Colorimetric and Fluorometric Sensor Arrays


Colorimetric and Fluorometric Sensor Arrays

A. Kantürk Figen, Y. Basaran Elalmis, B. Coşkuner Filiz

The design and construction of colorimetric/fluorometric sensor arrays with high selectivity and sensitivity has been of considerable attention as an emerging technology for mobile chemical detection. Nowadays, many approaches have been made to design sensors, fabricate arrays and generalize their usage areas especially in daily life applications and industrial sectors. This chapter introduces the fundamentals, fabrication methods, and applications of colorimetric and fluorometric sensor arrays. The readers will find detailed information about mechanism of chemical sensing and optical sensor arrays; solid state sensor fabrication methodologies; and specific applications environmental, pharmaceutical, medical, and food sectors.

Sensor, Colorimetric, Fluorometric, Arrays, Fabrication

Published online 12/20/2020, 25 pages

Citation: A. Kantürk Figen, Y. Basaran Elalmis, B. Coşkuner Filiz, Colorimetric and Fluorometric Sensor Arrays, Materials Research Foundations, Vol. 92, pp 220-244, 2021


Part of the book on Toxic Gas Sensors and Biosensors

[1] RO’Kennedy, W.J.J. Finlay, P.Leonard, S. Hearty, J. Brennan, S. Stapleton, S. Townsend, A. Darmaninsheehan, A. Baxter, C. Jones, Applications of sensors in food and environmental analysis, in: M.K. Ram, V.R. Bhethanabotla (Eds.), Sensors for chemical and biological applications, CRC Press-Taylor and Francis Group, BocaRaton, 2010, pp. 195-232.
[2] B.R. Eggins, Introduction chemical sensors and biosensors, in:D.J. Ando (Eds.), Analytical techniques in the sciences, John Wiley & Sons Ltd, West Sussex (2004) pp. 1-9
[3] J.I.A. Ming-Yan, F.E.N.G.Liang, Recent progresses in optical colorimetric/fluorometric sensor array, Chinese J. Anal. Chem. 4(2013) 795-802.
[4] D. Prabhakaran, C.Subashini, M.A. Maheswari, Synthesis of mesoporous silica monoliths-a novel approach towards fabrication of solid-state optical sensors for environmental applications, Int. J. Nanosci. 15 (2016) 1660014.
[5] X. Zhang, J. Yin, J. Yoon, Recent advances in development of chiral fluorescent and colorimetric sensors,Chem. Rev.114 (2014) 4918-4959.
[6] A. Senthamizhan, A. Celebioglu, B. Balusamy, T. Uyar, Immobilization of gold nanoclusters inside porous electrospun fibers for selective detection of Cu(II): a strategic approach to shielding pristine performance, Sci. Rep. 5 (2015) 15608-15619.
[7] S.H. Lim, J.W. Kemling, L. Feng, K.S. Suslick, A colorimetricsensor array of porous pigments, Analyst. 134 (2009) 2453-2457.
[8] J. Zhang, F. Cheng, J. Li, J.J. Zhu, Y. Lu, Fluorescent nanoprobes for sensing and imaging of metal ions: recent advances and future perspectives, Nano. Today. 11 (2016) 309–329.
[9] A. Escudero, A.I. Becerro, C. Carrillo-Carrión, N.O. Núñez, M.V. Zyuzin, M. Laguna, D. González-Mancebo, M. Ocaña, W.J. Parak, Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications, Nanophotonics. 6(2017) 881-921.
[10] N. Aliheidari, N.Aliahmad, M. Agarwal, H. Dalir, Electrospun nanofibers for label-free sensor applications, Sensor. 19 (2019) 3587-3614.
[11] K.J. Albert, N.S. Lewis, C.L. Schauer, G.A. Sotzing, S.E. Stitzel, T.P. Vaid, D.R. Walt, Cross-reactive chemical sensor arrays, Chem. Rev. ,100 (2000) 2595-2626.
[12] A.E. Fenster, D.N. Harpp, J.A. Schwarcz, A useful model for the” lock and key” analogy, J. Chem. Edu. 61 (1984) 967.
[13] S.F. Wong, S.M. Khor, State of the art of differential sensing techniques in analytical sciences, TrAC, 114(2019) 108-115.
[14] Z. Li, J.R.Askim, K.S. Suslick, The optoelectronic nose: colorimetric and fluorometric sensorarrays,Chem. Rew. 119(2018) 231-292.
[15] J. Janata, Optical sensors, in:. Janata (Eds.), Principles of chemical sensors, Springer Science Business Media, New York, 2009, pp.267-311.
[16]C. McDonagh, C.S. Burke, B.D. MacCraith, Optical chemicalsensors, Chem. Rew. 108 (2008) 400-422.
[17] J.R. Lakowicz, Introductionto fluorescence, in: Joseph R. Lakowicz (Eds.), Principles of fluorescence spectroscopy, Springer Science Business Media, New York,2006, pp. 1-26.
[18] M.J. Kangas, R.M. Burks, J. Atwater, R.M. Lukowicz, P. Williams, A.E. Holmes, Colorimetric sensor arrays for the detection and identification of chemical weapons and explosives, Crit. Rev. Anal. Chem. 47 (2017) 138-153.
[19] T. Soga, Y. Jimbo, K. Suzuki, D. Citterio, Inkjet-printed paper-based colorimetric sensor array for the discrimination of volatile primary amines, Anal.Chem. 85(2013) 8973-8978.
[20] J.H. Bang, S.H. Lim, E. Park, K.S. Suslick, Chemically responsive nanoporous pigments: colorimetric sensor arrays and the identification of aliphatic amines, Langmuir 24 (2008) 13168-13172.
[21] H. Podbielska, A. Ulatowska-Jarża, G. Müller, H.J. Eichler, Sol-gels for optical sensors. in: Baldini F., Chester A., Homola J., Martellucci S. (Eds), Optical chemical sensors. Springer, Dordrecht, 2006, pp. 353-385
[22] J. Kim, H. Yoo, V.A.P. Ba, N. Shin, S. Hong, S., Dye-functionalized sol-gel matrix on carbon nanotubes for refreshable and flexible gas sensors, Sci. Rep. 8(2018) 1-8.
[23] A. Choodum, K. Parabun, N. Klawach, N.N. Daeid, P. Kanatharana, W. Wongniramaikul, Real time quantitative colourimetric test for methamphetamine detection using digital and mobile phone technology, Forensic. Sci. Int. 235 (2014) 8-13.
[24] A. Choodum, P. Kanatharana, W. Wongniramaikul, N. NicDaeid, A sol–gel colorimetric sensor for methamphetamine detection. Sens. Actuators. B Chem. 215 (2015) 553-560.
[25] P. Zuo, J. Gao, J. Peng, J. Liu, M. Zhao, J. Zhao, P. Zuo, H. He, A sol-gel based molecular imprint incorporating carbon dots for fluorometric determination of nicotinic acid, Microchim. Acta. 183(2016) 329-336.
[26] P.P. Sahay, R.K. Nath, Al-doped ZnO thin films as methanol sensors, Sens. Actuators. B Chem. 134 (2008) 654-659.
[27] V.P. Chodavarapu, D.O. Shubin, R.M. Bukowski, A.H. Titus, A.N. Cartwright, F.V. Bright, CMOS-based phase fluorometric oxygen sensor system. IEEE. T. Circuits-I,54 (2007) 111-118.
[28] W. Song, J.K. Lee, M.S. Gong, K. Heo, W.J. Chung, B.Y. Lee, Cellulose nanocrystal-based colored thin films for colorimetric detection of aldehyde gases, ACS Appl. Mater. Interfaces, 10 (2018) 10353-10361.
[29] U. Joost, A. Šutka, M. Visnapuu, A. Tamm, M. Lembinen, M., Antsov, K. Utt, K., Smits, E. Nõmmiste, V. Kisand, Colorimetric gas detection by the varying thickness of a thin film of ultrasmall PTSA-coated TiO2 nanoparticles on a Si substrate, Beilstein. J.Nanotechnol. 8 (2017) 229-236.
[30] P. Li, C. Ji, H. Ma, H., M. Zhang, Y. Cheng, Development of fluorescent film sensors based on electropolymerization for iron(III) ion detection, Chem.Eur. J. 20(2014) 5741-5745.
[31] Y. Liu, R.C. Mills, J.M. Boncella, K.S. Schanze,. Fluorescent polyacetylene thin film sensor for nitro aromatics, Langmuir17 (2001) 7452-7455.
[32] C. Boonkanon, K. Phatthanawiwat, W.Wongniramaikul, A. Choodum, Curcumin nanoparticle doped starch thin film as a green colorimetric sensor for detection of boron, Spectrochim. Acta. A. 224 (2020) 117351.
[33] M.G. Guillén, F.Gámez, T. Lopes-Costa, J. Cabanillas-González, J.M. Pedrosa, A fluorescence gas sensorbased on Förster resonance energy transfer between polyfluorene and bromocresol green assembled in thin films, Sens. Actuators. B. Chem. 236 (2016) 136-143.
[34] G. Harsányi, Sensing effects and sensitive polymers, in: G. Harsányi, (Ed.) Polymer films in sensor applications, Technomic Publishing Company Inc., Pennsylvania,1995, pp. 93-261.
[35] Y. Zhang, X. Li, H. Li, M. Song, L. Feng, Y. Guan, Postage stamp-sized array sensor for the sensitive screening test of heavy-metal ions, Analyst. 139 (2014)4887-4893.
[36]N. Aliheidari, N. Aliahmad, M. Agarwal, H. Dalir, Electrospun nanofibers for label-free sensor applications, Sensors. 19 (2019) 3587-3614.
[37]S.J. Choi, L. Persano, A. Camposeo, J.S. Jang, W.T. Koo, S.J. Kim, H.J.Cho, I.D. Kim, D. Pisignano, Electrospun nanostructuresfor high performance chemiresistiveand optical sensors, Macromol. Mater. Eng. 302 (2017) 1-37.
[38] N. Zhang, R. Qiao, J. Su, J. Yan, Z. Xie, Y. Qiao, X. Wang, J. Zhong, Recent advances of electrospun nanofibrous membranes in the development of chemosensors for heavy metal detection, Small. 13 (2017) 1604293-1604311.
[39] L. Ma, K. Liu, M. Yin, J. Chang, Y. Geng,K. Pan, Fluorescent nanofibrous membrane (FNFM) for the detection of mercuric ion (II) with high sensitivity and selectivity, Sensor. Actuat. B-Chem. 238 (2017) 120-127.
[40] L. Hu, X.W. Yan, Q. Li, X.J. Zhang, D. Shan, Br-PADAP embedded in celluloseacetate electrospun nanofibers: Colorimetric sensor strips for visual uranyl recognition, J. Hazard. Mater. 329 (2017) 205-210.
[41] J. Yoon, S.K. Chae, J.M. Kim, Colorimetric sensors for volatile organic compounds (VOCs) based on conjugatedpolymer-embedded electrospun fibers, JACS. 129(2007) 3038-3039.
[42] Y. Li, Y. Si, X. Wang, B. Ding, G. Sun, G., Zheng, W. Luo, J. Yu, Colorimetric sensor strips for lead(II) assay utilizing nano gold probes immobilized polyamide-6/nitrocellulose nano-fibers/nets, ‎Biosens. Bioelectron. 48 (2013) 244-250.
[43] J.P. Lee, F. Jannah, K. Bae,J.M. Kim, A colorimetric and fluorometric polydiacetylene biothiol sensor based on decomposition of a pyridine-mercury complex, Sensor. Actuat. B-Chem. (2020) 127771.
[44] Y. Lv, Y. Zhang, Y. Du, J. Xu, J. Wang, A novel porphyrin-containing polyimide nanofibrous membrane for colorimetric and fluorometric detection of pyridinevapor, Sensors. 13 (2013) 15758-15769.
[45] R.M. Kröll, N. Schuler, S. Lubbad, M.R. Buchmeiser, A ROMP-derived, polymer-supported chiral Schrock catalyst for enantioselective ring-closing olefin metathesis, Chem.Com. 21 (2003) 2742-2743.
[46] S.H. Chuag, G.H. Chen, H.H. Chou, S.W. Shen, C.F. Chen, Accelerated colorimetric immunosensing using surface-modified porous monoliths and gold nanoparticles, Sci. Technol. Adv. Mater.14(2013) 044403-044409.
[47] D. Prabhakaran, C. Subashini, M.A. Maheswari, Synthesis of mesoporous silica monoliths-a novel approach towards fabrication of solid-state optical sensors for environmental applications, J. Nanosci. 15 (2016) 1660014.
[48] S. Mariano, W. Wang, G. Brunelle, Y. Bigay, T.H. Tran-Thi, Colorimetric detection of formaldehyde: A sensor for air quality measurements and a pollution-warning kit for homes,Sensordevices. (2010) 80-83.
[49] T.H. Nguyen, L. Mugherli, C. Rivron, T.H. Tran-Thi, Innovative colorimetric sensors for the selective detection of monochloramine in air and in water, Sensor. Actuat. B-Chem. 208 (2015) 622-627.
[50] S.A.El-Safty, Functionalized hexagonal mesoporous silica monoliths with hydrophobicazo-chromophore for enhanced Co(II) ion monitoring. Adsorption, 15(2009) 227-239.
[51] K. Flora,J.D. Brennan, Fluorometric detection of Ca2+ based on an induced change in the conformation of sol−gel entrapped parvalbumin. Anal. Chem. 70 (1998) 4505-4513.
[52] S.A. El-Safty, M.A. Shenashen, A. Shahat, Tailor made micro object optical sensor based on mesoporous pellets for visual monitoring and removal of toxic metal ions from aqueous media, Small. 9 (2013) 2288-2296.
[53] C. Chatterjee, A. Sen, Sensitive colorimetric sensors for visual detection of carbon dioxide and sulfur dioxide, J. Mater. Chem. A 3 (2015) 5642-5647.
[54] M.A. Shenashen, E.A. Elshehy, S.A. El-Safty, M. Khairy, Visual monitoringand removal of divalent copper, cadmium, and mercury ions from water by using mesoporous cubic Ia3d aluminosilica sensors, Sep. Purif.Technol. 116 (2013) 73-86.
[55] M.E. Moragues, R. Martínez-Máñez, F. Sancenón, Chromogenic and fluorogenic chemosensors and reagents for anions, Chem. Soc. Rev. 40 (2011) 2593–2643.
[56] Z.M. Dong , W.Wang, Y.B. Wang, J.N. Wang, L.Y. Qin, Y. Wang, A reversible colorimetric chemosensor for “naked eye” sensing of cyanide ion in semi-aqueous solution, ‎Inorg. Chim. Acta. 461 (2017) 8-14.
[57] Y.Y. Guo, X.L. Tang, F.P. Hou, J. Wu, W. Dou, W.W. Qin, J.X. Ru, G.L. Zhang, W.S. Liu, X.J. Yao, A reversible fluorescent chemosensor for cyanide in 100% aqueous solution, Sens.Actuators. B 181 (2013) 202–208.
[58] S. Goswami, A. Manna, S. Paul, K. Aich, A.K. Das, S. Chakraborty, Highly reactive (<1 min) ratiometric probe forselective ‘‘naked-eye” detection of cyanide in aqueousmedia, Tetrahedron Lett. 54 (2013) 1785–1789. [59] J.J. Li, W. Wei, X.L. Qi, G. Zuo, J. Fang, W. Dong, Highly selective colorimetric/fluorimetric dual-channel sensorfor cyanide based on ICT off in aqueous solution, Sens.Actuators. B Chem. 228 (2016) 330–334. [60] J.J. Li, X.L. Qi, W. Wei, Y. Liu, X. Xu, Q. Lin, W. Dong, A donor-two-acceptor sensor for cyanide detection in aqueous solution, Sens. Actuators. B-Chem. 220(2015) 986–991. [61] I.J. Kim, M. Ramalingam, Y.A. Son, A reaction based colorimetric chemosensor for the detection of cyanide ion in aqueous solution, Sensor. Actuat. B Chem. 246 (2017) 319-326. [62] A.W. Andren, D.E. Armstrong, The environmental chemistry and toxicology of silver, Environ. Toxicol. Chem. 18 (1999) 1–2. [63] R. Gao, G. Xu, L. Zheng, Y. Xie, M. Tao, W. Zhang, A highly selective and sensitive reusable colorimetric sensor for Ag+ based on thiadiazolefunctionalizedpolyacrylonitrilefiber, J. Mater.Chem. C. 4 (2016) 5996-6006. [64] S.C. Bondy, Low levelsof aluminum can lead to behavioral and morphological changes associated with alzheimer's disease and age-related neurodegeneration, Neurotoxicology. 52 (2016) 222-229. [65] G. Ghodake, S. Shinde, A. Kadam, R.G. Saratale, G.D. Saratale, A. Syed, O. Shair, M. Alsaedi, D.Y. Kim, Gallic acid-functionalized silver nanoparticles as colorimetric and spectrophotometric probe for detection of Al3+ in aqueous medium, J. Ind. Eng. Chem. 82 (2019) 243-253. [66] R. Liu, Z. Chen, S.Wang, C. Qu, L. Chen, Z. Wang, Colorimetric sensing of copper(II) based on catalytic etching of gold nanoparticles, Talanta. 112 (2013) 37-42. [67] J. Peng, G. Liu, D. Yuan, S. Feng, S. T. Zhou,. A flow-batch manipulated Ag NPs based SPR sensor for colorimetric detection of copper ions (Cu2+) in water samples, Talanta 167 (2017) 310-316. [68] Y. Cao, Y. Liu, F. Li, S. Guo, Y. Shui, H. Xue, L. Wang, Portable colorimetric detection of copper ion in drinking water via red beet pigment and smartphone, Microchem. J. 150 (2019) 104176-104182. [69] J.M. Liu, X.X. Wang, L. Jiao, M.L. Cui, L.P. Lin, L.H. Zhang, S.L. Jiang, Ultra-sensitive non-aggregation colorimetric sensor for detection of iron based on the signal amplification effect of Fe3+ catalyzing H2O2 oxidize gold nanorods, Talanta. 116 (2013)199-204. [70] A. Ghorai, J. Mondal, R. Chandra, G. K. Patra, A reversible fluorescent-colorimetric imino-pyridyl bis-Schiff base sensor for expeditious detection of Al3+ and HSO3− in aqueous media, Dalton. Trans. 44 (2015) 13261-13271. [71] A. Ghorai, J. Mondal, R. Chandra, G. K. Patra, Exploitation of a simple Schiff baseas a ratio metric and colorimetric chemosensor for glutamicacid, Anal. Methods. 7 (2015) 8146-8151. [72] M. Zhang, K. Gong, H. Zhang, L. Mao, Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid, Biosens. Bioelectron. 20 (2005) 1270-1276. [73] A. Ghorai, J. Mondal, G.K. Patra, A new Schiff base and its metal complex as colorimetric and fluorescent–colorimetric sensors for rapid detection of arginine, New. J. Chem. 40 (2016) 7821-7830. [74] J. Peng, J. Ling, X.Q. Zhang, L.Y. Zhang, Q.E. Cao, Z.T. Ding, A rapid, sensitive and selective colorimetric method for detection of ascorbicacid, Sensor. Actuat. B-Chem. 221 (2015) 708-716. [75] S. Rostami, A. Mehdinia, A. Jabbari, Seed-mediated grown silver nanoparticles as a colorimetric sensor for detection of ascorbic acid, Spectrochim. Acta. A. 180 (2017) 204-210. [76] S. Rahim, S. Khalid, M.I. Bhanger, M.R. Shah, M.I. Malik, Polystyrene-block-poly (2-vinylpyridine)-conjugated silver nanoparticles as colorimetric sensor for quantitative determination of Cartap in aqueous media and blood plasma, Sensor. Actuat. B Chem. 259 (2018) 878-887. [77] S. Rahim, A.M. Bhayo, M.R. Shah, M.I. Malik, Star-shaped poly(ethylene oxide)-block-poly(caprolactone) conjugated silver nanoparticles: a colorimetric probe for cephalexin in environmental, biological and pharmaceutical samples, Microchem. J. 149 (2019) 104048-104057 [78] Y. Wang, T.V. Duncan, Nanoscale sensors for assuring the safety of food products, Curr. Opin. Biotechnol. 44 (2017) 74-86. [79] X. Zhang, Y. Zhang, H. Zhao, Y. He, X. Li, Z. Yuan, Highly sensitive and selective colorimetric sensing of antibiotics in milk, ‎Anal.Chim. Acta. 778 (2013) 63-69. [80] X. Zhai, Z. Li, J. Shi, X. Huang, Z. Sun, D. Zhang, X. Zou, Y. Sun, J. Zhang, M. Holmes, Y. Gong, A colorimetric hydrogen sulfide sensorbased on gellangum-silver nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging, Food. Chem. 290 (2019) 135-143. [81] S. Benedetti, C. Pompei, C., S. Mannino, Comparison of an electronic nose with the sensory evaluation of foodproductsby “triangletest”, Electroanal. 16 (2004) 1801-1805. [82] Q. Chen, Z. Hui, J. Zhao, Q. Ouyang, Evaluation of chicken freshness using a low-cost colorimetric sensor array with AdaBoost–OLDA classification algorithm, LWT-Food Sci. Technol. 57 (2014) 502-507. [83] D. Huo, Y. Wu, M. Yang, H. Fa, X. Luo, C. Hou, Discrimination of Chinese green tea according to varieties and grade levels using artificial nose and tongue based on colorimetric sensor arrays, Food.Chem. 145 (2014) 639-645. [84] F. Ghasemi, M.R. Hormozi-Nezhad, M. Mahmoudi, A colorimetricsensor array for detection and discrimination of biothiols based on aggregation of gold nanoparticles, Anal. Chim. Acta. 882 (2015) 58-67. [85] S. Huang, Y. Xiong, Y. Zou, Q. Dong, F. Ding, X. Liu, H. Li, A novel colorimetric indicator based on agar incorporated with arnebiaeuchromaroot extracts for monitoring fish freshness, Food. Hydrocolloid. 90 (2019) 198-205. [86] Q. Niu, L. Lan, T. Li, Z. Guo, T. Jiang, Z. Zhao, Z. Feng, J. Xi, A highly selective turn-on fluorescent and naked-eye colorimetric sensor for cyanide detection in food samples and its application in imaging of living cells, Sensor. Actuat. B-Chem. 276 (2018)13-22. [87] G.J. Park, Y.W. Choi, D. Lee, C. Kim, A simple colorimetric chemosensor bearing a carboxylic acid group with high selectivity for CN−, Spectrochim. Acta. A. 132 (2014) 771-775. [88] B. Shi, P. Zhang, T. Wei, H. Yao, Q. Lin, Y. Zhang, Highly selective fluorescent sensing for CN− in water: utilization of the supramolecular self-assembly, Chem. Commun. 49 (2013) 7812-7814. [89] T. Sun, Q. Niu, Y. Li, T. Li, T. Hu, E. Wang, H. Liu, A novel oligothiophene-based colorimetric and fluorescent “turn on” sensor for highly selective and sensitive detection of cyanide in aqueous media and its practical applications in water and food samples, Sens. Actuators. B Chem. 258 (2018) 64-71. [90] Q. Niu, T. Sun, T. Li, Z. Guo, H. Pang, Highly sensitive and selective colorimetric/fluorescent probe with aggregation induced emission characteristics for multiple targets of copper, zinc and cyanide ions sensing and its practical application in water and food samples, Sens. Actuators. B-Chem. 266 (2018) 730-741. [91] L. Lan, T. Li, T. Wei, H. Pang, T. Sun, E. Wang, H. Liu, Q. Niu, Oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor: sensing ability, TD-DFT calculations and its application as an efficient solid statesensor, Spectrochim. Acta. A. 193 (2018) 289–296. [92]K. Rajar, A. Balouch, M.I. Bhanger, M.T. Shah, T. Shaikh, S. Siddiqui, Succinic acid functionalized silver nanoparticles (Suc-Ag NPs) for colorimetric sensing of melamine, Appl. Surf. Sci. 435 (2018) 1080-1086. doi:10.1016/j.apsusc.2017.11.208.