Application of Quantum Dots in Sensors

$30.00

Application of Quantum Dots in Sensors

N. Mhlanga, P. Tetyana

Nanotechnology has presented the science community with a platform to fabricate nanomaterials suitable for myriad applications. Quantum dots (QDs) are one such nanomaterial which surged in the last decade in applications such as sensing. Sensing uses sensors defined as an ensemble of bio/chemical materials that can recognize a corresponding molecule of interest. Sensors are of paramount importance in safeguarding the ecosystem from both natural and synthetic pollutants. The chapter reports on the application of the QDs in the development of sensors.

Keywords
Quantum Dots, Sensing, Chemosensors, Biosensors, Luminescence

Published online 2/1/2020, 24 pages

Citation: N. Mhlanga, P. Tetyana, Application of Quantum Dots in Sensors, Materials Research Foundations, Vol. 96, pp 145-168, 2021

DOI: https://doi.org/10.21741/9781644901250-6

Part of the book on Quantum Dots

References
[1] A.M. Smith, S. Dave, S. Nie, L. True, X. Gao, Multicolor quantum dots for molecular diagnostics of cancer, Expert. Rev. Mol. Diagn. 6 (2006) 231-44. https://doi.org/10.1586/14737159.6.2.231
[2] K. Krishnaswamy, V. Orsat, Sustainable delivery systems through green nanotechnology, in: A.M. Grumezescu (Ed.), Nano-and Microscale Drug Delivery Systems, Elsevier Inc., Amsterdam, 2017, pp. 17-32.
[3] S. Suri, G. Ruan, J. Winter, C.E. Schmidt, Microparticles and Nanoparticles. In: B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons (Eds.), Biomaterials Science: An Introduction to Materials in Medicine, Elsevier Inc., Amsterdam, 2013, pp. 360-388.
[4] J. Njuguna, F. Ansari, S. Sachse, H. Zhu, V. Rodriguez, Nanomaterials, nanofillers, and nanocomposites: types and properties, in: J. Njunguna, K. Pielichowski, H. Zhu (Eds.), Health and Environmental Safety of Nanomaterials, Woodhead Publishing Limited, Cambridge, 2014, pp. 3-27.
[5] A.M. Smith, S. Nie, Semiconductor nanocrystals: structure, properties, and band gap engineering, Acc. Chem. Res.43 (2010) 190-200. https://doi.org/10.1021/ar9001069
[6] L. Cui, X.-P. He, G.-R. Chen, Recent progress in quantum dot based sensors, RSC. Adv.5 (2015) 26644-26653. https://doi.org/10.1039/C5RA01950H
[7] A. Valizadeh, H. Mikaeili, M. Samiei, S.M. Farkhani, N. Zarghami, M. Kouhi, A. Akbarzadeh,S. Davaran, Quantum dots: synthesis, bioapplications, and toxicity, Nanoscale Res. Lett.7 (2012) 1 –14. https://doi.org/10.1186/1556-276X-7-480
[8] P. Mishra, G. Vyas, M.S. Harsoliya, J.K. Pathan, D. Raghuvanshi, P. Sharma, A. Agrawal, Quantum dot probes in disease diagnosis, J. Pharm. Pharm. Sci. Rev. 1 (2011) 42–46. Corpus ID: 53340737.
[9] F. Pinaud, X. Michalet, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Iyer, S. Weiss,Advances in fluorescence imaging with quantum dot bio-probes, Biomaterials, 27 (2006) 1679-87. https://doi:10.1016/j.biomaterials.2005.11.018
[10] W. Wei, Z. Jun-Jie, Optical applications of quantum dots in biological system,Sci. China. Chem. 54(2011) 1177 – 1184. https://doi.org/10.1007/s11426-011-4311-1
[11] D. Aldakov, A. Lefrançois, P. Reiss, Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications, J. Mater. Chem. C.1(2013) 3756 – 3776. https://doi.org/10.1039/C3TC30273C
[12] W.R. Algar, M. Massey, U.J.Krull, The application of quantum dots, gold nanoparticles and molecular switches to optical nucleic-acid diagnostics, Trends Anal. Chem. 28(2009) 292–306. https://doi.org/10.1016/j.trac.2008.11.012
[13] A.F.E. Hezinger, J.Teßmar, A. Gopferich, Polymer coating of quantum dots – A powerful tool toward diagnostics and sensorics, Eur. J. Pharm. Biopharm. 68(2008) 138–152. https://doi.org/10.1016/j.ejpb.2007.05.013
[14] M.K. Wagner, F. Li, J. Li, X.F. Li, X.C. Le, Use of quantum dots in the development of assays for cancer biomarkers, Anal. Bioanal. Chem. 397 (2010) 3213–3224. https://doi.org/10.1007/s00216-010-3847-9
[15] P. Zrazhevskiy, M. Sena, X. Gao, Designing multifunctional quantum dots for bioimaging, detection, and drug delivery, Chem. Soc. Rev. 39 (2010) 4326-4354. https://doi.org/10.1039/B915139G
[16] F. Hetsch, N. Zhao, S.V. Kershaw, A.L. Rogach, Quantum dot field effect transistors, Mater. Today. 16 (2013) 312 – 325. https://doi.org/10.1016/j.mattod.2013.08.011
[17] W.W. Yu, E. Chang, R.Drezek, V.L. Colvin, Water-soluble quantum dots for biomedical applications, Biochem.Biophys. Res. Commun. 348 (2006) 781–786. https://doi.org/10.1016/j.bbrc.2006.07.160
[18] C. Zeng, A. Ramos-Ruiz, J.A. Field, R. Sierra-Alvarez, Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2, J. Enviro.Manage. 154(2015) 78-85. https://doi.org/10.1016/j.jenvman.2015.02.033
[19] D. Vasudevan, R.R. Gaddam, A. Trinchi, I. Cole, Core–shell quantum dots: Properties and applications, J. Alloys Compd. 636 (2015) 395-404. https://doi.org/10.1016/j.jallcom.2015.02.102
[20] N. Chaniotakis, R. Buiculescu, Semiconductor quantum dots in chemical sensors and biosensors, in: K.C. Honeychurch (Eds.), Nanosensors for Chemical and Biological Applications, Woodhead Publishing Limited, Cambridge, 2014, pp. 267-294.
[21] A. Lesiak, K. Drzozga, J. Cabaj, M. Bański, K. Malecha, A. Podhorodecki, Optical sensors based on II-VI quantum dots, Nanomaterials, 9 (2019) 192. https://doi.org/10.3390/nano9020192
[22] A. intel, Quantum Dots Market and Patent Infographics. 2019.
[23] C.M. Gonzalez, J.G. Veinot, Silicon nanocrystals for the development of sensing platforms, J. Mater. Chem. C.4 (2016) 4836-4846. https://doi.org/10.1039/C6TC01159D
[24] B. Valeur, B.M.N. Berberan-Santos, A brief history of fluorescence and phosphorescence before the emergence of quantum theory, J Chem. Educ.88 (2011) 731-738. https://doi.org/10.1021/ed100182h
[25] T. Pisanic, Y. Zhang, T. Wang, Quantum dots in diagnostics and detection: principles and paradigms, Analyst, 139 (2014) 2968-2981. https://doi.org/10.1039/c4an00294f
[26] P. Rani, Chemosensor and its applications, IRJRR, 3 (2015) 1-10.
[27] W. Sun, S. Guo, C. Hu, J. Fan, X. Peng, Recent development of chemosensors based on cyanine platforms, Chem.Rev.116 (2016) 7768-7817. https://doi.org/10.1021/acs.chemrev.6b00001
[28] G. Fukuhara, Analytical supramolecular chemistry: colorimetric and fluorimetric chemosensors, J. Photochem. Photobiol. C: 42 (2020) 100340. https://doi.org/10.1016/j.jphotochemrev.2020.100340
[29] M.L. Viger, L.S. Live, O.D. Therrien, D. Boudreau, Reduction of self-quenching in fluorescent silica-coated silver nanoparticles, Plasmonics, 3 (2008) 33-40. https://doi.org/10.1007/s11468-007-9051-x
[30] M. Vázquez-González, C. Carrillo-Carrion, Analytical strategies based on quantum dots for heavy metal ions detection, J. Biomed.Opt. 19 (2014) 101503. https://doi.org/10.1117/1.JBO.19.10.101503
[31] Z. Altintas, F. Davis, F.W.Scheller, Applications of Quantum Dots in Biosensors and Diagnostics, in: Z. Altintas (Eds.), Biosensors and Nanotechnology: Applications in Healthcare Diagnostics, John Wiley & Sons, Inc., New Jersey, 2018, pp. 185-200.
[32] R. Monošik, M. Streďansky, E.Šturdik, Biosensors – classification, characterization and new trends, ActaChim. Slov.5 (2012) 109-120. https://doi.org/10.2478/v10188-012-0017-z
[33] F. Ma, C. Li, C. Zhang, Development of quantum dot-based biosensors: principles and applications, J. Mater. Chem. B. 6(2018)6173-6190. https://doi.org/10.1039/C8TB01869C
[34] S. Hong, C. Lee, The current status and future outlook of quantum dot-based biosensors for plant virus detection, Plant.Pathol. J. 34 (2018) 85–92. https://doi.org/10.5423/PPJ.RW.08.2017.0184
[35] P.D. Howes, R. Chandrawati, M.M. Stevens, Colloidal nanoparticles as advanced biological sensors, Science. 346 (2014)1247390-10. https://doi.org/10.1126/science.1247390
[36] C.A. Marquette, L.J. Blum, Electro-chemiluminescent biosensing, Anal. Bioanal. Chem. 390 (2008) 155-168. https://doi.org/10.1007/s00216-007-1631-2.
[37] B. Valeur, M.N. Berberan-Santos, A brief history of fluorescence and phosphorescence before the emergence of quantum theory, J. Chem. Educ. 88(2011) 731-738. https://doi.org/10.1021/ed100182h
[38] A.J. Sutherland, Quantum dots as luminescent probes in biological systems,Curr. Opin. Solid St. M. 6(2002) 365-370. https://doi.org/10.1016/S1359-0286(02)00081-5
[39] U. Resch-Genger, M.Grabolle, S. Cavaliere-Jaricot, R.Nitschke, T. Nann, Quantum dots versus organic dyes as fluorescent labels, Nat. Methods, 5 (2008) 763–775. https://doi.org/10.1038/nmeth.1248
[40] S.B. Rizvi, S.Ghaderi, M.Keshtgar, A.M. Seifalian, Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging, Nano Rev. 1(2010) 5161-5176. https://doi.org/10.3402/nano.v1i0.5161
[41] A. Shamirian, A. Ghai, P.T. Snee, QD-based FRET probes at a glance, Sensors (Basel).15 (2015) 13028–13051. https://doi.org/10.3390/s150613028
[42] K. Boeneman, J.B. Delehanty, K. Susumu, M.H. Stewart, J.R. Deschamps, I.L. Medintz, Quantum Dots and Fluorescent Protein FRET-Based Biosensors. In: Zahavy E., Ordentlich A., Yitzhaki S., Shafferman A. (Eds.) Nano-Biotechnology for Biomedical and Diagnostic Research. Advances in Experimental Medicine and Biology, Springer, Dordrecht, 2012. 733: pp. 63-74.
[43] J. Shi, F. Tian, J.Lyu, M.Yang, Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications, J. Mater. Chem. B. 3(2015)6989-7005. https://doi.org/10.1039/C5TB00885A
[44] F. Ma, C. Li, C.Zhang, Development of quantum dot-based biosensors: principles and applications, J. Mater. Chem. B. 6 (2018) 6173-6190. https://doi.org/10.1039/C8TB01869C
[45] H. Feng, Z. Qian, Functional carbon quantum dots: a versatile platform for chemosensing and biosensing, Chem. Rec. 18(2018) 491-505. https://doi.org/10.1002/tcr.201700055
[46] Z. Qian, X. Shan, L. Chai, J. Ma, J. Chen, H. Feng, Si-doped carbon quantum dots: a facile and general preparation strategy, bioimaging application, and multifunctional sensor, ACS Appl. Mater. Interfaces.6 (2014) 6797-6805. https://doi.org/10.1021/am500403n
[47] Q. Ren, L. Ga, J. Ai, Rapid Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for effective detection of ferric ions and as fluorescent ink, ACS Omega. 4(2019) 15842-15848. https://doi.org/10.1021/acsomega.9b01612
[48] A. Ravalli, D. Voccia, I. Palchetti, G. Marrazza, Electrochemical, electrochemiluminescence, and photoelectrochemical aptamer-based nanostructured sensors for biomarker analysis, Biosensors (Basel). 6(2016) 39. https://doi.org/10.3390/bios6030039
[49] M. Li, T. Chen, J.J. Gooding, J. Liu, Review of carbon and graphene quantum dots for sensing, ACS sens.4 (2019) 1732-1748. https://doi.org/10.1021/acssensors.9b00514
[50]. S. Ge, C. Zhang, F. Yu, M. Yan, J. Yu, Layer-by-layer self-assembly CdTe quantum dots and molecularly imprinted polymers modified chemiluminescence sensor for deltamethrin detection, Sens. Actuators B Chem. 156(2011) 222-227. https://doi.org/10.1016/j.snb.2011.04.024
[51] Y. Tang, Y. Su, N. Yang, L. Zhang, Y. Lv, Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water, Anal. Chem. 86 (2014) 4528-4535. https://doi.org/10.1021/ac5005162
[52] M.M. Richter, Electrochemiluminescence (ECL), Chem. Rev. 104 (2004) 3003–3036. https://doi: 10.1021/cr020373d
[53] X. Chen, Y. Liu, Q. Ma, Recent advances in quantum dot-based electrochemiluminescence sensors, J. Mater. Chem. C.6 (2018) 942-959. https://doi.org/10.1039/C7TC05474B
[54]. Y. Dong, W. Tian, S. Ren, R. Dai, Y. Chi, G. Chen, Graphene quantum dots/l-cysteine coreactant electrochemiluminescence system and its application in sensing lead (II) ions, ACS Appl. Mater. Interfaces. 6(2014) 1646-1651. https://doi.org/10.1021/am404552s
[55] S. Yang, J. Liang, S. Luo, C. Liu, Y. Tang, Supersensitive detection of chlorinated phenols by multiple amplification electrochemiluminescence sensing based on carbon quantum dots/graphene, Anal.Chem. 85(2013) 7720-7725. https://doi.org/10.1021/ac400874h
[56] N.F. Carter, G.R. Chambers, G.J. Hughes, S. Scott, G.S. Sanghera, J.L. Watkin, Electrochemical sensor. 1997, Google Patents.
[57] S.K. Mahadeva, J. Kim, Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite, Sens. Actuators B: Chem. 157(2011) 177-182. https://doi.org/10.1016/j.snb.2011.03.046
[58] F. Jafari, A. Salimi, A. Navaee, electrochemical and photoelectrochemical sensing of dihydronicotinamide adenine dinucleotide and glucose based on noncovalently functionalized reduced graphene oxide-cadmium sulfide quantum dots/polyanile blue nanocomposite, Electroanalysis. 26 (2014) 1782-1793. https://doi.org/10.1002/elan.201400164
[59] Z. Yue, F. Lisdat, W.J. Parak, S.G. Hickey, L. Tu, N. Sabir, D. Dorfs, N.C. Bigall, Quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl. Mater. Interfaces. 5 (2013) 2800-2814. https://doi.org/10.1021/am3028662
[60] L. Zhang, P. Li, L. Feng, X. Chen, J. Jiang, S. Zhang, C. Zhang, A. Zhang, G. Chen, H. Wang, Synergetic Ag2S and ZnS quantum dots as the sensitizer and recognition probe: A visible light-driven photoelectrochemical sensor for the “signal-on” analysis of mercury (II), J. Hazard. Mater. (2019) 121715. https://doi.org/10.1016/j.jhazmat.2019.121715
[61] L. Li, D. Liu, K. Wang, H. Mao, T. You, Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor, Sensor. Actuator. B Chem. 252(2017) 17-23. https://doi.org/10.1016/j.snb.2017.05.155
[62] C.-C. Fu, C.-T. Hsieh, R.-S. Juang, S. Gu, Y.A. Gandomi, R.E. Kelly, K.D. Kihm, Electrochemical sensing of mercury ions in electrolyte solutions by nitrogen-doped graphene quantum dot electrodes at ultralow concentrations, J. Mol. Liq.(2020) 112593. https://doi.org/10.1016/j.molliq.2020.112593
[63] J. Saha, A.D. Roy, D.Dey, D. Bhattacharjee, S.A. Hussain, Role of quantum dot in designing FRET based sensors, Mater.5 (2018) 2306–2313. https://doi.org/10.1016/j.matpr.2017.09.234
[64] K.F. Chou, A.M. Dennis, Förster resonance energy transfer between quantum dot donors and quantum dot acceptors, Sensors (Basel).15 (2015) 13288–13325. https://doi.org/0.3390/s150613288
[65] M.F. Frasco, N.Chaniotakis, Semiconductor quantum dots in chemical sensors and biosensors, Sensors. 9(2009) 7266-7286. https://doi.org/10.1533/9780857096722.2.267
[66] Y. Yang, T. Zou, Z. Wang, X. Xing, S. Peng, R. Zhao, X. Zhang, Y. Wang, The fluorescent quenching mechanism of N and S Co-doped graphene quantum dots with Fe3+ and Hg2+ ions and their application as a novel fluorescent sensor, Nanomaterials 9(2019) 738. https://doi.org/10.3390/nano9050738
[67] E. Hwang, J. Song, J. Zhang, Integration of nanomaterials and bioluminescence resonance energy transfer techniques for sensing biomolecules, Biosensors. 9 (2019) 42 – 58. https://doi.org/10.3390/bios9010042
[68] W.R. Algar, A.J.Tavares, U.J. Krull, Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction, Anal. Chim. Acta. 673 (2010)1-25. https://doi.org/10.1016/j.aca.2010.05.026
[69] N.C. Dale, E.K.M. Johnstone, C.W. White, K.D.G. Pfleger, NanoBRET: The bright future of proximity-based assays, Front. Bioeng. Biotechnol. 7(2019). 56. https://doi: 10.3389/fbioe.2019.00056
[70] G.B. Kim, Y-P. Kim, Analysis of protease activity using quantum dots and resonance energy transfer, Theranostics.2 (2012) 127-138. https://doi: 10.7150/thno.3476
[71] M.J. Ruedas-Rama, E. A. H. Hall, Azamacrocycle activated quantum dot for zinc ion detection, Anal. Chem. 80 (2008) 8260–8268. https://doi.org/10.1021/ac801396y