluscicides effectively control the target pests. Practically, aerogels enhance the effectiveness of insecticides by increasing their penetrations. Furthermore, intensive research is required to develop latest aerogel-based pesticides with better utilization under effective integrated pest management programs in agriculture.

Keywords
Aerogels, Pesticides, Integrated Pest Management, Formulations, Pest Control

Published online 2/25/2021, 15 pages

Citation: Sajjad Ali, Waseem Akram, Asif Sajjad, Qaiser Shakeel, Muhammad Irfan Ullah, Aerogels as Pesticides, Materials Research Foundations, Vol. 98, pp 168-182, 2021

DOI: https://doi.org/10.21741/9781644901298-9

Part of the book on Aerogels II

References
[1] C.A. García-Gonzalez, M. Alnaief, I. Smirnova, Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems, Carbohyd. Polym. 86 (2011) 1425-1438. https://doi.org/10.1016/j.carbpol.2011.06.066
[2] L. Ratke, Aerogels-Structure, properties and applications, Institut für Material physikim Weltraum (2006) 51147.
[3] A. Du, B. Zhou, Z.H. Zhang, J. Shen, A special material or a new state of matter: a review and reconsideration of the aerogel Materials. 6 (2013) 941-968. https://doi.org/10.3390/ma6030941
[4] A.K. Nayak, B. Das, Introduction to polymeric gels, in: K. Pal, I. Banerjee (Eds. 1st), Polymeric Gels, Woodhead Publishing. (2018) 3-27. https://doi.org/10.1016/B978-0-08-102179-8.00001-6
[5] C.A.M. Mulder, J.G. Van-Lierop, Preparation, densification and characterization of autoclave dried SiO2 gels, in: J. Fricke (Eds.), Aerogels, Springer, Berlin, Germany. (1986) 68–75. https://doi.org/10.1007/978-3-642-93313-4_8
[6] G.C. Bond, S. Flamerz, Structure and reactivity of titania-supported oxides. Part 3: reaction of isopropanol over vanadia-titania catalysts, Appl. Catal. 33(1) (1987) 219-230. https://doi.org/10.1016/S0166-9834(00)80594-1
[7] L.W. Hrubesh, Aerogels: the world’s lightest solids, Chem. Ind. 24 (1990) 824–827.
[8] J. Fricke, A. Emmerling, Aerogels, preparation, properties, applications, Structure and Bonding 77: Chemistry, Spectroscopy and Applications of Sol-Gel Glasses, Springer, Berlin, Germany. (1992) 37–87. https://doi.org/10.1007/BFb0036965
[9] J.L. Gurav, I.K. Jung, H.H. Park, E.S. Kang, D.Y. Nadargi, Silica aerogel: synthesis and applications, J. Nanomater. (2010) 1-11. https://doi.org/10.1155/2010/409310
[10] L.L. Casas, A. Roig, E. Rodriguez, E. Molins, J. Tejada, J. Sort, Silica aerogel-iron oxide nanocomposites: structural and magnetic properties, J. Non-Cryst. Solids. 285(1–3) (2001) 37–43. https://doi.org/10.1016/S0022-3093(01)00429-X
[11] L.L. Casas, A. Roig, E. Molins, J.M. Greneche, J. Asenjo, J. Tejada, Iron oxide nanoparticles hosted in silica aerogels, Appl. Phys. A 74(5) (2002) 591–597. https://doi.org/10.1007/s003390100948
[12] A.V. Rao, S.D. Bhagat, H. Hirashima, G.M. Pajonk, Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor, J. Colloid. Interf. Sci. 300(1) (2006) 279–285. https://doi.org/10.1016/j.jcis.2006.03.044
[13] A.V. Rao, N.D. Hegde, H. Hirashima, Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels, J. Colloid. Interf. Sci. 305(1) (2007) 124–132. https://doi.org/10.1016/j.jcis.2006.09.025
[14] C.T. Wang, C.L. Wu, I.C. Chen, Y.H. Huang, Humidity sensors based on silica nanoparticle aerogel thin films, Sensor. Actuat. B 107(1) (2005) 402–410. https://doi.org/10.1016/j.snb.2004.10.034
[15] G.S. Kim, S.H. Hyun, H.H. Park, Synthesis of low dielectric silica aerogel films by ambient drying, J. Am. Ceram. Soc. 84(2) (2001) 453–455. https://doi.org/10.1111/j.1151-2916.2001.tb00677.x
[16] S.W. Park, S.B. Jung, M.G. Kang, H.H. Park, H.C. Kim, Modification of GaAs and copper surface by the formation of SiO2 aerogel film as an interlayer dielectric, Appl. Surf. Sci. 216(1–4) (2003) 98–105. https://doi.org/10.1016/S0169-4332(03)00488-4
[17] S.B. Jung, S.W. Park, J.K. Yang, H.H. Park, H. Kim, Application of SiO2 aerogel film for interlayer dielectric on GaAs with a barrier of Si3N4, Thin. Solid. Films. 447-448 (2004) 580–585. https://doi.org/10.1016/j.tsf.2003.07.020
[18] J.L. Rousset, A. Boukenter, B. Champagnon, Granular structure and fractal domains of silica aerogels, J. Phys. Condens. Mat. 2(42) (1990) 8445–8455. https://doi.org/10.1088/0953-8984/2/42/021
[19] A. Sayari, A. Ghorbel, G.M. Pajonk, S.J. Teichner, Kinetics of the catalytic transformation of isobutene into methacrylonitrile with NO on supported nickel oxide aerogel, React. Kinet. Catal. L. 15(4) (1981) 459–465. https://doi.org/10.1007/BF02074150
[20] G.M. Pajonk, T. Manzalji, Synthesis of acrylonitrile from propylene and nitric oxide mixtures on PbO2-ZrO2 aerogel catalysts, Catal. Lett. 21(3-4) (1993) 361–369. https://doi.org/10.1007/BF00769488
[21] H.D. Gesser, P.C. Goswami, Aerogels and related porous materials, Chem. Rev. 89(4) (1989) 765–788. https://doi.org/10.1021/cr00094a003
[22] I. Smirnova, S. Suttiruengwong, W. Arlt, Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems, J. Non-Cryst. Solids 350 (2004a) 54–60. https://doi.org/10.1016/j.jnoncrysol.2004.06.031
[23] I. Smirnova, S. Suttiruengwong, M. Seiler, W. Arlt, Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels, Pharm. Dev. Technol. 9(4) (2004b) 443–452. https://doi.org/10.1081/PDT-200035804
[24] T. W. Hamann, A.B.F. Martinson, J.W. Elam, M.J. Pellin, J.T. Hupp, Atomic layer deposition of TiO2 on aerogel templates: new photoanodes for dye-sensitized solar cells, J. Phys. Chem. C 112(27) (2008) 10303–10307. https://doi.org/10.1021/jp802216p
[25] N.V. Steere, Handbook of laboratory safety, CRC, Boca Raton, Fla, 1971.
[26] F. Schwertfeger, A. Zimmermann, G. Frisch, C. Corp, Use of aerogels in agriculture, U.S. Patent 7,674,476 (2010).
[27] J.E. George, J.M. Pound, R.B. Davey, Chemical control of ticks on cattle and the resistance of these parasites to acaricides, Parasitology 129 (2004) 353-366. https://doi.org/10.1017/S0031182003004682
[28] P. Willadsen, Tick control: thoughts on a research agenda, Vet. Parasitol. 138 (2006) 161–168. https://doi.org/10.1016/j.vetpar.2006.01.050
[29] R.Z. Abbas, M.A. Zaman, D.D. Colwell, J. Gilleard, Z. Iqbal, Acaricide resistance in cattle ticks and approaches to its management: the state of play, Vet. Parasitol. 203 (2014) 6–20. https://doi.org/10.1016/j.vetpar.2014.03.006
[30] S.A. Allan, L.A. Patrican, Susceptibility of immature lxodes scapularis (Acari: lxodidae) to desiccants and insecticidal soap, Exp. Appl. Acarol. 18 (1994) 691-702. https://doi.org/10.1007/bf00051536
[31] A.T. Showler, W.L.A. Osbrink, E. Munoz, R.M. Caesar, V. Abrigo, Lethal effects of silica gel-based CimeXa and kaolin-based Surround dusts against ixodid (Acari: Ixodidae) eggs, larvae, and nymphs, J. Med. Entomol. 56 (2019) 215–221. doi:10.1093/jme/tjy152
[32] I.B. Tarshis, Laboratory and field studies with sorptive dusts for the control of arthropods affecting man and animal, Exp. Parasitol. 11(1) (1961) 10-33. https://doi.org/10.1016/0014-4894(61)90003-0
[33] A.T. Showler, J.L. Harlien, Effects of Silica-Based CimeXa and Drione Dusts Against Lone Star Tick (Ixodida: Ixodidae) on Cattle, J. Med. Entomol. 57(2) (2020) 485-492. https://doi.org/10.1093/jme/tjz180
[34] P. Golob, Current status and future perspectives for inert dusts for control of stored product insects, J. Stored Prod. Res. 33 (1997) 69-79. https://doi.org/10.1016/S0022-474X(96)00031-8
[35] D.M. Armitage, D.A. Collins, D.A. Cook, J. Bell, The efficacy of silicaceous dust alternatives to organophosphorus compounds for the control of storage mites, Proc. 7th Int. Work. Conf. Stored Prod. Prot. (1998).
[36] J. Schulz, J. Berk, J. Suhl, L. Schrader, S. Kaufhold, I. Mewis, C. Ulrichs, Characterization, mode of action, and efficacy of twelve silica-based acaricides against poultry red mite (Dermanyssus gallinae) in vitro, Parasitol. Res. 113(9) (2014) 3167-3175. https://doi.org/10.1007/s00436-014-3978-6
[37] I.B. Tarshis, Use of sorptive dusts on fleas, Calif. Agr. 13(3) (1959b) 13-14. doi: 10.3733/ca.v013n03p13
[38] I.B. Tarshis, M.R. Dunn, Control of the brown dog tick, Calif. Agr. 13(10) (1959) 11-16. doi: 10.3733/ca.v013n10p11
[39] I.B. Tarshis, Control of the snake mite (Ophionyssus natricis), other mites and certain insects with the sorptive dust, SG 67, J. Econ. Entomol. 53 (1960) 903-908. https://doi.org/10.1093/jee/53.5.903
[40] W. Ebeling, Control of the tropical rat mite, J. Econ. Entomol. 53 (1960) 475-476. https://doi.org/10.1093/jee/53.3.475
[41] J.F. Odeneal, Silica powder insecticide with glycols to reduce dustiness, U.S. Patent 3,235,451 (1966).
[42] P. Alexander, J.A. Kitchener, H.V.A. Briscoe, Inert dust insecticides: Part 1. Mechanism of action, Ann. Appl. BioI. 31 (1944) 143-159. https://doi.org/10.1111/j.1744-7348.1944.tb06225.x
[43] W. Ebeling, Physicochemical mechanisms for the removal of insect wax by means of finely divided powders, Hilgardia 30 (1961) 531-564. https://doi.org/10.3733/hilg.v30n18p531
[44] W. Ebeling, Sorptive dusts for pest control, Annu. Rev. Entomol. 16 (1971) 123-158. https://doi.org/10.1146/annurev.en.16.010171.001011
[45] C.L. Hockenyos, Effects of dusts on the oriental roach, J. Econ. Entomol. 26 (1933) 792-794. https://doi.org/10.1093/jee/26.4.792
[46] S.F. Chiu, Toxicity studies of so-called “inert” materials with the bean weevil, Acanthosceles obtectus (Say), J. Econ. Entomol. 32 (1939) 240-248. https://doi.org/10.1093/jee/32.2.240
[47] H.V.A. Briscoe, Some new properties of inorganic dusts, J. Roy. Soc. Arts 91 (1943) 593-607.
[48] M.K. Krishnakumari, S.K. Majumder, Modes of action of active carbon and clay on Tribolium castaneum (Hbst.), Nature 193(4822) (1962) 1310-1311. https://doi.org/10.1038/1931310a0
[49] M.R.G.K. Nair, Structure of waterproofing epicuticular layers in insects in relation to inert dust action, Indian J. Entomol. 10 (1957) 37-49.
[50] W. Ebeling, R.E. Wagner, Rapid desiccation of drywood termites with inert sorptive dusts and other substances, J. Econ. Entomol. 52 (1959) 190-207. https://doi.org/10.1093/jee/52.2.190
[51] R.P. Patel, N.S. Purohit, A.M. Suthar, An overview of silica aerogels, Int. J. Chem Tech Res. 1(4) (2009) 1052-1057.
[52] Anonymous, Farm chemicals handbook, Meister, Willoughby, Ohio, 1982.
[53] A. McLaughlin, Laboratory trials on desiccant dust insecticides, in: E. Highley E.J. Wright, H.J. Banks, B.R. Champ (Eds.) Proc. 6th International Working Conference on Stored-Products Protection, Canberra, Australia, 1994, pp. 638-645.
[54] A.H. Kamel, E.Z. Fam T.M. Ezzat, Silica aerogels as grain protectants, Bull. Soc. Entomol. Egypt 48 (1964) 37-47.
[55] L.M. Redlinger, H. Womack, Evaluation of four inert dusts for the protection of shelled corn in Georgia from insect attack, USDA-ARS (1966) 51-57.
[56] D.W. LaHue, C.C. Fifield, Evaluation of four inert dusts on wheat as protectants against insects in small bins, USDA-ARS Marketing Research Report 780, 1967.
[57] D.W. LaHue, Evaluation of malathion, diazinon, a silica aerogel and a diatomaceous earth as protectants on wheat against lesser grain borer attack in small bins, USDA-ARS Marketing Research Report 860, 1970. https://doi.org/10.5962/bhl.title.63320
[58] F.K. Hsieh, S.S. Kao, W.G. Chen, Tests on control of the maize weevil, Sitophilus zeamais Motschulsky, by nontoxic materials, Plant Prot. Bull. Taiwan 20 (1978) 8-15.
[59] V.B. Wigglesworth, Transpiration through the cuticle of insects, J. Exp. Biol. 21 (1945) 97-114.
[60] L.O. Young, Silica flatting agent and a method of manufacturing it, U.S. Patent No. 2,625,492, (1953).
[61] W.A. Donahue, A.T. Showler, M.W. Donahue, B.E. Vinson, W.L.A. Osbrink, Knockdown and lethal effects of eight commercial nonconventional and two pyrethroid insecticides against moderately permethrin-resistant adult bed bugs, Cimex lectularius (L.) (Hemiptera: Cimicidae), Biopestic. Int. 11 (2016) 108–117.
[62] W. Ebeling, D.A. Reierson, R.J. Pence, M.S. Viray, Silica aerogel and boric acid against cockroaches: external and internal action, Pestic. Biochem. Phys. 5(1) (1975) 81-89. https://doi.org/10.1016/0048-3575(75)90047-4
[63] R.E. Wagner, W. Ebeling, Lethality of inert dust materials to Kalotermes minor Hagen and their role as preventives in structural pest control, J. Econ. Entomol. 52 (1959) 208-212. https://doi.org/10.1093/jee/52.2.208
[64] I.B. Tarshis, Sorptive dusts on cockroaches, Calif. Agr. 13(2) (1959a) 3-5.
[65] I.B. Tarshis, UCLA tests with desiccant dusts for roach control, Pest Control 27 (1959b) 14-28.
[66] I.B. Tarshis, The use of the silica aerogel insecticides, Dri-Die 67 and Drione, in new and existing structures for the prevention and control of cockroaches, Lab. Anim. Care 14 (1964) 167-184.
[67] I.B. Tarshis, Silica aerogel insecticides for the prevention and control of arthropods of medical and veterinary importance, Angew. Parasitol. 8(4) (1967) 210-237.
[68] D.W. Micks, Susceptibility of mosquitoes to silica gel insecticides, J. Econ. Entomol. 53(5) (1960) 915-918. https://doi.org/10.1093/jee/53.5.915
[69] R.C. Moore, Boric acid-silica dusts for control of German cockroaches, J. Econ. Entomol. 65(2) (1972) 458-461. https://doi.org/10.1093/jee/65.2.458
[70] S.R. Loschiavo, Availability of food as a factor in effectiveness of a silica aerogel against the merchant grain beetle (Coleoptera: Cucujidae), J. Econ. Entomol. 81(4) (1988a) 1237-1240. https://doi.org/10.1093/jee/81.4.1237
[71] S.R. Loschiavo, Safe method of using silica aerogel to control stored-product beetles in dwellings, J. Econ. Entomol. 81(4) (1988b) 1231-1236. https://doi.org/10.1093/jee/81.4.1231
[72] N.D.G. White, S.R. Loschiavo, Factors Affecting Survival of the Merchant Grain Beetle (Coleoptera: Cucujidae) and the Confused Flour Beetle (Coleoptera: Tenebrionidae) Exposed to Silica Aerogel, J. Econ. Entomol. 82(3) (1989) 960-969. https://doi.org/10.1093/jee/82.3.960
[73] A. Barbosa, P. Golob, N. Jenkins, Silica aerogels as alternative protectants of maize against Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae), In Proceedings of the 6th Int. Working Conf. On Stored-product Protection, Canberra 2 (1994) 623-627.
[74] M.M. Sabbour, Entomotoxicity assay of nanoparticle 4-(silica gel Cab-O-Sil-750, silica gel Cab-O-Sil-500) against Sitophilus oryzae under laboratory and store conditions in Egypt, Specialty J. Biol. Sci. 1(2) (2015) 67-74.
[75] J.F. Anderson, R.S. Cowles, Susceptibility of Cimex lectularius (Hemiptera: Cimicidae) to pyrethroid insecticides and to insecticidal dusts with or without pyrethroid insecticides, J. Econ. Entomol. 105 (2012) 1789–1795. https://doi.org/10.1603/EC12089
[76] J.M. Desmarchelier, J.C. Dines, Dryacide® treatment of stored wheat: its efficacy against insects, and after processing, Aust. J. Exp. Agr. 27 (1987) 309-312. http://hdl.handle.net/102.100.100/270624?index=1
[77] Y.N. Aldryhim, Efficacy of the amorphous silica dust, Dryacide, against Tribolium confusum Duv. And Sitophilus granarius (L.) (Coleoptera: Tenebrionidae and Curculionidae), J. Stored Prod. Res. 26(4) (1990) 207-210. https://doi.org/10.1016/0022-474X(90)90023-L
[78] Y.N. Aldryhim, Combination of classes of wheat and environmental factors affecting the efficacy of amorphous silica dust, Dryacide®, against Rhyzopertha dominica (F.), J. Stored Prod. Res. 29 (1993) 271-275. https://doi.org/10.1016/0022-474X(93)90010-2
[79] G.N.J. Le-Patourel, J. Singh, Toxicity of amorphous silicas and silica-pyrethroid mixtures to Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), J. Stored Prod. Res. 20(4) (1984) 183-190. https://doi.org/10.1016/0022-474X(84)90002-X
[80] C.H. Vrba, H.P. Arai, M. Nosal, The effect of silica aerogel on the mortality of Tribolium confusum (Duval) as a function of exposure time and food deprivation, Can. J. Zool. 61(7) (1983) 1481-1486. https://doi.org/10.1139/z83-199
[81] Y. Akhtar, M.B. Isman, Horizontal transfer of diatomaceous earth and botanical insecticides in the common bed bug, Cimex lectularius L.; Hemiptera: Cimicidae, PLoS One 8(9) (2013) e75626. https://doi.org/10.1371/journal.pone.0075626
[82] J. Goddard, K. Mascheck, Laboratory assays with various insecticides against bed bugs taken from a poultry house in Mississippi, Midsouth. Entomologist. 8 (2015) 10–15.
[83] G.D. White, W.L. Berndt, J.H. Schesser, C.C. Fifield, Evaluation of four inert dusts for the protection of stored wheat in Kansas from insect attack, USDA Agricultural Research Service Report, ARS (1966) 51-80.
[84] G.N. Patourel, The effect of grain moisture content on the toxicity of a sorptive silica dust to four species of grain beetle, J. Stored Prod. Res. 22 (1986) 63-69. https://doi.org/10.1016/0022-474X(86)90020-2
[85] F.L. Watters, Protection of packaged food from insect infestation by the use of silica gel, J. Econ. Entomol. 59 (1966) 146-149. https://doi.org/10.1093/jee/59.1.146
[86] S.L. Gowers, G.N.J. Le-Patourel, Toxicity of deposits of an amorphous silica dust on different surfaces and their pick-up by Sitophilus granarius (L.) (Coleoptera: Curculionidae), J. Stored Prod. Res. 20(1) (1984) 25-29. https://doi.org/10.1016/0022-474X(84)90032-8
[87] J. Kane, Silica based dusts for the control of insects infesting dried fish, J. Stored Prod. Res. 2 (1967) 251-255. https://doi.org/10.1016/0022-474X(67)90073-2
[88] I.B. Tarshis, How to apply sorptive dusts for cockroach control, Pest Control 27 (1959d) 30-27.