Bioaerogels: Synthesis Approaches, Biomedical Applications and Cell Uptake

$30.00

Bioaerogels: Synthesis Approaches, Biomedical Applications and Cell Uptake

Jhonatas Rodrigues Barbosa, Rafael Henrique Holanda Pinto, Luiza Helena da Silva Martins, Raul Nunes de Carvalho Junior

Bioaerogels are a special class of aerogels, produced from natural polymers, are porous structures with promising physicochemical properties for various applications. This chapter focus on the latest bioaerogel findings, addressing the synthesis, impregnation of bioactive compounds, pharmacological applications and aspects of cell uptake, biodegradability and toxicity. Bioaerogels are biomaterials with interesting properties such as high surface area, high thermal and mechanical resistance, low density and dielectric constant. It has been reported that these biomaterials can be used for drug delivery and molecular scaffolding production. Furthermore, it has been shown that bioaerogels are biocompatible, biodegradable, non-toxic, and can be absorbed and degraded by the cellular environment. Finally, bioaerogels are promising, inexpensive, environmentally friendly and versatile materials and can be the basis for the manufacture of new technologies and biomaterials.

Keywords
Biopolymer, Bioaerogel, Biomaterial, Biodegradability, Cellular Uptake

Published online 2/25/2021, 14 pages

Citation: Jhonatas Rodrigues Barbosa, Rafael Henrique Holanda Pinto, Luiza Helena da Silva Martins, Raul Nunes de Carvalho Junior, Bioaerogels: Synthesis Approaches, Biomedical Applications and Cell Uptake, Materials Research Foundations, Vol. 98, pp 43-56, 2021

DOI: https://doi.org/10.21741/9781644901298-3

Part of the book on Aerogels II

References
[1] H. Maleki, L. Durães, C.A. García-González, P. del Gaudio, A. Portugal, M. Mahmoudi, Synthesis and biomedical applications of aerogels: possibilities and challenges, Adv. Colloid Interface Sci. 236 (2016) 1-27. https://doi.org/10.1016/j.cis.2016.05.011
[2] J. Alemán, A.V. Chadwick, J. He, M. Hess, K. Horie, R.G. Jones, P. Kratochvíl, I. Meisel, I. Mita, G. Moad, Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007), Pure Appl. Chem. 79 (2007) 1801-1829. https://doi.org/10.1351/pac200779101801
[3] H. Maleki, L. Durães, A. Portugal, An overview on silica aerogels synthesis and different mechanical reinforcing strategies, J. Non-Cryst. Solids. 385 (2014) 55-74. https://doi.org/ 10.1016/j.jnoncrysol.2013.10.017
[4] I.M. El-Nahhal, N.M. El-Ashgar, A review on polysiloxane-immobilized ligand systems: synthesis, characterization and applications, J. Organomet. Chem. 692 (2007) 2861-2886. https://doi.org/10.1016/j.jorganchem.2007.03.009
[5] A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications, Chem. Rev. 102 (2002) 4243-4266. https://doi.org/10.1021/cr0101306
[6] S.W. Ruban, Biobased packaging-application in meat industry, Vet. World. 2 (2009) 79-82. https://doi.org/10.1016/j.procbio.2015.02.009
[7] H. Derakhshankhah, M.J. Hajipour, E. Barzegari, A. Lotfabadi, M. Ferdousi, A.A. Saboury, E.P. Ng, M. Raoufi, H. Awala, S. Mintova, Zeolite nanoparticles inhibit Aβ–fibrinogen interaction and formation of a consequent abnormal structural clot, ACS Appl. Mater. Interfaces. 8 (2016) 30768-30779. https://doi.org/ 10.1021/acsami.6b10941
[8] A. Mustapa, A. Martin, L. Sanz-Moral, M. Rueda, M. Cocero, Impregnation of medicinal plant phytochemical compounds into silica and alginate aerogels, J. Supercrit. Fluids. 116 (2016) 251-263. https://doi.org/10.1016/j.supflu.2016.06.002
[9] B. Ding, J. Cai, J. Huang, L. Zhang, Y. Chen, X. Shi, Y. Du, S. Kuga, Facile preparation of robust and biocompatible chitin aerogels, J. Mater. Chem. 22 (2012) 5801-5809. https://doi.org/10.1039/c2jm16032c
[10] C. Tsioptsias, C. Michailof, G. Stauropoulos, C. Panayiotou, Chitin and carbon aerogels from chitin alcogels, Carbohydr. Polym. 76 (2009) 535–540. https://doi.org/10.1016/j.carbpol.2008.11.018
[11] S.S. Silva, A.R.C. Duarte, A.P. Carvalho, J.F. Mano, R.L. Reis, Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology, Acta Biomater. 7 (2011) 1166–1172. https://doi.org/10.1016/j.actbio.2010.09.041
[12] R.S. Dassanayake, C. Gunathilake, N. Abidi, M. Jaroniec, Activated carbon derived from chitin aerogels: preparation and CO2 adsorption, Cellulose 25 (2018) 1911–1920. https://doi.org/10.1007/s10570-018-1660-3
[13] M. Robitzer, F. D. Renzo, F. Quignard, Natural materials with high surface area. Physisorption methods for the characterization of the texture and surface of polysaccharide aerogels, Microporous Mesoporous Mater. 140 (2011) 9–16. https://doi.org/10.1016/j.micromeso.2010.10.006
[14] J. Singh, P. Dutta, J. Dutta, A. Hunt, D. Macquarrie, J. Clark, Preparation and properties of highly soluble chitosan–l-glutamic acid aerogel derivative, Carbohydr. Polym. 76 (2009) 188–195. https://doi.org/10.1016/j.carbpol.2008.10.011
[15] J. Radwan-Pragłowska, M. Piątkowski, Ł. Janus, D. Bogdał, D. Matysek, V. Cablik, Microwave-assisted synthesis and characterization of antioxidant chitosan-based aerogels for biomedical applications, Int. J. Polym. Anal. Charact. 1 (2018) 1–9. https://doi.org/10.1080/1023666X.2018.1504471
[16] Z. Wang, Y. Huang, M. Wang, G. Wu, T. Geng, Y. Zhao, A. Wu, Macroporous calcium alginate aerogel as sorbent for Pb2+ removal from water media, J. Environ. Chem. Eng. 4 (2016) 3185–3192. https://doi.org/10.1016/j.jece.2016.06.032
[17] M. Pantić, Ž. Knez, Z. Novak, Supercritical impregnation as a feasible technique for entrapment of fat-soluble vitamins into alginate aerogels, J. Non-Cryst. Solids. 432 (2016) 519–526. https://doi.org/10.1016/j.jnoncrysol.2015.11.011
[18] P. Paraskevopoulou, P. Gurikov, G. Raptopoulos, D. Chriti, M. Papastergiou, Z. Kypritidou, V. Skounakis, A. Argyraki, Strategies toward catalytic biopolymers: incorporation of tungsten in alginate aerogels, Polyhedron. 154 (2018) 209–216. https://doi.org/10.1016/j.poly.2018.07.051.
[19] X.L. Li, M.J. Chen, H.B. Chen, Facile fabrication of mechanically-strong and flame retardant alginate/clay aerogels, Compos. Part B Eng. 164 (2019) 18–25. https://doi.org/10.1016/j.compositesb.2018.11.055.
[20] L. Tan, C. Yu, M. Wang, S. Zhang, J. Sun, S. Dong, J. Sun, Synergistic effect of adsorption and photocatalysis of 3D g-C3N4-agar hybrid aerogels, Appl. Surf. Sci. 467 (2019) 286–292. https://doi.org/10.1016/j.apsusc.2018.10.067
[21] B. Zeng, X. Wang, N. Byrne, Development of cellulose based aerogel utilizing waste denima morphology study, Carbohydr. Polym. 205 (2019) 1–7. https://doi.org/10.1016/j.carbpol.2018.09.070
[22] H. Sehaqui, Q. Zhou, L.A. Berglund, High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC), Compos. Sci. Technol. 71 (2011) 1593–1599. https://doi.org/10.1016/j.compscitech.2011.07.003
[23] F. P. Soorbaghi, M. Isanejad, S. Salatin, M. Ghorbani, S. Jafari, H. Derakhshankhah, Bioaerogels: Synthesis approaches, cellular uptake, and the biomedical applications, Biomed. Pharmacother. 111 (2019) 964–975. https://doi.org/10.1016/j.biopha.2019.01.014
[24] R.H. Schmedlen, K.S. Masters, J.L. West, Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering, Biomaterials. 23 (2002) 4325–4332. https://doi.org/10.1016/S0142-9612(02)00177-1
[25] D. Nguyen, D.A. Hägg, A. Forsman, J. Ekholm, P. Nimkingratana, C. Brantsing, T. Kalogeropoulos, S. Zaunz, S. Concaro, M. Brittberg, Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink, Sci. Rep. 7 (2017) 658. https://doi.org/10.1007/s12325-016-0470-y
[26] K.B. Fonseca, S.J. Bidarra, M.J. Oliveira, P.L. Granja, C.C. Barrias, Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments, Acta Biomater. 7 (2011) 1674–1682. https://doi.org/10.1016/j.actbio.2010.12.029
[27] Y.Y. Jo, S.G. Kim, K.J. Kwon, H. Kweon, W.S. Chae, W.G. Yang, E.Y. Lee, H. Seok, Silk fibroin-alginate-hydroxyapatite composite particles in bone tissue engineering applications in vivo, Int. J. Mol. Sci. 18 (2017) 858. https://doi.org/10.3390/ijms18040858.
[28] S. Frindy, A. Primo, H. Ennajih, A. el Kacem Qaiss, R. Bouhfid, M. Lahcini, E.M. Essassi, H. Garcia, A. El Kadib, Chitosan–graphene oxide films and CO2-dried porous aerogel microspheres: interfacial interplay and stability, Carbohydr. Polym. 167 (2017) 297–305. https://doi.org/10.1016/j.carbpol.2017.03.034
[29] T. Kean, M. Thanou, Biodegradation, biodistribution and toxicity of chitosan, Adv. Drug Deliv. Rev. 62 (2010) 3-11. https://doi.org/10.1016/j.addr.2009.09.004
[30] H. Onishi, Y. Machida, Biodegradation and distribution of water-soluble chitosan in mice, Biomaterials. 20 (1999) 175-182. https://doi.org/10.1016/S0142-9612(98)00159-8
[31] S.B. Rao, C.P. Sharma, Use of chitosan as a biomaterial: studies on its safety and hemostatic potential, J. Biomed. Mater. Res. 34 (1997) 21-28. https://doi.org/10.1002/(SICI)1097-4636(199701)34:1<21::AID-JBM4>3.0.CO;2-P.
[32]S. Fernández-Cossío, A. León-Mateos, F.G. Sampedro, M.T.C. Oreja, Biocompatibility of agarose gel as a dermal filler: histologic evaluation of subcutaneous implants, Plast. Reconstr. Surg. 120 (2007) 1161-1169. https://doi.org/10.1097/01.prs.0000279475.99934.71
[33] G. Orive, A. Carcaboso, R. Hernandez, A. Gascon, J. Pedraz, Biocompatibility evaluation of different alginates and alginate-based microcapsules, Biomacromolecules. 6 (2005) 927-931. https://doi.org/10.1021/bm049380x
[34] S.K. Tam, J. Dusseault, S. Bilodeau, G. Langlois, J.P. Hallé, L.H. Yahia, Factors influencing alginate gel biocompatibility, J. Biomed. Mater. Res. Part A. 98 (2011) 40-52. https://doi.org/10.1002/jbm.a.33047
[35] J.R. Barbosa, M.M.S. Freitas, L.H.S. Martins, R.N.C. Junior, Polysaccharides of mushroom Pleurotus spp: New extraction techniques, biological activities and development of new technologies, Carbohydr. Polym. 229 (2019)115550. https://doi.org/10.1016/j.carbpol.2019.115550
[36] O. Rodríguez-jorge, L.A. Kempis-calanis, W. Abou-jaoudé, D.Y. Gutiérrez-reyna, C. Hernandez, O. Ramirez-pliego, Cooperation between T cell receptor and Toll-like receptor 5 signaling for CD4+ T cell activation, Sci. Signal. 88 (2019) 1–11. https://doi.org/10.1126/scisignal.aar3641
[37] F.A.M. Saner, A. Herschtal, B.H. Nelson, E.L. Goode, S.J. Ramus, A. Pandey, D.D.L. Bowtell, in patients with cancer. Nat. Rev. Cancer. 19 (2019) 339–348. https://doi.org/10.1038/s41568-019-0145-5
[38] T. Miyamoto, Si. Takahashi, H. Ito, H. Inagaki, Y. Noishiki, Tissue biocompatibility of cellulose and its derivatives, J. Biomed. Mater. Res. 23 (1989) 125-133. https://doi.org/10.1002/jbm.820230110
[39] P.L. Ma, M. Lavertu, F.M. Winnik, M.D. Buschmann, Stability and binding affinity of DNA/chitosan complexes by polyanion competition, Carbohydr. Polym. 176 (2017) 167-176. https://doi.org/10.1016/j.carbpol.2017.08.002
[40] A.T. Naeini, O.Y. Soliman, M.G. Alameh, M. Lavertu, M.D. Buschmann, Automated in-line mixing system for large scale production of chitosan-based polyplexes, J. Colloid Interface Sci. 500 (2017) 253-263. https://doi.org/10.1016/j.jcis.2017.04.013.