Graphene Nanostructures as Nonenzymatic Glucose Sensor


Graphene Nanostructures as Nonenzymatic Glucose Sensor

M. Saha, J. Debbarma

The increasing demand for the development of highly selective and sensitive nonenzymatic electrochemical sensors for the qualitative and quantitative analysis of glucose in pharmaceutical, clinical and industrial sectors has gained enormous attention towards the use of graphene and its derivatives. This chapter describes the efficient development of electrochemically active nonenzymatic glucose sensors using graphene and its composites, achieving high sensitivity, stability, low detection limit, wide linear range and reproducibility.

Nonenzymatic Sensor, Electrochemical Detection, Glucose, Graphene, Nanocomposites

Published online 12/20/2020, 40 pages

Citation: M. Saha, J. Debbarma, Graphene Nanostructures as Nonenzymatic Glucose Sensor, Materials Research Foundations, Vol. 92, pp 157-196, 2021


Part of the book on Toxic Gas Sensors and Biosensors

[1] C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, L. Niu, Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem. 81(2009) 2378-2382.
[2] H. Gao, F. Xiao, C. B. Ching, H. Duan, One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection, ACS appl mater inter. 3(2011) 3049-3057.
[3] J. Y. Sun, K. J. Huang, Y. Fan, Z. W. Wu, D. D. Li, Glassy carbon electrode modified with a film composed of Ni(II), quercetin and graphene for enzyme-less sensing of glucose, Microchim Acta. 174(2011) 289.
[4] Y. Qian, F. Ye, J. Xu, Z. G. Le, Synthesis of cuprous oxide (Cu2O) nanoparticles/graphene composite with an excellent electrocatalytic activity towards glucose, Int. J. Electrochem. Sci. 7(2012) 10063-10073
[5] X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, P. Chen, 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection, ACS nano, 6(2012) 3206-3213.
[6] Y. W. Hsu, T. K. Hsu, C. L. Sun, Y. T. Nien, N. W. Pu, M. D. Ger, Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications, Electrochim. Acta. 82(2012) 152-157.
[7] F. Y. Kong, X. R. Li, W. W. Zhao, J. J. Xu, H. Y. Chen, Graphene oxide–thionine–Au nanostructure composites: preparation and applications in non-enzymatic glucose sensing, Electrochem. 14(2012)59-62.
[8] C. Y. Lu, J. F. Xia, Z. H. Wang, Y. Z. Xia, F. F. Zhang, Nonenzymatic Electrochemical Detection of Glucose Using Well-Distributed Gold Nanoparticles on Graphene/Carbon Nanotube Nanohybrids, Adv. Mater. Res. 600 (2012) 234-237.
[9] L. Luo, L. Zhu, Z. Wang, Nonenzymatic amperometric determination of glucose by CuO nanocubes–graphene nanocomposite modified electrode, Bioelectrochemistry. 88 (2012)156-163.
[10] J. Luo, H. Zhang, S. Jiang, J. Jiang, X. Liu, Facile one-step electrochemical fabrication of a non-enzymatic glucose-selective glassy carbon electrode modified with copper nanoparticles and graphene, Microchim Acta. 177 (2012) 485-490. 10.1007/s00604-012-0795-4
[11] Z. Wang, Y. Hu, W. Yang, M. Zhou, X. Hu, Facile one-step microwave-assisted route towards Ni nanospheres/reduced graphene oxide hybrids for non-enzymatic glucose sensing, Sensors. 12(2012) 4860-4869.
[12] X. Wang, X. Dong, Y. Wen, C. Li, Q. Xiong, P. Chen, A graphene–cobalt oxide based needle electrode for non-enzymatic glucose detection in micro-droplets, Chem Commun. 48(2012) 6490-6492.
[13] Y. Li, F. Huang, J. Chen, T. Mo, S. Li, F. Wang, Y. Li, A high performance enzyme-free glucose sensor based on the graphene-CuO nanocomposites, Int. J. Electrochem. Sci. 8 (2013) 6332-6342
[14] Z. Wang, J. Xia, X. Qiang, Y. Xia, G. Shi, F. Zhang, J. Tang, Polymer-assisted in situ growth of copper nanoparticles on graphene surface for non-enzymatic electrochemical sensing of glucose, Int. J. Electrochem. Sci. 8 (2013) 6941-6950
[15] Z. Fan, B. Liu, X. Liu, Z. Li, H. Wang, S. Yang, J. Wang, A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor, Electrochim Acta. 109 (2013) 602-608.
[16] M. F. Hossain, J. Y. Park, Palladium nanoparticles on electrochemically reduced chemically modified graphene oxide for non-enzymatic bimolecular sensing. Rsc Adv. 3(2013) 16109-16115. 10.1039/c3ra41235k
[17] M. Liu, R. Liu, W. Chen, Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability, Biosens Bioelectron. 45(2013) 206-212. 10.1016/j.bios.2013.02.010
[18] W. Lu, X. Qin, A. M. Asiri, A. O. Al-Youbi, X. Sun, Facile synthesis of novel Ni (II)-based metal–organic coordination polymer nanoparticle/reduced graphene oxide nanocomposites and their application for highly sensitive and selective nonenzymatic glucose sensing, Analyst. 138(2013) 429-433.
[19] P. Si, X. C. Dong, P. Chen, D. H. Kim, A hierarchically structured composite of Mn 3 O 4/3D graphene foam for flexible nonenzymatic biosensors, J. Mater Chem B. 1(2013) 110-115.
[20] L. Wang, F. Nie, J. Zheng, Nickel Hydroxide and Intercalated Graphene with Ionic Liquid Nanocomposite‐modified Electrode for Sensing of Glucose, J Chin Chem Soc. 60(2013) 1062-1069.
[21] D. Ye, G. Liang, H. Li, J. Luo, S. Zhang, H. Chen, J. Kong, A novel nonenzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva. Talanta. 116 (2013) 223-230.
[22] B. Yuan, C. Xu, L. Liu, Q. Zhang, S. Ji, L. Pi, Q. Huo, Cu2O/NiOx/graphene oxide modified glassy carbon electrode for the enhanced electrochemical oxidation of reduced glutathione and nonenzyme glucose sensor, Electrochim Acta. 104 (2013) 78-83.
[23] H. Zhang, X. Xu, Y. Yin, P. Wu, C. Cai, Nonenzymatic electrochemical detection of glucose based on Pd1Pt3–graphene nanomaterials, J. Electroanal. Chem. 690 (2013) 19-24.
[24] Y. Zhang, X. Xiao, Y. Sun, Y. Shi, H. Dai, P. Ni, L. Wang, Electrochemical deposition of nickel nanoparticles on reduced graphene oxide film for nonenzymatic glucose sensing, Electroanal. 25(2013) 959-966.
[25] S. Badhulika, R. K. Paul, T. Terse, A. Mulchandani, Nonenzymatic Glucose Sensor Based on Platinum Nanoflowers Decorated Multiwalled Carbon Nanotubes‐Graphene Hybrid Electrode, Electroanal. 26(2014) 103-108.
[26] X. Chen, X. Tian, L. Zhao, Z. Huang, M. Oyama, Nonenzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with graphene nanosheets and Pt-Pd bimetallic nanocubes, Microchim Acta. 181(2014), 783-789.
[27] Y. Zheng, P. Li, H. Li, S. Chen, Controllable growth of cobalt oxide nanoparticles on reduced graphene oxide and its application for highly sensitive glucose sensor, Int. J. Electrochem. Sci. 9 (2014) 7369-7381
[28] T. Alizadeh, S. Mirzagholipur, A Nafion-free non-enzymatic amperometric glucose sensor based on copper oxide nanoparticles–graphene nanocomposite, Sensor Actuat B Chem. 198 (2014) 438-447.
[29] S. Ci, S. Mao, T. Huang, Z. Wen, D. A. Steeber, J. Chen, Enzymeless glucose detection based on CoO/graphene microsphere hybrids, Electroanal. 26(2014) 1326-1334.doi.10.1002/elan.201300645
[30] K. Dhara, J. Stanley, T. Ramachandran, B. G. Nair, S. B. TG, Pt-CuO nanoparticles decorated reduced graphene oxide for the fabrication of highly sensitive non-enzymatic disposable glucose sensor. Sensor Actuat B Chem. 195 (2014) 197-205.
[31] X. Feng, C. Guo, L. Mao, J. Ning, Y. Hu, Facile growth of Cu2O nanowires on reduced graphene sheets with high nonenzymatic electrocatalytic activity toward glucose, J Am Ceram Soc. 97(2014) 811-815.
[32] W. Gao, W. W. Tjiu, J. Wei, T. Liu, Highly sensitive nonenzymatic glucose and H2O2 sensor based on Ni(OH)2/electroreduced graphene oxide− Multiwalled carbon nanotube film modified glass carbon electrode, Talanta. 120(2014) 484-490.
[33] H. U. Yao-Juan, D. U. Wen-Ji, C. H. E. N. Chang-Yun, Fabrication of flower-shaped Pt-Au-graphene nanostructure and its application in electrochemical detection of glucose, Chinese J Anal Chem. 42(2014) 1240-1244.
[34] Y. Hu, F. He, A. Ben, C. Chen, Synthesis of hollow Pt–Ni–graphene nanostructures for nonenzymatic glucose detection, Journal of Electroanal Chem. 726 (2014) 55-61.
[35] H. Huo, C. Guo, G. Li, X. Han, C. Xu, Reticular-vein-like Cu@ Cu2O/reduced graphene oxide nanocomposites for a non-enzymatic glucose sensor, Rsc Adv. 4(2014) 20459-20465. 10.1039/c4ra02390k
[36] N. S. Ismail, Q. H. Le, H. Yoshikawa, M. Saito, E. Tamiya, Development of non-enzymatic electrochemical glucose sensor based on graphene oxide nanoribbon–gold nanoparticle hybrid, Electrochim acta. 146 (2014) 98-105.
[37] D. Jiang, Q. Liu, K. Wang, J. Qian, X. Dong, Z. Yang, B. Qiu, Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosensors and Bioelectronics, 54 (2014) 273-278.
[38] Y. Kong, Y. Sha, Y. Tao, Y. Qin, H. Xue, M. Lu, Non-enzymatic glucose sensor based on nickel hexacyanoferrate/polyaniline hybrids on graphene prepared by a one-step process, J Electrochem Soc. 161(2014) B269-B274. 10.1149/2.0961412jes
[39] M. Li, X. Bo, Y. Zhang, C. Han, L. Guo, One-pot ionic liquid-assisted synthesis of highly dispersed PtPd nanoparticles/reduced graphene oxide composites for nonenzymatic glucose detection, Biosens Bioelectron. 56 (2014) 223-230.
[40] X. Lu, Y. Ye, Y. Xie, Y. Song, S. Chen, P. Li, L. Wang, Copper coralloid granule/polyaniline/reduced graphene oxide nanocomposites for nonenzymatic glucose detection. Anal Methods. 6(2014) 4643-4651. 10.1039/c4ay00421c
[41] P. Subramanian, J. Niedziolka-Jonsson, A. Lesniewski, Q. Wang, M. Li, R. Boukherroub, S. Szunerits, Preparation of reduced graphene oxide–Ni (OH) 2 composites by electrophoretic deposition: application for non-enzymatic glucose sensing, J Mater Chem A. 2(2014) 5525-5533. 10.1039/C4TA00123K
[42] L. Wang, Y. Zheng, X. Lu, Z. Li, L. Sun, Y. Song, Dendritic copper-cobalt nanostructures/reduced graphene oxide-chitosan modified glassy carbon electrode for glucose sensing, Sensor Actuat B Chem. 195 (2014) 1-7.
[43] X. Wang, E. Liu, X. Zhang, Non-enzymatic glucose biosensor based on copper oxide-reduced graphene oxide nanocomposites synthesized from water-isopropanol solution, Electrochim Acta. 130 (2014) 253-260.
[44] B. Wang, S. Li, J. Liu, M. Yu, Preparation of nickel nanoparticle/graphene composites for non-enzymatic electrochemical glucose biosensor applications, Mater Res Bull. 49 (2014) 521-524.
[45] Y. Ye, P. Wang, E. Dai, J. Liu, Z. Tian, C. Liang, G. Shao, A novel reduction approach to fabricate quantum-sized SnO2-conjugated reduced graphene oxide nanocomposites as non-enzymatic glucose sensors, Phys Chem Chem Phys. 16(2014) 8801-8807. 10.1039/c4cp00554f
[46] B. Zhan, C. Liu, H. Chen, H. Shi, L. Wang, P. Chen, X. Dong, Free-standing electrochemical electrode based on Ni(OH)2/3D graphene foam for nonenzymatic glucose detection, Nanoscale. 6(2014) 7424-7429. 10.1039/C4NR01611D
[47] D. L. Zhou, J. J. Feng, L. Y. Cai, Q. X. Fang, J. R. Chen, A. J. Wang, Facile synthesis of monodisperse porous Cu2O nanospheres on reduced graphene oxide for non-enzymatic amperometric glucose sensing, Electrochim Acta. 115 (2014) 103-108.
[48] P. Lu, J. Yu, Y. Lei, S. Lu, C. Wang, D. Liu, Q. Guo, Synthesis and characterization of nickel oxide hollow spheres–reduced graphene oxide–nafion composite and its biosensing for glucose, Sensor Actuat B-Chem. 208(2015) 90-98.
[49] R. Aswathi, M. M. Ali, A. Shukla, K. Y. Sandhya, A green method to gold–graphene nanocomposite from cyclodextrin functionalized graphene for efficient non-enzymatic electrochemical sensing applications, Rsc Adv. 5(2015) 32027-32033. 10.1039/C4RA17323F
[50] J. Ding, W. Sun, G. Wei, Z. Su, Cuprous oxide microspheres on graphene nanosheets: an enhanced material for non-enzymatic electrochemical detection of H2O2 and glucose. Rsc Adv. 5(2015) 35338-35345. 10.1039/c5ra04164c
[51] S. Fu, G. Fan, L. Yang, F. Li, Non-enzymatic glucose sensor based on Au nanoparticles decorated ternary Ni-Al layered double hydroxide/single-walled carbon nanotubes/graphene nanocomposite, Electrochim acta. 152(2015) 146-154.
[52] N. Hui, S. Wang, H. Xie, S. Xu, S. Niu, X. Luo, Nickel nanoparticles modified conducting polymer composite of reduced graphene oxide doped poly (3,4-ethylenedioxythiophene) for enhanced nonenzymatic glucose sensing, Sensor Actuat B-Chem. 221(2015) 606-613.
[53] N. Hui, W. Wang, G. Xu, X. Luo, Graphene oxide doped poly (3,4-ethylenedioxythiophene) modified with copper nanoparticles for high performance nonenzymatic sensing of glucose, J Mater Chem B. 3(2015) 556-561. 10.1039/c4tb01831a
[54] S. Hussain, K. Akbar, D. Vikraman, D. C. Choi, S. J. Kim, K. S. An, J. Jung, A highly sensitive enzymeless glucose sensor based on 3D graphene–Cu hybrid electrodes, New J Chem. 39(2015) 7481-7487.
[55] G. Li, H. Huo, C. Xu, Ni0.31Co0.69S2 nanoparticles uniformly anchored on a porous reduced graphene oxide framework for a high-performance non-enzymatic glucose sensor, J Mater Chem A. 3(2015), 4922-4930. 10.1039/c4ta06553k
[56] Z. Liu, Y. Guo, C. Dong, A high performance nonenzymatic electrochemical glucose sensor based on polyvinylpyrrolidone–graphene nanosheets–nickel nanoparticles–chitosan nanocomposite, Talanta. 137(2015) 87-93.
[57] P. M. Nia, W. P. Meng, F. Lorestani, M. R. Mahmoudian, Y. Alias, Electrodeposition of copper oxide/polypyrrole/reduced graphene oxide as a nonenzymatic glucose biosensor, Sensor Actuat B-Chem 209 (2015) 100-108.
[58] S. Muralikrishna, K. Sureshkumar, Z. Yan, C. Fernandez, T. Ramakrishnappa, Non-enzymatic amperometric determination of glucose by CuO nanobelt graphene composite modified glassy carbon electrode, J Brazil Chem Soc. 26(2015) 1632-1641.
[59] S. Radhakrishnan, S. J. Kim, Facile fabrication of NiS and a reduced graphene oxide hybrid film for nonenzymatic detection of glucose, Rsc Adv. 5(2015) 44346-44352. 10.1039/C5RA01074H
[60] I. Shackery, U. Patil, M. J. Song, J. S. Sohn, S. Kulkarni, S. Some, S. C. Jun, Sensitivity Enhancement in Nickel Hydroxide/3D‐Graphene as Enzymeless Glucose Detection, Electroanal. 27(2015) 2363-2370.
[61] L. Shahriary, A. A. Athawale, Electrochemical deposition of silver/silver oxide on reduced graphene oxide for glucose sensing, J Solid State Electr. 19(2015) 2255-2263. 10.1007/s10008-015-2865-0
[62] H. Shu, G. Chang, J. Su, L. Cao, Q. Huang, Y. Zhang, Y. He, Single-step electrochemical deposition of high performance Au-graphene nanocomposites for nonenzymatic glucose sensing, Sensor Actuat B-Chem. 220 (2015) 331-339.
[63] F. Tehrani, L. Reiner, B. Bavarian, Rapid prototyping of a high sensitivity graphene based glucose sensor strip, PloS one. 10(2015) e0145036.
[64] Y. Tian, Y. Liu, W. P. Wang, X. Zhang, W. Peng, CuO nanoparticles on sulfur-doped graphene for nonenzymatic glucose sensing, Electrochim acta. 156(2015) 244-251.
[65] Q. Wang, Q. Wang, M. Li, S. Szunerits, R. Boukherroub, Preparation of reduced graphene oxide/Cu nanoparticle composites through electrophoretic deposition: application for nonenzymatic glucose sensing, Rsc Adv. 5(2015), 15861-15869.
[66] L. Wang, X. Lu, C. Wen, Y. Xie, L. Miao, S. Chen, Y. Song, One-step synthesis of Pt–NiO nanoplate array/reduced graphene oxide nanocomposites for nonenzymatic glucose sensing, J Mater Chem A. 3(2015) 608-616. 10.1039/c4ta04724a
[67] X. Yan, J. Yang, L. Ma, X. Tong, Y. Wang, G. Jin, X. Y. Guo, Size-controlled synthesis of Cu2O nanoparticles on reduced graphene oxide sheets and their application as non-enzymatic glucose sensor materials, J Solid State Electr. 19(2015) 3195-3199.
[68] S. Yang, G. Li, G. Wang, J. Zhao, X. Gao, L. Qu, Synthesis of Mn3O4 nanoparticles/nitrogen-doped graphene hybrid composite for nonenzymatic glucose sensor, Sensor Actuat B-Chem. 221 (2015) 172-178.
[69] S.Yang, L. Liu, G. Wang, G. Li, D. Deng, L. Qu, One-pot synthesis of Mn3O4 nanoparticles decorated with nitrogen-doped reduced graphene oxide for sensitive nonenzymatic glucose sensing, J Electroanal Chem.755(2015) 15-21.
[70] X. Zhang, Q. Liao, S. Liu, W. Xu, Y. Liu, Y. Zhang, CuNiO nanoparticles assembled on graphene as an effective platform for enzyme-free glucose sensing, Anal. Chim. Acta. 858(2015) 49-54.
[71] Y. Zhao, X. Bo, L. Guo, Highly exposed copper oxide supported on three-dimensional porous reduced graphene oxide for non-enzymatic detection of glucose, Electrochim Acta. 176 (2015) 1272-1279.
[72] P. Nayak, S. P. Nair, S. Ramaprabhu, Enzyme-less and low-potential sensing of glucose using a glassy carbon electrode modified with palladium nanoparticles deposited on graphene-wrapped carbon nanotubes, Microchim Acta. 183(2016) 1055-1062.
[73] R. Prasad, V. Ganesh, B. R. Bhat, Nickel-oxide multiwall carbon-nanotube/reduced graphene oxide a ternary composite for enzyme-free glucose sensing, Rsc Adv. 6(2016) 62491-62500. 10.1039/C6RA08708F
[74] S. M. Naghib, M. Rahmanian, M. A. Keivan, S. Asiaei, O. Vahidi, Novel magnetic nanocomposites comprising reduced graphene oxide/Fe3O4/gelatin utilized in ultrasensitive non-enzymatic biosensing, Int. J. Electrochem. Sci. 11(2016)10256-10269. 10.20964/2016.12.29
[75] M. M. Farid, L. Goudini, F. Piri, A. Zamani, F. Saadati, Molecular imprinting method for fabricating novel glucose sensor: Polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles, Food chem. 194 (2016) 61-67.
[76] H. Heidari, E. Habibi, Amperometric enzyme-free glucose sensor based on the use of a reduced graphene oxide paste electrode modified with electrodeposited cobalt oxide nanoparticles, Microchim Acta. 183(2016) 2259-2266.
[77] J. S. Chung, S. H. Hur, A highly sensitive enzyme-free glucose sensor based on Co3O4 nanoflowers and 3D graphene oxide hydrogel fabricated via hydrothermal synthesis, Sensor Actuat B-Chem. 223 (2016) 76-82.
[78] L. Ju, G. Wu, B. Lu, X. Li, H. Wu, A. Liu, Non‐enzymatic Amperometric Glucose Sensor Based on Copper Nanowires Decorated Reduced Graphene Oxide, Electroanal. 28(2016) 2543-2551.
[79] S. J. Li, L. L. Hou, B. Q. Yuan, M. Z. Chang, Y. Ma, J. M. Du, Enzyme-free glucose sensor using a glassy carbon electrode modified with reduced graphene oxide decorated with mixed copper and cobalt oxides, Microchim Acta. 183(2016), 1813-1821.
[80] Y. Luo, F. Y. Kong, C. Li, J. J. Shi, W. X. Lv, W. Wang, One-pot preparation of reduced graphene oxide-carbon nanotube decorated with Au nanoparticles based on protein for non-enzymatic electrochemical sensing of glucose. Sensor Actuat B- Chem. 234 (2016) 625-632.
[81] G. Ma, M. Yang, C. Li, H. Tan, L. Deng, S. Xie, Y. Song, Preparation of spinel nickel-cobalt oxide nanowrinkles/reduced graphene oxide hybrid for nonenzymatic glucose detection at physiological level, Electrochim Acta. 220 (2016) 545-553.
[82] V. Sahu, S. Grover, M. Sharma, A. Pandey, G. Singh, R. K. Sharma, CuO/Reduced graphene oxide nanocomposite for high performance non-enzymatic, cost effective glucose sensor, Sensor Lett. 14(2016) 1117-1122.
[83] I. Shackery, U. Patil, A. Pezeshki, N. M. Shinde, S. Kang, S. Im, S. C. Jun, Copper hydroxide nanorods decorated porous graphene foam electrodes for non-enzymatic glucose sensing, Electrochim Acta. 191 (2016) 954-961.
[84] I. Shackery, U. Patil, A. Pezeshki, N. M. Shinde, S. Im, S. C. Jun, Enhanced non-enzymatic amperometric sensing of glucose using Co(OH)2 nanorods deposited on a three dimensional graphene network as an electrode material, Microchim Acta. 183(2016) 2473-2479.
[85] Z. Shahnavaz, P. M. Woi, Y. Alias, Electrochemical sensing of glucose by reduced graphene oxide-zinc ferrospinels, Appl Surf Sci. 379 (2016) 156-162.
[86] Z. Shen, W. Gao, P. Li, X. Wang, Q. Zheng, H. Wu, K. Ding, Highly sensitive nonenzymatic glucose sensor based on Nickel nanoparticle–attapulgite-reduced graphene oxide-modified glassy carbon electrode, Talanta. 159 (2016) 194-199.
[87] T. D.Thanh, J. Balamurugan, S. H. Lee, N. H. Kim, J. H. Lee, Effective seed-assisted synthesis of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine, Biosens Bioelectron. 81(2016) 259-267.
[88] C. Wang, Y. Sun, X. Yu, D. Ma, J. Zheng, P. Dou, X. Xu, Ag–Pt hollow nanoparticles anchored reduced graphene oxide composites for non-enzymatic glucose biosensor, J Mater Sci Mater El. 27(2016) 9370-9378.
[89] T. Yang, J. Xu, L. Lu, X. Zhu, Y. Gao, H. Xing, Z. Liu, Copper nanoparticle/graphene oxide/single wall carbon nanotube hybrid materials as electrochemical sensing platform for nonenzymatic glucose detection, J Electroanal Chem. 761(2016) 118-124.
[90] S. N. A. M. Yazid, I. M. Isa, N. Hashim, Novel alkaline-reduced cuprous oxide/graphene nanocomposites for non-enzymatic amperometric glucose sensor application, Mater Sci Eng. C. 68(2016) 465-473.
[91] G. Zeng, W. Li, S. Ci, J. Jia, Z. Wen, Highly dispersed NiO nanoparticles decorating graphene nanosheets for non-enzymatic glucose sensor and biofuel cell, Sci rep. 6 (2016) 36454. 10.1038/srep36454
[92] C. Zhang, Y. Zhang, Z. Miao, M. Ma, X. Du, J. Lin, Q. Chen, Dual-function amperometric sensors based on poly (diallydimethylammoniun chloride)-functionalized reduced graphene oxide/manganese dioxide/gold nanoparticles nanocomposite, Sensor Actuat B-Chem. 222(2016) 663-673.
[93] X. Zhang, Z. Zhang, Q. Liao, S. Liu, Z. Kang, Y. Zhang, Nonenzymatic glucose sensor based on in situ reduction of Ni/NiO-graphene nanocomposite, Sensors. 16(2016) 1791.
[94] A. Zhao, Z. Zhang, P. Zhang, S. Xiao, L. Wang, Y. Dong, F. Xiao, 3D nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing, Anal chim acta. 938(2016) 63-71.
[95] J. Zheng, W. Zhang, Z. Lin, C. Wei, W. Yang, P. Dong, S. Hu, Microwave synthesis of 3D rambutan-like CuO and CuO/reduced graphene oxide modified electrodes for non-enzymatic glucose detection, J Mater Chem B. 4(2016) 1247-1253.
[96] W. Zheng, L. Hu, L. Y. S. Lee, K. Y. Wong, Copper nanoparticles/polyaniline/graphene composite as a highly sensitive electrochemical glucose sensor, J Electroanal Chem. 781(2016) 155-160.
[97] X. Zhuang, C. Tian, F. Luan, X. Wu, L. Chen, One-step electrochemical fabrication of a nickel oxide nanoparticle/polyaniline nanowire/graphene oxide hybrid on a glassy carbon electrode for use as a non-enzymatic glucose biosensor, Rsc Adv. 6(2016) 92541-92546.
[98] L. Bao, T. Li, S. Chen, C. Peng, L. Li, Q. Xu, W. Xu, 3D Graphene Frameworks/Co3O4 Composites Electrode for High‐Performance Supercapacitor and Enzymeless Glucose Detection, Small. 13(2017) 1602077.
[99] K. Ghanbari, F. Ahmadi, NiO hedgehog-like nanostructures/Au/polyaniline nanofibers/reduced graphene oxide nanocomposite with electrocatalytic activity for non-enzymatic detection of glucose, Anal biochem. 518(2017) 143-153.
[100] A. I. Gopalan, N. Muthuchamy, K. P. Lee, A novel bismuth oxychloride-graphene hybrid nanosheets based non-enzymatic photoelectrochemical glucose sensing platform for high performances, Biosens Bioelectron. 89 (2017), 352-360.
[101] T. H. Ko, S. Radhakrishnan, M. K. Seo, M. S. Khil, H. Y. Kim, B. S. Kim, A green and scalable dry synthesis of NiCo2O4/graphene nanohybrids for high-performance supercapacitor and enzymeless glucose biosensor applications, J Alloys Compd. 696(2017) 193-200.
[102] J. Feng, Y. Wang, Y. Hou, L. Li, Hierarchical structured ZnFe 2O4@ RGO@ TiO2 composite as powerful visible light catalyst for degradation of fulvic acid, J Nanopart Res.19(2017) 178.
[103] L. Shabnam, S. N. Faisal, A. K. Roy, E. Haque, A. I. Minett, V. G. Gomes, Doped graphene/Cu nanocomposite: a high sensitivity non-enzymatic glucose sensor for food, Food chem. 221(2017)751-759.
[104]M. Sreejesh, S. Dhanush, F. Rossignol, H. S. Nagaraja, Microwave assisted synthesis of rGO/ZnO composites for non-enzymatic glucose sensing and supercapacitor applications, Ceram Int. 43(2017) 4895-4903.
[105] Z. Zhang, P. Pan, X. Liu, Z. Yang, J. Wei, Z. Wei, 3D-copper oxide and copper oxide/few-layer graphene with screen printed nanosheet assembly for ultrasensitive non-enzymatic glucose sensing, Mater Chem Phys. 187(2017) 28-38.
[106] S. Alexander, P. Baraneedharan, S. Balasubrahmanyan, S. Ramaprabhu, Highly sensitive and selective non enzymatic electrochemical glucose sensors based on Graphene Oxide-Molecular Imprinted Polymer, Mater Sci Eng C. 78(2017) 124-129.
[107] P. Balasubramanian, M. Velmurugan, S. M. Chen, K. Y. Hwa, Optimized electrochemical synthesis of copper nanoparticles decorated reduced graphene oxide: Application for enzymeless determination of glucose in human blood, J Electroanal Chem. 807(2017) 128-136.
[108] S. Darvishi, M. Souissi, F. Karimzadeh, M. Kharaziha, R. Sahara, S. Ahadian, Ni nanoparticle-decorated reduced graphene oxide for non-enzymatic glucose sensing: an experimental and modeling study, Electrochim Acta. 240 (2017) 388-398.
[109] S. Felix, P. Kollu, S. K. Jeong, A. N. Grace, A novel CuO–N-doped graphene nanocomposite-based hybrid electrode for the electrochemical detection of glucose, Appl Phys A. 123(2017) 620.
[110] D. Geng, X. Bo, L. Guo, Ni-doped molybdenum disulfide nanoparticles anchored on reduced graphene oxide as novel electroactive material for a non-enzymatic glucose sensor, Sensor Actuat B-Chem. 244 (2017)131-141.
[111] N. T. Y. Linh, J. S. Chung, S. H. Hur, Green synthesis of silver nanoparticle-decorated porous reduced graphene oxide for antibacterial non-enzymatic glucose sensors, Ionics. 23(2017) 1525-1532.
[112] C. T. Hsieh, W. H. Lin, Y. F. Chen, D. Y. Tzou, P. Q. Chen, R. S. Juang, Microwave synthesis of copper catalysts onto reduced graphene oxide sheets for non-enzymatic glucose oxidation, J Taiwan Inst Chem E. 71(2017) 77-83.
[113] N. Hui, J. Wang, Electrodeposited honeycomb-like cobalt nanostructures on graphene oxide doped polypyrrole nanocomposite for high performance enzymeless glucose sensing, J Electroanal Chem. 798(2017) 9-16.
[114] Z. Ji, Y. Wang, Q. Yu, X. Shen, N. Li, H. Ma, J. Wang, One-step thermal synthesis of nickel nanoparticles modified graphene sheets for enzymeless glucose detection. J colloid interface sci. 506(2017) 678-684.
[115] J. Jiang, P. Zhang, Y. Liu, H. Luo, A novel non-enzymatic glucose sensor based on a Cu-nanoparticle-modified graphene edge nanoelectrode, Anal Methods. 9(2017) 2205-2210.
[116] N. Karikalan, R. Karthik, S. M. Chen, C. Karuppiah, A. Elangovan, Sonochemical synthesis of sulfur doped reduced graphene oxide supported CuS nanoparticles for the non-enzymatic glucose sensor applications, Sci rep. 7(2017) 2494.
[117] S. Li, Q. Zhang, Y. Lu, D. Ji, D. Zhang, J. Wu, Q. Liu, One step electrochemical deposition and reduction of graphene oxide on screen printed electrodes for impedance detection of glucose, Sensor Actuat B-Chem. 244(2017) 290-298.
[118] M. Mazaheri, H. Aashuri, A. Simchi, Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors, Sensor Actuat B-Chem. 251 (2017) 462-471.
[119] A. Meng, L. Sheng, K. Zhao, Z. Li, A controllable honeycomb-like amorphous cobalt sulfide architecture directly grown on the reduced graphene oxide–poly (3, 4-ethylenedioxythiophene) composite through electrodeposition for non-enzyme glucose sensing, J Mater Chem B. 5(2017) 8934-8943.
[120] J. D. Xie, S. Gu, H. Zhang, Microwave deposition of palladium catalysts on graphite spheres and reduced graphene oxide sheets for electrochemical glucose Sensing, Sensors. 17(2017) 2163.
[121] Y. L. T. Ngo, L. Sui, W. Ahn, J. S. Chung, S. H. Hur, NiMn2O4 spinel binary nanostructure decorated on three-dimensional reduced graphene oxide hydrogel for bifunctional materials in non-enzymatic glucose sensor, Nanoscale. 9(2017) 19318-19327.
[122] Y. L. T. Ngo, J. S. Chung, S. H. Hur, Multi-dimensional Ag/NiO/reduced graphene oxide nanostructures for a highly sensitive non-enzymatic glucose sensor. J Alloys Compd. 712(2017) 742-751.
[123] L. Shabnam, S. N. Faisal, A. K. Roy, A. I. Minett, V. G. Gomes, Nonenzymatic multispecies sensor based on Cu-Ni nanoparticle dispersion on doped graphene, Electrochim Acta. 224(2017) 295-305.
[124] Y. Wang, Z. Ji, X. Shen, G. Zhu, J. Wang, X. Yue, Facile growth of Cu2O hollow cubes on reduced graphene oxide with remarkable electrocatalytic performance for non-enzymatic glucose detection, New J Chem. 41(2017) 9223-9229.
[125] M. Wang, X. Song, B. Song, J. Liu, C. Hu, D. Wei, C. P. Wong, Precisely quantified catalyst based on in situ growth of Cu2O nanoparticles on a graphene 3D network for highly sensitive glucose sensor, Sensor Actuat B-Chem. 250(2017) 333-341.
[126] K. L. Wu, Y. M. Cai, B. B. Jiang, W. C. Cheong, X. W. Wei, W. Wang, N. Yu, Cu@Ni core–shell nanoparticles/reduced graphene oxide nanocomposites for nonenzymatic glucose sensor, Rsc Adv. 7(2017) 21128-21135.
[127] H. Wu, Y. Yu, W. Gao, A. Gao, A. M. Qasim, F. Zhang, P. K. Chu, Nickel plasma modification of graphene for high-performance non-enzymatic glucose sensing. Sensor Actuat B-Chem. 251(2017) 842-850.
[128] B. Xue, K. Li, L. Feng, J. Lu, L. Zhang, Graphene wrapped porous Co3O4/NiCo2O4 double-shelled nanocages with enhanced electrocatalytic performance for glucose sensor, Electrochim Acta. 239(2017) 36-44.
[129] J. Yang, Q. Lin, W. Yin, T. Jiang, D. Zhao, L. Jiang, A novel nonenzymatic glucose sensor based on functionalized PDDA-graphene/CuO nanocomposites. Sensor Actuat B-Chem. 253(2017) 1087-1095.
[130] J. Yang, W. Tan, C. Chen, Y. Tao, Y. Qin, Y. Kong, Nonenzymatic glucose sensing by CuO nanoparticles decorated nitrogen-doped graphene aerogel, Mater. Sci. Eng C. 78(2017) 210-217.
[131] L. Yang, D. Liu, G. Cui, Y. Xie, Cu2+ 1O/graphene nanosheets supported on three dimensional copper foam for sensitive and efficient non-enzymatic detection of glucose, Rsc Adv. 7(2017) 19312-19317.
[132] S. Yang, G. Li, D. Wang, Z. Qiao, L. Qu, Synthesis of nanoneedle-like copper oxide on N-doped reduced graphene oxide: a three-dimensional hybrid for nonenzymatic glucose sensor, Sensor Actuat B-Chem.238(2017) 588-595.
[133] H. Zhang, S. Liu, A combined self-assembly and calcination method for preparation of nanoparticles-assembled cobalt oxide nanosheets using graphene oxide as template and their application for non-enzymatic glucose biosensing, J colloid interf sci. 485(2017) 159-166.
[134] Y. Zhang, W. Lei, Q. Wu, X. Xia, Q. Hao, Amperometric nonenzymatic determination of glucose via a glassy carbon electrode modified with nickel hydroxide and N-doped reduced graphene oxide, Microchim Acta. 184(2017) 3103-3111.
[135] H. Zhang, S. Liu, Nanoparticles-assembled NiO nanosheets templated by graphene oxide film for highly sensitive non-enzymatic glucose sensing, Sensor Actuat B- Chem. 238(2017) 788-794.
[136] C. Zhao, X. Wu, X. Zhang, P. Li, X. Qian, Facile synthesis of layered CuS/RGO/CuS nanocomposite on Cu foam for ultrasensitive nonenzymatic detection of glucose, J Electroanal Chem. 785(2017) 172-179.
[137] E. Asadian, S. Shahrokhian, A. I. Zad, Highly sensitive nonenzymetic glucose sensing platform based on MOF-derived NiCo LDH nanosheets/graphene nanoribbons composite, J Electroanal Chem. 808(2018) 114-123.
[138] F. Foroughi, M. Rahsepar, M. J. Hadianfard, H. Kim, Microwave-assisted synthesis of graphene modified CuO nanoparticles for voltammetric enzyme-free sensing of glucose at biological pH values, Microchim Acta. 185(2018) 57.
[139] L. Jothi, N. Jayakumar, S. K. Jaganathan, G. Nageswaran, Ultrasensitive and selective non-enzymatic electrochemical glucose sensor based on hybrid material of graphene nanosheets/graphene nanoribbons/nickel nanoparticle, Mater Res Bull. 98(2018) 300-307. 10.1016/j.materresbull.2017.10.020
[140] M. Wang, J. Ma, Q. Chang, X. Fan, G. Zhang, F. Zhang, Y. Li, Fabrication of a novel ZnO–CoO/rGO nanocomposite for nonenzymatic detection of glucose and hydrogen peroxide, Ceram Int. 44(2018) 5250-5256.
[141] L. Wang, L. Xu, Y. Zhang, H. Yang, L. Miao, C. Peng, Y. Song, Copper Oxide− Cobalt Nanostructures/Reduced Graphene Oxide/Biomass‐Derived Macroporous Carbon for Glucose Sensing, ChemElectroChem. 5(2018) 501-506.
[142] X. Fu, Z. Chen, S. Shen, L. Xu, Z. Luo, Highly Sensitive Nonenzymatic Glucose Sensor Based on Reduced Graphene Oxide/Ultrasmall Pt Nanowire Nanocomposites, Int. J. Electrochem. 13(2018) 4817-4826.
[143] S. Chaiyo, E. Mehmeti, W. Siangproh, T. L. Hoang, H. P. Nguyen, O. Chailapakul, K. Kalcher, Non-enzymatic electrochemical detection of glucose with a disposable paper-based sensor using a cobalt phthalocyanine–ionic liquid–graphene composite, Biosens. Bioelectron. 102(2018) 113-120.
[144] S. Darvishi, M. Souissi, M. Kharaziha, F. Karimzadeh, R. Sahara, S. Ahadian, Gelatin methacryloyl hydrogel for glucose biosensing using Ni nanoparticles-reduced graphene oxide: An experimental and modeling study, Electrochim Acta. 261(2018) 275-283.
[145] T. Deepalakshmi, D. T. Tran, N. H. Kim, K. T. Chong, J. H. Lee, Nitrogen-doped graphene-encapsulated nickel cobalt nitride as a highly sensitive and selective electrode for glucose and hydrogen peroxide sensing applications, ACS Appl Mater Inter. 10(2018) 35847-35858.
[146] Z. P. Deng, Y. Sun, Y. C. Wang, J. D. Gao, A NiFe Alloy Reduced on Graphene Oxide for Electrochemical Nonenzymatic Glucose Sensing, Sensors. 18(2018) 3972.
[147] K. Justice Babu, S. Sheet, Y. S. Lee, G. Gnana Kumar, Three-Dimensional Dendrite Cu–Co/Reduced Graphene Oxide Architectures on a Disposable Pencil Graphite Electrode as an Electrochemical Sensor for Nonenzymatic Glucose Detection, ACS Sustain Chem Eng. 6(2018) 1909-1918.
[148] B. Li, A. Yu, G. Lai, Self-assembly of phenoxyl-dextran on electrochemically reduced graphene oxide for nonenzymatic biosensing of glucose, Carbon. 127(2018) 202-208.
[149] S. Lin, W. Feng, X. Miao, X. Zhang, S. Chen, Y. Chen, Y. Zhang, A flexible and highly sensitive nonenzymatic glucose sensor based on DVD-laser scribed graphene substrate, Biosens Bioelectron. 110(2018) 89-96.
[150] F. Luan, S. Zhang, D. Chen, F. Wei, X. Zhuang, Ni3S2/ionic liquid-functionalized graphene as an enhanced material for the nonenzymatic detection of glucose, Microchem J. 143(2018) 450-456.
[151] L. Ma, X. Wang, Q. Zhang, X. Tong, Y. Zhang, Z. Li, Pt catalyzed formation of a Ni@ Pt/reduced graphene oxide nanocomposite: preparation and electrochemical sensing application for glucose detection, Anal methods. 10(2018) 3845-3850.
[152] F. Miao, W. Wu, R. Miao, W. Cong, Y. Zang, B. Tao, Graphene/nano-ZnO hybrid materials modify Ni-foam for high-performance electrochemical glucose sensors, Ionics. 24(2018) 4005-4014.
[153] H. Naeim, F. Kheiri, M. Sirousazar, A. Afghan, Ionic liquid/reduced graphene oxide/nickel-palladium nanoparticle hybrid synthesized for non-enzymatic electrochemical glucose sensing, Electrochim Acta. 282(2018) 137-146.
[154] Y. Peng, D. Lin, J. J. Gooding, Y. Xue, L. Dai, Flexible fiber-shaped non-enzymatic sensors with a graphene-metal heterostructure based on graphene fibres decorated with gold nanosheets, Carbon. 136(2018) 329-336.
[155] W. Raza, S. B. Krupanidhi, Engineering Defects in Graphene Oxide for Selective Ammonia and Enzyme-Free Glucose Sensing and Excellent Catalytic Performance for para-Nitrophenol Reduction, ACS appl mater inter. 10(2018) 25285-25294.
[156] T. Soganci, R. Ayranci, E. Harputlu, K. Ocakoglu, M. Acet, M. Farle, M. Ak, An effective non-enzymatic biosensor platform based on copper nanoparticles decorated by sputtering on CVD graphene, Sensor Actuat B-Chem. 273(2018) 1501-1507.
[157] P. Sukhrobov, S. Numonov, S. Gao, X. Mamat, T. Wagberg, Y. Guo, G. Hu, Nonenzymatic Glucose Biosensor Based on NiNPs/Nafion/Graphene Film for Direct Glucose Determination in Human Serum, Nano. 13(2018) 1850075.
[158] A. E. Vilian, B. Dinesh, M. Rethinasabapathy, S. K. Hwang, C. S. Jin, Y. S. Huh, Y. K. Han, Hexagonal Co 3 O 4 anchored reduced graphene oxide sheets for high-performance supercapacitors and non-enzymatic glucose sensing, J Mater Chem A. 6(2018) 14367-14379.
[159] D. Xu, C. Zhu, X. Meng, Z. Chen, Y. Li, D. Zhang, S. Zhu, Design and fabrication of Ag-CuO nanoparticles on reduced graphene oxide for nonenzymatic detection of glucose. Sensor Actuat B-Chem 265(2018) 435-442.
[160] Y. Xue, Y. Huang, Z. Zhou, G. Li, Non-enzymatic glucose biosensor based on reduction graphene oxide-persimmon tannin-Pt-Pd nanocomposite. In IOP Conference Series: Mater Sci Eng. 382(2018) 022016.
[161] X. Yan, Y. Gu, C. Li, B. Zheng, Y. Li, T. Zhang, M. Yang, A non-enzymatic glucose sensor based on the CuS nanoflakes–reduced graphene oxide nanocomposite, Anal methods. 10(2018) 381-388.
[162] S.Yang, D. Liu, Q. B. Meng, S. Wu, X. M. Song, Reduced graphene oxide-supported methylene blue nanocomposite as a glucose oxidase-mimetic for electrochemical glucose sensing, Rsc adv. 8(2018) 32565-32573.
[163] D. Yin, X. Bo, J. Liu, L. Guo, A novel enzyme-free glucose and H2O2 sensor based on 3D graphene aerogels decorated with Ni3N nanoparticles, Anal chim acta. 1038(2018) 11-20.
[164] G. Zang, W. Hao, X. Li, S. Huang, J. Gan, Z. Luo, Y. Zhang, Copper nanowires-MOFs-graphene oxide hybrid nanocomposite targeting glucose electro-oxidation in neutral medium, Electrochim Acta. 277(2018) 176-184.
[165] J. Zhou, M. Min, Y. Liu, J. Tang, W. Tang, Layered assembly of NiMn-layered double hydroxide on graphene oxide for enhanced non-enzymatic sugars and hydrogen peroxide detection, Sensor Actuat B-Chem. 260(2018) 408-417.
[166] R. Ayranci, B. Demirkan, B. Sen, A. Şavk, M. Ak, F. Şen, Use of the monodisperse Pt/Ni@ rGO nanocomposite synthesized by ultrasonic hydroxide assisted reduction method in electrochemical nonenzymatic glucose detection. Mater Sci Eng C 99(2019) 951-956.
[167] X. Chen, D. Liu, G. Cao, Y. Tang, C. Wu, In Situ Synthesis of a Sandwich-like Graphene@ ZIF-67 Heterostructure for Highly Sensitive Nonenzymatic Glucose Sensing in Human Serums, ACS appl mater inter. 11(2019) 9374-9384.
[168] Z. Lu, L. Wu, J. Zhang, W. Dai, G. Mo, J. Ye, Bifunctional and highly sensitive electrochemical non-enzymatic glucose and hydrogen peroxide biosensor based on NiCo2O4 nanoflowers decorated 3D nitrogen doped holey graphene hydrogel, Mater Sci Eng C. 102(2019) 708-717.
[169] W. Mao, H. He, Z. Ye, J. Huang, Three-dimensional graphene foam integrated with Ni(OH)2 nanosheets as a hierarchical structure for non-enzymatic glucose sensing. J Electroanal Chem. 832(2019) 275-283.
[170] S. Pourbeyram, J. Abdollahpour, M. Soltanpour, Green synthesis of copper oxide nanoparticles decorated reduced graphene oxide for high sensitive detection of glucose, Mater Sci Eng C. 94(2019) 850-857.
[171] K. Promsuwan, N. Kachatong, W. Limbut, Simple flow injection system for non-enzymatic glucose sensing based on an electrode modified with palladium nanoparticles-graphene nanoplatelets/mullti-walled carbon nanotubes, Electrochim Acta. 320(2019) 134621.
[172] M. Rahsepar, F. Foroughi, H. Kim, A new enzyme-free biosensor based on nitrogen-doped graphene with high sensing performance for electrochemical detection of glucose at biological pH value, Sensor Actuat B-Chem. 282(2019) 322-330.
[173] A. Salah, N. Al-Ansi, S. Adlat, M. Bawa, Y. He, X. Bo, L. Guo, Sensitive nonenzymatic detection of glucose at PtPd/porous holey nitrogen-doped graphene, J Alloys Compd. 792(2019) 50-58.
[174] K. Samoson, P. Thavarungkul, P. Kanatharana, W. Limbut, A Nonenzymatic Glucose Sensor Based on the Excellent Dispersion of a Graphene Oxide-Poly (acrylic acid)-Palladium Nanoparticle-Modified Screen-Printed Carbon Electrode, J Electrochem Soc. 166(2019) B1079-B1087.
[175] L. Xiao, Q. Chen, L. Jia, Q. Zhao, J. Jiang, Networked cobaltous phosphate decorated with nitrogen-doped reduced graphene oxide for non-enzymatic glucose sensing, Sensor Actuat B-Chem. 283(2019) 443-450.
[176] Y. Zhang, Y. Zhang, H. Zhu, S. Li, C. Jiang, R. J. Blue, Y. Su, Functionalization of the support material based on N-doped carbon-reduced graphene oxide and its influence on the non-enzymatic detection of glucose, J Alloys Compd. 780(2019) 98-106.
[177] Y. Zhu, X. Zhang, J. Sun, M. Li, Y. Lin, K. Kang, J. Wang, A non-enzymatic amperometric glucose sensor based on the use of graphene frameworks-promoted ultrafine platinum nanoparticles, Microchim Acta. 186(2019) 538.