Hydrazine Sensing Technologies


Hydrazine Sensing Technologies

Muhammad Inam Khan, Muhammad Tayyab, Muhammad Mudassir Hassan, Nawshad Muhammad, Awais Ahmad, Muhammad Tariq, Abdur Rahim

Recently, the design, fabrication, and development of the different types of sensing techniques have been reported. Hydrazine is used in many industries such as agriculture, power generation, pharmaceutical, aerospace, and chemical industries. Hydrazine can cause environmental contamination and severe health hazards on human life. Different sensing technologies are used to detect and estimate hydrazine concentration in the atmosphere such as soil and water etc. Among these techniques, electrochemical technology shows high sensitivity and selectivity towards the detection of hydrazine.

Hydrazine, Electrochemical, Colorimetric, Amperometry, Electrocatalytic Activity, Nanomaterial, Surface Plasmon Resonance

Published online 12/20/2020, 18 pages

Citation: Muhammad Inam Khan, Muhammad Tayyab, Muhammad Mudassir Hassan, Nawshad Muhammad, Awais Ahmad, Muhammad Tariq, Abdur Rahim, Hydrazine Sensing Technologies, Materials Research Foundations, Vol. 92, pp 139-156, 2021

DOI: https://doi.org/10.21741/9781644901175-5

Part of the book on Toxic Gas Sensors and Biosensors

[1] K. Patil, R. Mimani, Inorganic Hydrazine derivatives, synthesis, properties and applications: monograph. India: JohnWiley & Sons, Ltd Noida, 286 (2014).
[2] M. Yuan, D.B. Mitzi, Solvent properties of hydrazine in the preparation of metal chalcogenide bulk materials and films, Dalton Trans., (2009) 6078-6088. https://doi.org/10.1039/B900617F
[3] M.A. Navasardyan, L.G. Kuz’mina, A.V. Churakov, Unusual isomorphism in crystals of organic solvates with hydrazine and water, CrystEngComm, 21 (2019) 5693-5698. https://doi.org/10.1039/C9CE00978G
[4] G. Le Goff, J. Ouazzani, Natural hydrazine-containing compounds: Biosynthesis, isolation, biological activities and synthesis, Bioorg. Med. Chem., 22 (2014) 6529-6544. https://doi.org/10.1016/j.bmc.2014.10.011
[5] K. McAdam, H. Kimpton, S. Essen, P. Davis, C. Vas, C. Wright, A. Porter, B. Rodu, Analysis of hydrazine in smokeless tobacco products by gas chromatography–mass spectrometry, Chem.Cent. J., 9 (2015) 13. https://doi.org/10.1186/s13065-015-0089-0
[6] E. Janeba-Bartoszewicz, A. Rojewski, Analysis of hazards occurring during the use of hydrazine, J. Konse. Power. Trans., 25 (2018). https://doi.org/10.5604/01.3001.0012.4787
[7] N.H. Sabit, S.N.A. Jabbar, B.N. Basheer, N.M. Radhi, R.A.E. Abbas, S.T. Hawa, E.A. Abdullah, Preparation of hydrazine hydrate from urea and sodium hypochlorite, J. Iraqi Indust.Res. 4 (2017).
[8] O.V. Dorofeeva, O.N. Ryzhova, T.A. Suchkova, Enthalpies of formation of hydrazine and its derivatives, J. Phys. Chem. A, 121 (2017) 5361-5370. https://doi.org/10.1021/acs.jpca.7b04914
[9] R. Wahab, N. Ahmad, M. Alam, J. Ahmad, Nanorods of ZnO: An effective hydrazine sensor and their chemical properties, Vacuum, 165 (2019) 290-296. https://doi.org/101016./j.vacuum.2019.04.036
[10] N. Meher, S. Panda, S. Kumar, P.K. Iyer, Aldehyde group driven aggregation-induced enhanced emission in naphthalimides and its application for ultradetection of hydrazine on multiple platforms, Chem. Sci., 9 (2018) 3978-3985. https://doi.org/10.1039/C8SC00643A
[11] B. Bavarian, L. Reiner, J. Holden, B. Miksic, Amine base vapor phase corrosion inhibitor alternatives to hydrazine for steam generating systems and power plants, in: NACE 2018 Conference, April, 2018.
[12] S. Ghasemi, S.R. Hosseini, F. Hasanpoor, S. Nabipour, Amperometric hydrazine sensor based on the use of Pt-Pd nanoparticles placed on reduced graphene oxide nanosheets, Microchim. Acta, 186 (2019) 601. https://doi.org/10.1007/s00604-019-3704-2
[13] T. Beduk, E. Bihar, S.G. Surya, A.N. Castillo, S. Inal, K.N. Salama, A paper-based inkjet-printed PEDOT: PSS/ZnO sol-gel hydrazine sensor, Sens. Actuators B Chem., 306 (2020) 127539. https://doi.org/10.1016/j.snb.2019.127539
[14] H. Liu, H. Wang, G. Liu, S. Pu, H. Zhang, Ultrasensitive sensing of hydrazine vapor at sub-ppm level with pyrimidine-substituted perylene diimide film device, Tetrahedron, 75 (2019) 1988-1996. https://doi.org/10.1016/j.tet.2019.02.023
[15] F. Luan, S. Zhang, D. Chen, K. Zheng, X. Zhuang, CoS2-decorated ionic liquid-functionalized graphene as a novel hydrazine electrochemical sensor, Talanta, 182 (2018) 529-535. https://doi.org/10.1016/j.talanta.2018.02.031
[16] S. Karakaya, Development of an amperometric hydrazine sensor at a disposable poly (alizarin red S) modified pencil graphite electrode, Monatsh. Chem., 150 (2019) 1911-1920. https://doi.org/10.1007/s00706-019-02513-4
[17] D. Martín-Yerga, Electrochemical detection and characterization of nanoparticles with printed devices, Biosens., 9 (2019) 47. https://doi.org/10.3390/bios9020047
[18] Q. Zhou, A. Umar, A. Amine, L. Xu, Y. Gui, A.A. Ibrahim, R. Kumar, S. Baskoutas, Fabrication and characterization of highly sensitive and selective sensors based on porous NiO nanodisks, Sens. Actuators B Chem., 259 (2018) 604-615. https://doi.org/10.1016/j.snb.2017.12.050
[19] B. Bansod, T. Kumar, R. Thakur, S. Rana, I. Singh, A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms, Biosens. Bioelectron., 94 (2017) 443-455. https://doi.org/10.1016/j.bios.2017.03.031
[20] M.K. Rofouei, H. Khoshsafar, H. Bagheri, R.J. Kalbasi, Synthesis and characterisation of Ag-nanoparticles immobilised on ordered mesoporous carbon as an efficient sensing platform: application to electrocatalytic determination of hydrazine, Int. J. Environ. Anal. Chem., 98 (2018) 156-170. https://doi.org/10.1080/03067319.2018.1438419
[21] N. Teymoori, J.B. Raoof, M.A. Khalilzadeh, R. Ojani, An electrochemical sensor based on CuO nanoparticle for simultaneous determination of hydrazine and bisphenol A, J. Iran. Chem. Soc., 15 (2018) 2271-2279. https://doi.org/10.1007/s13738-018-1416-x
[22] B. Luo, T. Wu, L. Zhang, F. Diao, Y. Zhang, L. Ci, J. Ulstrup, J. Zhang, P. Si, Monometallic nanoporous nickel with high catalytic performance towards hydrazine electro-conversion and its DFT calculations, Electrochim. Acta, 317 (2019) 449-458. https://doi.org/10.1016/j.electacta.2019.05.123
[23] C. Liang, H. Lin, Q. Wang, E. Shi, S. Zhou, F. Zhang, F. Qu, G. Zhu, A redox-active covalent organic framework for the efficient detection and removal of hydrazine, J. hazard. mater., 381 (2020) 120983. https://doi.org/10.1016/j.jhazmat.2019.120983
[24] S. Sakthinathan, S. Kubendhiran, S.M. Chen, M. Govindasamy, F.M. Al‐Hemaid, M. Ajmal Ali, P. Tamizhdurai, S. Sivasanker, Metallated porphyrin noncovalent interaction with reduced graphene oxide‐modified electrode for amperometric detection of environmental pollutant hydrazine, Appl. Organomet. Chem., 31 (2017) e3703. https://doi.org/10.1002/aoc.3703
[25] P.B. Deroco, I.G. Melo, L.S. Silva, K.I. Eguiluz, G.R. Salazar-Banda, O. Fatibello-Filho, Carbon black supported Au–Pd core-shell nanoparticles within a dihexadecylphosphate film for the development of hydrazine electrochemical sensor, Sens.Actuators B Chem., 256 (2018) 535-542. https://doi.org/10.1016/j.snb.2017.10.107
[26] J. Wang, T. Xie, Q. Deng, Y. Wang, Q. Zhu, S. Liu, Three-dimensional interconnected Co(OH)2 nanosheets on Ti mesh as a highly sensitive electrochemical sensor for hydrazine detection, New J.Chem., 43 (2019) 3218-3225. https://doi.org/10.1039/C8NJ06008H
[27] H. Yu, S.-S. Wang, K.-L. Song, R. Li, A sensitive amperometric sensor for hydrazine based on Pt nanoparticles-reduced graphene oxide–multi-walled carbon nanotubes composite, Int. J. Env. Anal. Chem., 99 (2019) 854-867. https://doi.org/10.1080/03067319.2019.1616707
[28] F.T. Patrice, K. Qiu, L.-J. Zhao, E. Kouadio Fodjo, D.-W. Li, Y.-T. Long, Individual modified carbon nanotube collision for electrocatalytic oxidation of hydrazine in aqueous solution, ACS Appl. Nano. Mater., 1 (2018) 2069-2075. https://doi.org/10.1021/acsanm.8b00018
[29] E. Habibi, Mesoporous Pd| β-SiCNW-nC based home made screen printed electrode for high sensitive detection of hydrazine, Microchem.J., 149 (2019) 104004. https://doi.org/10.1016/j.microc.2019.104004
[30] H. Jiang, Z. Wang, P. Kannan, H. Wang, R. Wang, P. Subramanian, S. Ji, Grain boundaries of Co(OH)2-Ni-Cu nanosheets on the cotton fabric substrate for stable and efficient electro-oxidation of hydrazine, Int. J. Hydrog Energy, 44 (2019) 24591-24603. https://doi.org/10.1016/j.ijhydene.2019.07.164
[31] K.M. Emran, S.M. Ali, H.E. Alanazi, Novel hydrazine sensors based on Pd electrodeposited on highly dispersed lanthanide-doped TiO2 nanotubes, J.Electroanal.Chem., 856 (2020) 113661. https://doi.org/10.1016/j.jelechem.2019.113661
[32] R. Ahmad, T. Bedük, S.M. Majhi, K.N. Salama, One-step synthesis and decoration of nickel oxide nanosheets with gold nanoparticles by reduction method for hydrazine sensing application, Sens. Actuators B Chem., 286 (2019) 139-147. https://doi.org/10.1016/j.snb.2019.01.132
[33] G. Wei, L. Wang, L. Huo, Y. Zhang, Economical, green and rapid synthesis of CDs-Cu2O/CuO nanotube from the biomass waste reed as sensitive sensing platform for the electrochemical detection of hydrazine, Talanta, (2019) 120431. https://doi.org/10.1016/j.talanta.2019.120431
[34] Y. Hao, Y. Zhang, K. Ruan, W. Chen, B. Zhou, X. Tan, Y. Wang, L. Zhao, G. Zhang, P. Qu, A naphthalimide-based chemodosimetric probe for ratiometric detection of hydrazine, Sens. Actuators B Chem., 244 (2017) 417-424. https://doi.org/10.1016/j.snb.2016.12.145
[35] X. Jia, X. Li, X. Geng, C. Nie, P. Zhang, C. Wei, X. Li, A seminaphthorhodafluor-based near-infrared fluorescent probe for hydrazine and its bioimaging in living systems, Spectrochim Acta A 223 (2019) 117307. https://doi.org/10.1016/j.saa.2019.117307
[36] J. Homola, I. Koudela, S.S. Yee, Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison, Sens. Actuators BChem., 54 (1999) 16-24. https://doi.org/10.1016/S0925-4005(98)00322-0
[37] A.P. VS, P. Joseph, K.D. SCG, S. Lakshmanan, T. Kinoshita, S. Muthusamy, Colorimetric sensors for rapid detection of various analytes, Mater. Sci. Eng.: C, 78 (2017) 1231-1245. https://doi.org/10.1016/j.msec.2017.05.018
[38] G.M. Whitesides, The origins and the future of microfluidics, Nature, 442 (2006) 368-373. https:///doi.org/10.1038/nature05058
[39] Y. Liu, G. Su, B. Zhang, G. Jiang, B. Yan, Nanoparticle-based strategies for detection and remediation of environmental pollutants, Anlst, 136 (2011) 872-877. https://doi.org/10.1039/C0AN00905A
[40] S.K. Ghosh, T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications, Chem. Rev., 107 (2007) 4797-4862. https://doi.org/10.1021/cr0680282
[41] B. Zargar, A. Hatamie, A simple and fast colorimetric method for detection of hydrazine in water samples based on formation of gold nanoparticles as a colorimetric probe, Sens. Actuators B Chem. 182 (2013) 706-710. https://doi.org/10.1016/j.snb.2013.03.036
[42] Y. He, W. Huang, Y. Liang, H. Yu, A low-cost and label-free assay for hydrazine using MnO2 nanosheets as colorimetric probes, Sens. Actuators B Chem. B: Chem., 220 (2015) 927-931. https://doi.org/10.1016/j.snb.2015.06.025
[43] S. Schlücker, Surface‐enhanced raman spectroscopy: Concepts and chemical applications, Angew. Chem. Int. Ed., 53 (2014) 4756-4795. https://doi.org/10.1002/anie.201205748
[44] M. Fleischmann, P. Hendra, A. McQuillan, Raman spectra of pridine adsobed at a silver electrode, Chem. phy. lett., 26 (1974).
[45] F. Wang, S. Cao, R. Yan, Z. Wang, D. Wang, H. Yang, Selectivity/specificity improvement strategies in surface-enhanced Raman spectroscopy analysis, Sens., 17 (2017) 2689. https://doi.org/10.3390/s17112689
[46] X. Gu, J.P. Camden, Surface-enhanced raman spectroscopy-based approach for ultrasensitive and selective detection of hydrazine, Anal. chem., 87 (2015) 6460-6464. https://doi.org/10.1021/acs.analchem.5b01566
[47] A. Smolenkov, Chromatographic methods of determining hydrazine and its polar derivatives, Rev. J. Chem., 2 (2012) 329-354. https://doi.org/ 10.1134/S2079978012040048
[48] S. Selim, C.R. Warner, Residue determination of hydrazine in water by derivatization and gas chromatography, J. Chromatogr. A, 166 (1978) 507-511. https://doi.org/10.1016/S0021-9673(00)95634-6
[49] A. Smolenkov, I. Rodin, O. Shpigun, Spectrophotometric and fluorometric methods for the determination of hydrazine and its methylated analogues, J. anal. chem, 67 (2012) 98-113. https://doi.org/10.1134/S1061934812020116
[50] X. Yao, G. Zhang, X. Wang, L. Wang, C. Fan, Solution absorption/spectrophotometry for determination of hydrazine in air, in: IOP conference series: Earth and environmental science, IOP Publishing, 2018, pp. 012036. https//doi.org/10.1088/1755-1315/113/1/012036