Aerogels Utilizations in Batteries

$30.00

Aerogels Utilizations in Batteries

T. Pazhanivel, S. Dhinesh, M. Priyadharshini, R.Gobi

Aerogels, a nanoscale 3D mesoporous spongy sample of enhanced surface area, was usually considered as insulator for thermal application, catalyst, and as radiation detector. Presently, it is investigated as potential candidate for electrochemistry due to its inborn capacity to enhance the characteristic features of the surfaces of commercial active materials in batteries and ultracapacitors. Recently composite aerogels which is blended with metal oxides, metal sulphides and so on have been set up as low thickness, profoundly permeable, and large amount of accessible surface and examined as active electrodes. This type of aerogel-based composites challenges the standard manners by that electrochemically active materials are considered, examined, and employed.

Keywords
Aerogel, Electrochemical Batteries, Specific Capacity, Coulombic Efficiency, Rate Capability

Published online 2/25/2021, 22 pages

Citation: T. Pazhanivel, S. Dhinesh, M. Priyadharshini, R.Gobi, Aerogels Utilizations in Batteries, Materials Research Foundations, Vol. 98, pp 99-120, 2021

DOI: https://doi.org/10.21741/9781644901298-6

Part of the book on Aerogels II

References
[1] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: A review, Energy Environ. Sci. 4 (2011) 3243–3262. https://doi.org/10.1039/c1ee01598b
[2] V. Thangadurai, S. Narayanan, D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review, Chem. Soc. Rev. 43 (2014) 4714–4727. https://doi.org/10.1039/c4cs00020j
[3] L. Chen, L.Z. Fan, Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte, Energy Storage Mater. 15 (2018) 37–45. https://doi.org/10.1016/j.ensm.2018.03.015
[4] Y. Li, H. Xu, P.H. Chien, N. Wu, S. Xin, L. Xue, K. Park, Y.Y. Hu, J.B. Goodenough, A perovskite electrolyte that is stable in moist air for lithium-ion batteries, Angew. Chemie – Int. Ed. 57 (2018) 8587–8591. https://doi.org/10.1002/anie.201804114
[5] C.Z. Zhao, X.Q. Zhang, X.B. Cheng, R. Zhang, R. Xu, P.Y. Chen, H.J. Peng, J.Q. Huang, Q. Zhang, An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 11069–11074. https://doi.org/10.1073/pnas.1708489114
[6] M.S. Whittingham, Lithium batteries and cathode materials, Chem. Rev. 104 (2004) 4271–4301. https://doi.org/10.1021/cr020731c
[7] L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries, Energy Environ. Sci. 4 (2011) 2682–2689. https://doi.org/10.1039/c0ee00699h
[8] B. Scrosati, J. Garche, Lithium batteries: Status, prospects and future, J. Power Sources. 195 (2010) 2419–2430. https://doi.org/10.1016/j.jpowsour.2009.11.048
[9] X.B. Cheng, C. Yan, X.Q. Zhang, H. Liu, Q. Zhang, Electronic and ionic channels in working interfaces of lithium metal anodes, ACS Energy Lett. 3 (2018) 1564–1570. https://doi.org/10.1021/acsenergylett.8b00526
[10] S. Wang, F. Gao, Y. Zhao, N. Liu, T. Tan, X. Wang, Two-dimensional CeO2/RGO composite-modified separator for lithium/sulfur batteries, Nanoscale Res. Lett. 13 (2018). https://doi.org/10.1186/s11671-018-2798-5
[11] P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, LigO2 and LigS batteries with high energy storage, Nat. Mater. 11 (2012) 19–29. https://doi.org/10.1038/nmat3191
[12] M. Winter, B. Barnett, K. Xu, Before Li ion batteries, Chem. Rev. 118 (2018) 11433–11456. https://doi.org/10.1021/acs.chemrev.8b00422
[13] P. Albertus, S. Babinec, S. Litzelman, A. Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries, Nat. Energy. 3 (2018) 16–21. https://doi.org/10.1038/s41560-017-0047-2
[14] G.J. May, A. Davidson, B. Monahov, Lead batteries for utility energy storage: A review, J. Energy Storage. 15 (2018) 145–157. https://doi.org/10.1016/j.est.2017.11.008
[15] R. Pitchai, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, Nanostructured cathode materials: A key for better performance in Li-ion batteries, J. Mater. Chem. 21 (2011) 11040–11051. https://doi.org/10.1039/c1jm10857c
[16] C. Wang, Y. Yu, J. Niu, Y. Liu, D. Bridges, X. Liu, J. Pooran, Y. Zhang, A. Hu, Recent progress of metal-air batteries-A mini review, Appl. Sci. 9 (2019). https://doi.org/10.3390/app9142787
[17] Y. Nishi, Performance of the first lithium ion battery and its process technology, Lithium Ion Batter. (2007) 181–198. https://doi.org/10.1002/9783527612000.ch8
[18] Y. Gogotsi, P. Simon, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845–854
[19] L. Zuo, Y. Zhang, L. Zhang, Y.E. Miao, W. Fan, T. Liu, Polymer/carbon-based hybrid aerogels: preparation, properties and applications, 2015. https://doi.org/10.3390/ma8105343
[20] J.C. Chang, Y.F. Tzeng, J.M. Chen, H.T. Chiu, C.Y. Lee, Carbon nanobeads as an anode material on high rate capability lithium ion batteries, Electrochim. Acta. 54 (2009) 7066–7070. https://doi.org/10.1016/j.electacta.2009.07.020
[21] D. Guan, J. Shen, N. Liu, G. Wu, B. Zhou, Z. Zhang, X. Ni, The electrochemical performance of carbon-aerogel-based nanocomposite anodes compound with graphites for lithium-ion cells, J. Reinf. Plast. Compos. 30 (2011) 827–832. https://doi.org/10.1177/0731684411404458
[22] S.J. Kim, S.W. Hwang, S.H. Hyun, Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics, J. Mater. Sci. 40 (2005) 725–731. https://doi.org/10.1007/s10853-005-6313-x
[23] M. Mirzaeian, P.J. Hall, Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries, Electrochim. Acta. 54 (2009) 7444–7451. https://doi.org/10.1016/j.electacta.2009.07.079
[24] Y. Yan, M. Shi, Y. Wei, C. Zhao, L. Chen, C. Fan, R. Yang, Y. Xu, The hierarchical porous structure of carbon aerogels as matrix in cathode materials for Li-S batteries, J. Nanoparticle Res. 20 (2018) 1–13. https://doi.org/10.1007/s11051-018-4361-9
[25] L. Yin, Z. Zhang, Z. Li, F. Hao, Q. Li, C. Wang, R. Fan, Y. Qi, Spinel ZnMn2O4 nanocrystal-anchored 3D hierarchical carbon aerogel hybrids as anode materials for lithium ion batteries, Adv. Funct. Mater. 24 (2014) 4176–4185. https://doi.org/10.1002/adfm.201400108
[26] L. Zhu, L. You, P. Zhu, X. Shen, L. Yang, K. Xiao, High performance lithium-sulfur batteries with a sustainable and environmentally friendly carbon aerogel modified separator, ACS Sustain. Chem. Eng. 6 (2018) 248–257. https://doi.org/10.1021/acssuschemeng.7b02322
[27] J.L. Brédas, E.H. Sargent, G.D. Scholes, Photovoltaic concepts inspired by coherence effects in photosynthetic systems, Nat. Mater. 16 (2016) 35–44. https://doi.org/10.1038/nmat4767
[28] N. Bauer, K. Calvin, J. Emmerling, O. Fricko, S. Fujimori, J. Hilaire, J. Eom, V. Krey, E. Kriegler, I. Mouratiadou, H. Sytze de Boer, M. van den Berg, S. Carrara, V. Daioglou, L. Drouet, J.E. Edmonds, D. Gernaat, P. Havlik, N. Johnson, D. Klein, P. Kyle, G. Marangoni, T. Masui, R.C. Pietzcker, M. Strubegger, M. Wise, K. Riahi, D.P. van Vuuren, Shared socio-economic pathways of the energy sector – quantifying the narratives, Glob. Environ. Chang. 42 (2017) 316–330. https://doi.org/10.1016/j.gloenvcha.2016.07.006
[29] V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Energy and fuels from electrochemical interfaces, Nat. Mater. 16 (2016) 57–69. https://doi.org/10.1038/nmat4738
[30] H. Shan, D. Xiong, X. Li, Y. Sun, B. Yan, D. Li, S. Lawes, Y. Cui, X. Sun, Tailored lithium storage performance of graphene aerogel anodes with controlled surface defects for lithium-ion batteries, Appl. Surf. Sci. 364 (2016) 651–659. https://doi.org/10.1016/j.apsusc.2015.12.143
[31] C. Zhu, T.Y.J. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Highly compressible 3D periodic graphene aerogel microlattices, Nat. Commun. 6 (2015) 1–8. https://doi.org/10.1038/ncomms7962
[32] L. Liu, Z. Cai, S. Lin, X. Hu, Frozen spray-coating prepared graphene aerogel with enhanced mechanical, electrochemical, and electromagnetic performance for energy storage, ACS Appl. Nano Mater. 1 (2018) 4910–4917. https://doi.org/10.1021/acsanm.8b01091
[33] J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, S.X. Mao, N.S. Hudak, X.H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, J. Li, In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode, Science (80-. ). 330 (2010) 1515–1520. https://doi.org/10.1126/science.1195628
[34] Y. Wang, H. Li, P. He, E. Hosono, H. Zhou, Nano active materials for lithium-ion batteries, Nanoscale. 2 (2010) 1294–1305. https://doi.org/10.1039/c0nr00068j
[35] J. Song, M. Zhou, R. Yi, T. Xu, M.L. Gordin, D. Tang, Z. Yu, M. Regula, D. Wang, Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries, Adv. Funct. Mater. 24 (2014) 5904–5910. https://doi.org/10.1002/adfm.201401269
[36] J. Song, Z. Yu, T. Xu, S. Chen, H. Sohn, M. Regula, D. Wang, Flexible freestanding sandwich-structured sulfur cathode with superior performance for lithium-sulfur batteries, J. Mater. Chem. A. 2 (2014) 8623–8627. https://doi.org/10.1039/c4ta00742e
[37] B. Wicikowska, A.L. Oleksiak, silica aero-gel towards anodes for lithium-ion batteries, (2015) 9–10
[38] J.L. Gurav, I.K. Jung, H.H. Park, E.S. Kang, D.Y. Nadargi, Silica aerogel: Synthesis and applications, J. Nanomater. 2010 (2010). https://doi.org/10.1155/2010/409310
[39] N. Asim, M. Badiei, M.A. Alghoul, M. Mohammad, A. Fudholi, M. Akhtaruzzaman, N. Amin, K. Sopian, Biomass and industrial wastes as resource materials for aerogel preparation: opportunities, challenges, and research directions, Ind. Eng. Chem. Res. 58 (2019) 17621–17645. https://doi.org/10.1021/acs.iecr.9b02661
[40] N. Recham, L. Dupont, M. Courty, K. Djellab, D. Larcher, M. Armand, J.M. Tarascon, Ionothermal synthesis of tailor-made LiFePO4 powders for li-ion battery applications, Chem. Mater. 21 (2009) 1096–1107. https://doi.org/10.1021/cm803259x
[41] T. Xu, J. Song, M.L. Gordin, H. Sohn, Z. Yu, S. Chen, D. Wang, Mesoporous carbon-carbon nanotube-sulfur composite microspheres for high-areal-capacity lithium-sulfur battery cathodes, ACS Appl. Mater. Interfaces. 5 (2013) 11355–11362. https://doi.org/10.1021/am4035784
[42] M. Phadatare, R. Patil, N. Blomquist, S. Forsberg, J. Örtegren, M. Hummelgård, J. Meshram, G. Hernández, D. Brandell, K. Leifer, S.K.M. Sathyanath, H. Olin, Silicon-nanographite aerogel-based anodes for high performance lithium ion batteries, Sci. Rep. 9 (2019) 1–9. https://doi.org/10.1038/s41598-019-51087-y
[43] N. Leventis, Three-dimensional core-shell superstructures: Mechanically strong aerogels, Acc. Chem. Res. 40 (2007) 874–884. https://doi.org/10.1021/ar600033s
[44] W. Liu, A. Herrmann, N.C. Bigall, P. Rodriguez, D. Wen, M. Oezaslan, T.J. Schmidt, N. Gaponik, A. Eychmu, Noble metal aerogels- synthesis, characterization, and application as electrocatalysts, ACC. Chem. Res. (2014). https://doi.org/10.1021/ar500237c
[45] H.D. Gesser, P.C. Goswami, Aerogels and related porous materials, Chem. Rev. 89 (1989) 765–788. https://doi.org/10.1021/cr00094a003
[46] Y.P. Gao, C.N. Sisk, L.J. Hope-Weeks, A sol-gel route to synthesize monolithic zinc oxide aerogels, Chem. Mater. 19 (2007) 6007–6011. https://doi.org/10.1021/cm0718419
[47] R.P. Maloney, H.J. Kim, J.S. Sakamoto, Lithium titanate aerogel for advanced lithium-ion batteries, ACS Appl. Mater. Interfaces. 4 (2012) 2318–2321. https://doi.org/10.1021/am3002742
[48] J. Mao, J. Iocozzia, J. Huang, K. Meng, Y. Lai, Z. Lin, Graphene aerogels for efficient energy storage and conversion, Energy Environ. Sci. 11 (2018) 772–799. https://doi.org/10.1039/c7ee03031b
[49] R. Wang, C. Xu, J. Sun, L. Gao, Three-dimensional Fe2O3 nanocubes/nitrogen-doped graphene aerogels: Nucleation mechanism and lithium storage properties, Sci. Rep. 4 (2014) 1–7. https://doi.org/10.1038/srep07171
[50] L. Liu, X. Yang, C. Lv, A. Zhu, X. Zhu, S. Guo, C. Chen, D. Yang, Seaweed-derived route to Fe2O3 hollow nanoparticles/N-doped graphene aerogels with high lithium ion storage performance, ACS Appl. Mater. Interfaces. 8 (2016) 7047–7053. https://doi.org/10.1021/acsami.5b12427
[51] X. Sun, X. Zhu, X. Yang, J. Sun, Y. Xia, D. Yang, CoFe2O4 /carbon nanotube aerogels as high performance anodes for lithium ion batteries, Green Energy Environ. 2 (2017) 160–167. https://doi.org/10.1016/j.gee.2017.01.008
[52] P. Wu, H.Y. Hu, N. Xie, C. Wang, F. Wu, M. Pan, H.F. Li, X. Di Wang, Z. Zeng, S. Deng, G.P. Dai, A N-doped graphene-cobalt nickel sulfide aerogel as a sulfur host for lithium-sulfur batteries, RSC Adv. 9 (2019) 32247–32257. https://doi.org/10.1039/c9ra05202j
[53] P. Zhang, Y. Liu, Y. Yan, Y. Yu, Q. Wang, M. Liu, High areal capacitance for lithium ion storage achieved by a hierarchical carbon/MoS2 aerogel with vertically aligned pores, ACS Appl. Energy Mater. 1 (2018) 4814–4823. https://doi.org/10.1021/acsaem.8b00897
[54] R. Wang, C. Xu, J. Sun, L. Gao, Three-dimensional Fe2O3 nanocubes/nitrogen-doped graphene aerogels: Nucleation mechanism and lithium storage properties, Sci. Rep. 4 (2014). https://doi.org/10.1038/srep07171
[55] X. Wang, X. Cao, L. Bourgeois, H. Guan, S. Chen, Y. Zhong, D.M. Tang, H. Li, T. Zhai, L. Li, Y. Bando, D. Golberg, N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries, Adv. Funct. Mater. 22 (2012) 2682–2690. https://doi.org/10.1002/adfm.201103110
[56] Y. Xie, Z. Meng, T. Cai, W.Q. Han, Effect of boron-doping on the graphene aerogel used as cathode for the lithium-sulfur battery, ACS Appl. Mater. Interfaces. 7 (2015) 25202–25210. https://doi.org/10.1021/acsami.5b08129
[57] M.A. Garakani, S. Abouali, B. Zhang, C.A. Takagi, Z.L. Xu, J.Q. Huang, J. Huang, J.K. Kim, Cobalt carbonate/ and cobalt oxide/graphene aerogel composite anodes for high performance li-ion batteries, ACS Appl. Mater. Interfaces. 6 (2014) 18971–18980. https://doi.org/10.1021/am504851s
[58] J. He, Y. Chen, W. Lv, K. Wen, C. Xu, W. Zhang, W. Qin, W. He, Three-dimensional CNT/graphene-Li2S aerogel as freestanding cathode for high-performance Li-S batteries, ACS Energy Lett. 1 (2016) 820–826. https://doi.org/10.1021/acsenergylett.6b00272
[59] Y. Wang, D. Kong, W. Shi, B. Liu, G.J. Sim, Q. Ge, H.Y. Yang, Ice Templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries, Adv. Energy Mater. 6 (2016). https://doi.org/10.1002/aenm.201601057