MXenes for Gas and Biological Sensor

$30.00

MXenes for Gas and Biological Sensor

Sze-Mun Lam, Zeeshan Haider Jaffari, Yit-Thai Ong, Jin-Chung Sin, Hua Lin, Haixiang Li, Honghu Zeng

Recent advancement of two dimensional MXene nanomaterial offers promise in gases and biosensor areas owing to its large surface area, high thermal conductivity, remarkable safety and excellent catalytic activity traits. The current chapter aimed to review the fundamental and technological aspects of MXenes, including myriad synthesis techniques and structural as well as electronic characteristics of these compounds. The features elucidated in the subsequent sections, examined by both theoretical and experimental approaches and potentialities of MXenes in the gas removal and biosensor applications. Several challenges and exciting future opportunities of this research platform are lastly summarized.

Keywords
MXene, Two-dimensional, Gas, Environmental, Biosensor

Published online 12/20/2020, 32 pages

Citation: Sze-Mun Lam, Zeeshan Haider Jaffari, Yit-Thai Ong, Jin-Chung Sin, Hua Lin, Haixiang Li, Honghu Zeng, MXenes for Gas and Biological Sensor, Materials Research Foundations, Vol. 92, pp 107-138, 2021

DOI: https://doi.org/10.21741/9781644901175-4

Part of the book on Toxic Gas Sensors and Biosensors

References
[1] S.M. Lam, M.W. Kee, K.A. Wong, Z.H. Jaffari, H.Y. Chai, J.C. Sin, A newly emerging MXene nanomaterial for environmental applications, MXene: Fund. Appl. 51 (2019) 20−60. http://doi.org/10.21741/9781644900253-2
[2] J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang, G. Yue, L. Hu, N. Sun, Y. Wang, L. Yoon, S. Lee, C. Xu, K. Wong, D. Astruc, P. Zhao, Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption, Coord. Chem. Rev. 352 (2017) 306–327. https://doi.org/10.1016/j.ccr.2017.09.012
[3] C. Tan, X. Cao, X. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G. Nam, M. Sindoro, H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev. 117 (2017) 6225–6331. https://doi.org/10.1021/acs.chemrev.6b00558
[4] H. Zhang, Ultrathin two-dimensional nanomaterials, ACS Nano. 9 (2015) 9451–9469. https://doi.org/10.1021/acsnano.5b05040
[5] G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, V.R. Cooper, others, Recent advances in two-dimensional materials beyond graphene, ACS Nano. 9 (2015) 11509–11539. https://doi.org/10.1021/acsnano.5b05556
[6] S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, others, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano. 7 (2013) 2898–2926. https://doi.org/10.1021/nn400280c
[7] A. Gupta, T. Sakthivel, S. Seal, Recent development in 2D materials beyond graphene, Prog. Mater. Sci. 73 (2015) 44–126. https://doi.org/10.1016/j.pmatsci.2015.02.002
[8] Z. Lai, Y. Chen, C. Tan, X. Zhang, H. Zhang, Self-assembly of two-dimensional nanosheets into one-dimensional nanostructures, Chem. 1 (2016) 59–77. https://doi.org/10.1016/j.chempr.2016.06.011
[9] X. Huang, Z. Zeng, H. Zhang, Metal dichalcogenide nanosheets: preparation, properties and applications, Chem. Soc. Rev. 42 (2013) 1934–1946. https://doi.org/10.1039/C2CS35387C
[10] C. Tan, H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites, Chem. Soc. Rev. 44 (2015) 2713–2731. https://doi.org/10.1039/C4CS00182F
[11] R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y. Sun, T.E. Mallouk, M. Terrones, Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets, Acc. Chem. Res. 48 (2014) 56–64. https://doi.org/10.1021/ar5002846
[12] Y. Lin, T. V Williams, J.W. Connell, Soluble, exfoliated hexagonal boron nitride nanosheets, J. Phys. Chem. Lett. 1 (2009) 277–283. https://doi.org/10.1021/jz9002108
[13] Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications, Chem. Soc. Rev. 45 (2016) 3989–4012. https://doi.org/10.1039/C5CS00869G
[14] L.H. Li, Y. Chen, Atomically thin boron nitride: unique properties and applications, Adv. Funct. Mater. 26 (2016) 2594–2608. https://doi.org/10.1002/adfm.201504606
[15] H. Liu, Y. Du, Y. Deng, D.Y. Peide, Semiconducting black phosphorus: synthesis, transport properties and electronic applications, Chem. Soc. Rev. 44 (2015) 2732–2743. https://doi.org/10.1039/C4CS00257A
[16] V. Eswaraiah, Q. Zeng, Y. Long, Z. Liu, Black phosphorus nanosheets: synthesis, characterization and applications, Small. 12 (2016) 3480–3502. https://doi.org/10.1002/smll.201600032
[17] S.M. Lam, J.C. Sin, A.R. Mohamed, A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater, Mater. Sci. Semicond. Process. 47 (2016) 62–84. https://doi.org/10.1016/j.mssp.2016.02.019
[18] R. Brec, Review on structural and chemical properties of transition metal phosphorus trisulfides MPS3, in: Intercalation Layer. Mater., Springer, 1986: pp. 93–124. https://doi.org/10.1007/978-1-4757-5556-5_4
[19] M. Afzaal, P. O’Brien, Recent developments in II-VI and III-VI semiconductors and their applications in solar cells, J. Mater. Chem. 16 (2006) 1597–1602. https://doi.org/10.1039/B512182E
[20] Q. Wang, D.O. Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets, Chem. Rev. 112 (2012) 4124–4155. https://doi.org/10.1021/cr200434v
[21] R. Ma, T. Sasaki, Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality, Acc. Chem. Res. 48 (2014) 136–143. https://doi.org/10.1021/ar500311w
[22] J.W. Colson, A.R. Woll, A. Mukherjee, M.P. Levendorf, E.L. Spitler, V.B. Shields, M.G. Spencer, J. Park, W.R. Dichtel, Oriented 2D covalent organic framework thin films on single-layer graphene, Science. 332 (2011) 228–231. https://doi.org/10.1126/science.1202747
[23] S.L. Cai, W.G. Zhang, R.N. Zuckermann, Z.-T. Li, X. Zhao, Y. Liu, The organic flatland-recent advances in synthetic 2D organic layers, Adv. Mater. 27 (2015) 5762–5770. https://doi.org/10.1002/adma.201500124
[24] B. Li, H.-M. Wen, W. Zhou, J.Q. Xu, B. Chen, Porous metal-organic frameworks: promising materials for methane storage, Chem. 1 (2016) 557–580. https://doi.org/10.1016/j.chempr.2016.09.009
[25] C. Tan, X. Qi, X. Huang, J. Yang, B. Zheng, Z. An, R. Chen, J. Wei, B.Z. Tang, W. Huang, Single-layer transition metal dichalcogenide nanosheet-assisted assembly of aggregation-induced emission molecules to form organic nanosheets with enhanced fluorescence, Adv. Mater. 26 (2014) 1735–1739. https://doi.org/10.1002/adma.201304562
[26] Z. Fan, X. Huang, C. Tan, H. Zhang, Thin metal nanostructures: synthesis, properties and applications, Chem. Sci. 6 (2015) 95–111. https://doi.org/10.1039/C4SC02571G
[27] Z.H. Jaffari, S. Lam, J. Sin, H. Zeng, Boosting visible light photocatalytic and antibacterial performance by decoration of silver on magnetic spindle-like bismuth ferrite, Mater. Sci. Semicond. Process. 101 (2019) 103–115. https://doi.org/10.1016/j.mssp.2019.05.036
[28] J. Song, L. Xu, J. Li, J. Xue, Y. Dong, X. Li, H. Zeng, Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices, Adv. Mater. 28 (2016) 4861–4869. https://doi.org/10.1002/adma.201600225
[29] Y. Ebina, T. Sasaki, M. Watanabe, Study on exfoliation of layered perovskite-type niobates, Solid State Ionics. 151 (2002) 177–182. https://doi.org/10.1016/S0167-2738(02)00707-5
[30] M. Hargittai, Molecular structure of metal halides, Chem. Rev. 100 (2000) 2233–2302. https://doi.org/10.1021/cr970115u
[31] Q. Lu, M. Zhao, J. Chen, B. Chen, C. Tan, X. Zhang, Y. Huang, J. Yang, F. Cao, Y. Yu, others, In situ synthesis of metal sulfide nanoparticles based on 2D metal-organic framework nanosheets, Small. 12 (2016) 4669–4674. https://doi.org/10.1002/smll.201600976
[32] Y. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao, X. Liu, W. Yang, Metal-organic framework nanosheets as building blocks for molecular sieving membranes, Science. 346 (2014) 1356–1359. https://doi.org/10.1126/science.1254227
[33] M. Armand, L. Coic, P. Palvadeau, J. Rouxel, The M-A-X transition metal oxyhalides: A new class of lamellar cathode material, J. Power Sources. 3 (1978) 137–144. https://doi.org/10.1016/0378-7753(78)80012-3
[34] Y. Li, W. Shen, Morphology-dependent nanocatalysts: rod-shaped oxides, Chem. Soc. Rev. 43 (2014) 1543–1574. https://doi.org/10.1039/C3CS60296F
[35] T. Selvam, A. Inayat, W. Schwieger, Reactivity and applications of layered silicates and layered double hydroxides, Dalton. Trans. 43 (2014) 10365−10387. https://doi.org/10.1039/C4DT00573B
[36] C. Tan, H. Zhang, Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials, Nat. Commun. 6 (2015) 7873. https://doi.org/10.1038/ncomms8873
[37] M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials, Adv. Mater. 26 (2014) 992–1005. https://doi.org/10.1002/adma.201304138
[38] B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2 (2017) 16098. https://doi.org/10.1038/natrevmats.2016.98
[39] M. Khazaei, M. Arai, T. Sasaki, C.Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides, Adv. Funct. Mater. 23 (2013) 2185–2192. https://doi.org/10.1002/adfm.201202502
[40] Y. Gao, L. Wang, A. Zhou, Z. Li, J. Chen, H. Bala, Q. Hu, X. Cao, Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity, Mater. Lett. 150 (2015) 62–64. https://doi.org/10.1016/j.matlet.2015.02.135
[41] X. Zhang, J. Lei, D. Wu, X. Zhao, Y. Jing, Z. Zhou, A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation, J. Mater. Chem. A. 4 (2016) 4871–4876. https://doi.org/10.1039/C6TA00554C
[42] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23 (2011) 4248–4253. https://doi.org/10.1002/adma.201102306
[43] M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries, J. Am. Chem. Soc. 135 (2013) 15966–15969. https://doi.org/10.1021/ja405735d
[44] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides, ACS Nano. 6 (2012) 1322–1331. https://doi.org/10.1021/nn204153h
[45] J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.Q. Zhao, E.J. Moon, J. Pitock, J. Nanda, S.J. May, Y. Gogotsi, M.W. Barsoum, Synthesis and characterization of 2D molybdenum carbide (MXene), Adv. Funct. Mater. 26 (2016) 3118–3127. https://doi.org/10.1002/adfm.201505328
[46] Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler, M.R. Lukatskaya, Y. Gogotsi, T.F. Jaramillo, A. Vojvodic, Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution, ACS Energy Lett. 1 (2016) 589–594. https://doi.org/10.1021/acsenergylett.6b00247
[47] J. Yang, M. Naguib, M. Ghidiu, L.-M. Pan, J. Gu, J. Nanda, J. Halim, Y. Gogotsi, M.W. Barsoum, Two-Dimensional Nb-Based M4C3 Solid Solutions (MXenes), J. Am. Ceram. Soc. 99 (2016) 660–666. https://doi.org/10.1111/jace.13922
[48] B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes), ACS Nano. 9 (2015) 9507–9516. https://doi.org/10.1021/acsnano.5b03591
[49] J. Zhou, X. Zha, F.Y. Chen, Q. Ye, P. Eklund, S. Du, Q. Huang, A two-dimensional zirconium carbide by Selective etching of Al3C3 from nanolaminated Zr3Al3C5, Angew. Chemie Int. Ed. 55 (2016) 5008–5013. https://doi.org/10.1002/anie.201510432
[50] J. Zhou, X. Zha, X. Zhou, F. Chen, G. Gao, S. Wang, C. Shen, T. Chen, C. Zhi, P. Eklund, others, Synthesis and electrochemical properties of two-dimensional hafnium carbide, ACS Nano. 11 (2017) 3841–3850. https://doi.org/10.1021/acsnano.7b00030
[51] M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide‘clay’with high volumetric capacitance, Nature. 516 (2014) 78. https://doi.org/10.1038/nature13970
[52] A. Shahzad, K. Rasool, M. Nawaz, W. Miran, J. Jang, M. Moztahida, K.A. Mahmoud, D.S. Lee, Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine, Chem. Eng. J. 349 (2018) 748–755. https://doi.org/10.1016/j.cej.2018.05.148
[53] A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi, A. Sinitskii, Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes, Adv. Electron. Mater. 2 (2016) 1600255. https://doi.org/10.1002/aelm.201600255
[54] L. Wang, H. Zhang, B. Wang, C. Shen, C. Zhang, Q. Hu, A. Zhou, B. Liu, Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process, Electron. Mater. Lett. 12 (2016) 702–710. https://doi.org/10.1007/s13391-016-6088-z
[55] A. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu, L. Mi, L. Song, Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2, Mater. Des. 114 (2017) 161–166. https://doi.org/10.1016/j.matdes.2016.10.053
[56] P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota, P.L. Walsh, M. Zhao, V.B. Shenoy, M.W. Barsoum, Y. Gogotsi, Synthesis of two-dimensional titanium nitride Ti4N3 (MXene), Nanoscale. 8 (2016) 11385–11391. https://doi.org/10.1039/C6NR02253G
[57] C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, N. Kang, X.-L. Ma, H.-M. Cheng, W. Ren, Large-area high-quality 2D ultrathin Mo2C superconducting crystals, Nat. Mater. 14 (2015) 1135. https://doi.org/10.1038/nmat4374
[58] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science. 341 (2013) 1502–1505. https://doi.org/10.1126/science.1241488
[59] J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang, H. Huang, C. Liang, Y. Xia, J. Zhang, Y. Gan, others, Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors, ACS Nano. 11 (2017) 2459–2469. https://doi.org/10.1021/acsnano.6b07668
[60] O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, M.W. Barsoum, Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun. 4 (2013) 1716. https://doi.org/10.1038/ncomms2664
[61] J. Liu, Y. Liu, D. Xu, Y. Zhu, W. Peng, Y. Li, F. Zhang, X. Fan, Hierarchical “nanoroll” like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity, Appl. Catal. B Environ. 241 (2019) 89–94. https://doi.org/10.1016/j.apcatb.2018.08.083
[62] M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”, Dalt. Trans. 44 (2015) 9353–9358. https://doi.org/10.1039/C5DT01247C
[63] A. Vaughn, J. Ball, T. Heil, D.J. Morgan, G.I. Lampronti, G. Maršalkait, C.L. Raston, N.P. Power, S. Kellici, Selective calixarene-directed synthesis of MXene plates, crumpled sheets, spheres, and scrolls, Chem. Eur. J. 23 (2017) 8128–8133. https://doi.org/10.1002/chem.201701702
[64] I.R. Shein, A.L. Ivanovskii, Graphene-like nanocarbides and nanonitrides of d metals (MXenes): synthesis, properties and simulation, Micro Nano Lett. 8 (2013) 59–62. https://doi.org/10.1049/mnl.2012.0797
[65] N. Bovenzi, M. Breitkreiz, P. Baireuther, T.E. O’Brien, J. Tworzydło, Inanç Adagideli, C.W.J. Beenakker, Chirality blockade of Andreev reflection in a magnetic Weyl semimetal, Phys. Rev. B. 96 (2017) 35437. https://doi.org/10.1103/PhysRevB.96.035437
[66] G.R. Berdiyorov, Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene, A Lett. J. Explor. Front. Phys. 111 (2015) 67002. https://doi.org/10.1209/0295-5075/111/67002
[67] C. Chen, X. Ji, K. Xu, B. Zhang, L. Miao, J. Jiang, Prediction of T- and H-phase two-dimensional transition-metal carbides/nitrides and their semiconducting – metallic phase transition, ChemPhysChem. 18 (2017) 1897–1902. https://doi.org/10.1002/cphc.201700111
[68] G. Liu, W. Jin, N. Xu, Two-dimensional-material membranes: A new family of high-performance separation membranes, Angew. Chem. Int. Ed. 55 (2016) 13384-13397. https://doi.org/10.1002/anie.201600438
[69] J. Zhu, J. Hou, A. Uliana, Y. Zhang, M. Tian, B. Van Der Bruggen, The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes, J. Mater. Chem. A 6 (2018) 3773-3792. https://doi.org/10.1039/C7TA10814A
[70] X. Gao, Z.K. Li, J. Xue, Y. Qian, L.Z. Zhang, J. Caro, H. Wang, Titanium carbide Ti3C2Tx (MXene) enhanced PAN nanofiber membrane for air purification, J. Membr. Sci. 586 (2019) 162-169. https://doi.org/10.1016/j.memsci.2019.05.058
[71] R. Han, Y. Xie, X. Ma, Crosslinked P84 copolyimide/MXene mixed matrix membrane with excellent solvent resistance and perm selectivity, Chinese J. Chem. Eng. 27 (2019) 877-883. https://doi.org/10.1016/j.cjche.2018.10.005
[72] Z. Xu, G. Liu, H. Ye, W. Jin, Z. Cui, Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration, J. Membr. Sci. 563 (2018) 625-632. https://doi.org/10.1016/j.memsci.2018.05.044
[73] L. Ding, Y. Wei, L. Li, T. Zhang, H. Wang, J. Xue, L.-X. Ding, S. Wang, J. Caro, Y. Gogotsi, MXene molecular sieving membranes for highly efficient gas separation, Nat. Commun. 9 (2018) 155. https://doi.org/10.1038/s41467-017-02529-6
[74] B.-M. Jun, S. Kim, J. Heo, C.M. Park, N. Her, M. Jang, Y. Huang, J. Han, Y. Yoon, Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications, Nano Res. 12 (2019) 471-487. https://doi.org/10.1007/s12274-018-2225-3
[75] A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi, A. Sinitskii, Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers, Sci. Adv.s 4 (2018) eaat0491. https://doi.org/10.1126/sciadv.aat0491
[76] Y. Jin, Y. Fan, X. Meng, W. Zhang, B. Meng, N. Yang, S. Liu, Theoretical and experimental insights into the mechanism for gas separation through nanochannels in 2D laminar MXene membranes, Processes 7 (2019) 751. https://doi.org/10.3390/pr7100751
[77] L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro, H. Wang, A Two-dimensional lamellar membrane: MXene nanosheet stacks, Angew. Chem. Int. Ed. 56 (2017) 1825-1829. https://doi.org/10.1002/anie.201609306
[78] Y. Fan, L. Wei, X. Meng, W. Zhang, N. Yang, Y. Jin, X. Wang, M. Zhao, S. Liu, An unprecedented high-temperature-tolerance 2D laminar MXene membrane for ultrafast hydrogen sieving, J. Membr. Sci. 569 (2019) 117-123. https://doi.org/10.1016/j.memsci.2018.10.017
[79] J. Shen, G. Liu, Y. Ji, Q. Liu, L. Cheng, K. Guan, M. Zhang, G. Liu, J. Xiong, J. Yang, W. Jin, 2D MXene nanonofilms with tunable gas transport channels, Adv. Funct. Mater. 28 (2018) 1801511. https://doi.org/10.1002/adfm.201801511
[80] L. Wang, M.S.H. Boutilier, P.R. Kidambi, D. Jang, N.G. Hadjiconstantinou, R. Karnik, Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes, Nat. Nanotechnol. 12 (2017) 509-522. https://doi.org/10.1038/nnano.2017.72
[81] Y. Zhang, L. Wang, N. Zhang, Z. Zhou, Adsorptive environmental applications of MXene nanomaterials: A review, RSC Adv. 8 (2018) 19895-19905. https://doi.org/10.1039/C8RA03077D
[82] S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.Y. Cho, B. Anasori, C.K. Kim, Y.K. Choi, J. Kim, Y. Gogotsi, H.T. Jung, Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio, ACS Nano 12 (2018) 986-993. https://doi.org/10.1021/acsnano.7b07460
[83] X.F. Yu, Y.C. Li, J.B. Cheng, Z.B. Liu, Q.Z. Li, W.Z. Li, X. Yang, B. Xiao, Monolayer Ti2CO2: A promising candidate for NH3 sensor or capturer with high sensitivity and selectivity, ACS Appl. Mater. Inter. 7 (2015) 13707-13713. https://doi.org/10.1021/acsami.5b03737
[84] B. Wang, A. Zhou, F. Liu, J. Cao, L. Wang, Q. Hu, Carbon dioxide adsorption of two-dimensional carbide MXenes, J. Adv. Ceram. 7 (2018) 237-245. https://doi.org/10.1007/s40145-018-0275-3
[85] F. Liu, A. Zhou, J. Chen, H. Zhang, J. Cao, L. Wang, Q. Hu, Preparation and methane adsorption of two-dimensional carbide Ti2C, Adsorption 22 (2016) 915-922. https://doi.org/10.1007/s10450-016-9795-8
[86] F. Liu, A. Zhou, J. Chen, J. Jia, W. Zhou, L. Wang, Q. Hu, Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties, Appl. Surf. Sci. 416 (2017) 781-789. https://doi.org/10.1016/j.apsusc.2017.04.239
[87] Q. Hu, D. Sun, Q. Wu, H. Wang, L. Wang, B. Liu, A. Zhou, J. He, MXene: A new family of promising hydrogen storage medium, J. Phys. Chem. A 117 (2013) 14253-14260. https://doi.org/10.1021/jp409585v
[88] Q. Hu, H. Wang, Q. Wu, X. Ye, A. Zhou, D. Sun, L. Wang, B. Liu, J. He, Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations, Int. J. Hydrogen Energy 39 (2014) 10606-10612. https://doi.org/10.1016/j.ijhydene.2014.05.037
[89 A. Yadav, A. Dashora, N. Patel, A. Miotello, M. Press, D.C. Kothari, Study of 2D MXene Cr2C material for hydrogen storage using density functional theory, Appl. Surf. Sci. 389 (2016) 88-95. https://doi.org/10.1016/j.apsusc.2016.07.083
[90] Y. Li, Y. Guo, W. Chen, Z. Jiao, S. Ma, Reversible hydrogen storage behaviors of Ti2N MXenes predicted by first-principles calculations, J. Mater. Sci. 54 (2019) 493-505. https://doi.org/10.1007/s10853-018-2854-7
[91] B. Xiao, Y.C. Li, X.F. Yu, J.B. Cheng, MXenes: Reusable materials for NH3 sensor or capturer by controlling the charge injection, Sensor Actuat. B: Chem. 235 (2016) 103-109. https://doi.org/10.1016/j.snb.2016.05.062
[92] E. Lee, A.V. Mohammadi, Y.S. Yoon, M. Beidaghi, D.J. Kim, Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases, ACS Sensor. 4 (2019) 1603-1611. https://doi.org/10.1021/acssensors.9b00303
[93] J. Ren, M. Antonietti, T.-P. Fellinger, Efficient water splitting using a simple Ni/N/C paper electrocatalyst, Adv. Energy Mater. 5 (2015) 1401660. https://doi.org/10.1002/aenm.201401660
[94] T.Y. Ma, J.L. Cao, M. Jaroniec, S.Z. Qiao, Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution, Angew. Chem. Int. Ed. 55 (2016) 1138–1142. https://doi.org/10.1002/anie.201509758
[95] G.M. Huang, S.Z. Li, L.Z. Liu, L.F. Zhu, Q. Wang, Ti3C2 MXene-modified Bi2WO6 nanoplates for efficient photodegradation of volatile organic compounds. Appl. Surf. Sci. 503 (2020) 144183–144191. https://doi.org/10.1016/j.apsusc.2019.144183
[96] F. Wang, C. Yang, C. Duan, D. Xiao, Y. Tang, J. Zhu, An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor, J. Electrochem. Soc. 162 (2015) 16–21. https://doi.org/10.1149/2.0371501jes
[97] J. Zheng, J. Diao, Y. Jin, A. Ding, B. Wang, L. Wu, B. Weng, J. Chen, An inkjet printed Ti3C2-GO electrode for the electrochemical sensing of hydrogen peroxide, J. Electrochem. Soc. 165 (2018) 227-231. https://doi.org/10.1016/j.snb.2016.05.062
[98] L. Lorencova, T. Bertok, E. Dosekova, A. Holazova, D. Paprckova, A. Vikartovska, V. Sasinkova, J. Filip, P. Kasak, M. Jerigova, D. Velic, K.A. Mahmoud, J. Tkac, Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing, Electrochim. Acta. 235 (2017) 471–479. https://doi.org/10.1016/j.electacta.2017.03.073
[99] L. Lorencová, T. Bertok, J. Filip, M. Jerigová, D. Velic, P. Kasák, K.A. Mahmoud, J. Tkac, Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications, Sens. Actuators B Chem. 263 (2018) 360–368. https://doi.org/10.1016/j.snb.2018.02.124
[100] F. Wang, C. Yang, M. Duan, Y. Tang, J. Zhu, TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances, Biosens. Bioelectron. 74 (2015) 1022–1028. https://doi.org/10.1016/j.bios.2015.08.004
[101] Y. Lei, W. Zhao, Y. Zhang, Q. Jiang, J. He, A.J. Baeumner, O.S. Wolfbeis, Z.L. Wang, K.N. Salama, H.N. Alshareef, A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis, Small. 15 (2019) 1901190. https://doi.org/10.1002/smll.201901190
[102] J. Liu, X. Jiang, R. Zhang, Y. Zhang, L. Wu, W. Lu, J. Li, MXene-enabled electrochemical microfluidic biosensor: applications toward multicomponent continuous monitoring in whole blood, Adv. Funct. Mater. 29 (2018) 1807326. https://doi.org/10.1002/adfm.201807326
[103] S.S. Shankar, R.M. Shereema, R.B. Rakhi, Electrochemical determination of adrenaline using MXene/graphite composite paste electrodes, ACS Appl. Mater. Interfaces. 10 (2018) 43343–43351. https://doi.org/10.1021/acsami.8b11741
[104] B. Xu, M. Zhu, W. Zhang, X. Zhen, Z. Pei, Q. Xue, C. Zhi, Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity, Adv. Mater. 28 (2016) 3333–3339. https://doi.org/10.1002/adma.201504657
[105] L. Zhou, X. Zhang, J. Gao, Y. Jiang, X. Zhang, J. Gao, Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection, Biochem. Eng. J. 128 (2017) 243–249. https://doi.org/10.1016/j.bej.2017.10.008
[106] Y. Jiang, X. Zhang, L. Pei, S. Yue, L. Ma, L. Zhou, Z. Huang, Silver nanoparticles modified two-dimensional transition metal carbides as nanocarriers to fabricate acetycholinesterase-based electrochemical biosensor, Chem. Eng. J. 339 (2018) 547–556. https://doi.org/10.1016/j.cej.2018.01.111
[107] D. Wu, M. Wu, J. Yang, H. Zhang, K. Xie, C. Lin, A. Yu, J. Yu, L. Fu, Delaminated Ti3C2Tx (MXene) for electrochemical carbendazim sensing, Mater. Lett. 236 (2019) 412–415. https://doi.org/10.1016/j.matlet.2018.10.150
[108] D. Song, X. Jiang, Y. Li, X. Lu, S. Luan, Y. Wang, Y. Li, F. Gao, Metal−organic frameworks-derived MnO2/Mn3O4 microcuboids with hierarchically ordered nanosheets and Ti3C2 MXene/ Au NPs composites for electrochemical pesticide detection, J. Hazard. Mater. 373 (2019) 367–376. https://doi.org/10.1016/j.jhazmat.2019.03.083
[109] Y. Fang, X. Yang, T. Chen, G. Xu, M. Liu, J. Liu, Y. Xu, Two-dimensional titanium carbide (MXene)-based solid-state electrochemiluminescent sensor for label-free single-nucleotide mismatch discrimination in human urine, Sensors Actuators B. Chem. 263 (2018) 400–407. https://doi.org/10.1016/j.snb.2018.02.102
[110] H. Liu, C. Duan, C. Yang, W. Shen, F. Wang, Z. Zhu, A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2, Sens. Actuators B Chem., 218 (2015) 60−66. https://doi.org/10.1016/j.snb.2015.04.090
[111] R.B. Rakhi, P. Nayak, C. Xia, H.N. Alshareef, Novel amperometric glucose biosensor based on MXene nanocomposite, Sci. Rep. 6 (2016) 36422. https://doi.org/10.1038/srep36422
[112] G. Liu, W. Jin, N. Xu, Two-dimensional-material membranes: A new family of high-performance separation membranes, Angew. Chem. Int. Ed. 55 (2016) 13384-13397. https://doi.org/10.1002/anie.201600438
[113] J. Zhu, J. Hou, A. Uliana, Y. Zhang, M. Tian, B. Van Der Bruggen, The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes, J. Mater. Chem. A 6 (2018) 3773-3792. https://doi.org/10.1039/C7TA10814A
[114] X. Gao, Z.K. Li, J. Xue, Y. Qian, L.Z. Zhang, J. Caro, H. Wang, Titanium carbide Ti3C2Tx (MXene) enhanced PAN nanofiber membrane for air purification, J. Membr. Sci. 586 (2019) 162-169. https://doi.org/10.1016/j.memsci.2019.05.058
[115] R. Han, Y. Xie, X. Ma, Crosslinked P84 copolyimide/MXene mixed matrix membrane with excellent solvent resistance and perm selectivity, Chinese J. Chem. Eng. 27 (2019) 877-883. https://doi.org/10.1016/j.cjche.2018.10.005
[116] Z. Xu, G. Liu, H. Ye, W. Jin, Z. Cui, Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration, J. Membr. Sci. 563 (2018) 625-632. https://doi.org/10.1016/j.memsci.2018.05.044
[117] L. Ding, Y. Wei, L. Li, T. Zhang, H. Wang, J. Xue, L.-X. Ding, S. Wang, J. Caro, Y. Gogotsi, MXene molecular sieving membranes for highly efficient gas separation, Nat. Commun. 9 (2018) 155. https://doi.org/10.1038/s41467-017-02529-6
[118] B.M. Jun, S. Kim, J. Heo, C.M. Park, N. Her, M. Jang, Y. Huang, J. Han, Y. Yoon, Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications, Nano Res. 12 (2019) 471-487. https://doi.org/10.1007/s12274-018-2225-3
[119] A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi, A. Sinitskii, Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers, Sci. Adv. 4 (2018) eaat0491. https://doi.org/10.1126/sciadv.aat0491
[120] Y. Jin, Y. Fan, X. Meng, W. Zhang, B. Meng, N. Yang, S. Liu, Theoretical and experimental insights into the mechanism for gas separation through nanochannels in 2D laminar MXene membranes, Processes 7 (2019) 751. https://doi.org/10.3390/pr7100751
[121] L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro, H. Wang, A Two-dimensional lamellar membrane: MXene nanosheet stacks, Angew. Chem. Int. Ed. 56 (2017) 1825-1829. https://doi.org/10.1002/anie.201609306
[122] Y. Fan, L. Wei, X. Meng, W. Zhang, N. Yang, Y. Jin, X. Wang, M. Zhao, S. Liu, An unprecedented high-temperature-tolerance 2D laminar MXene membrane for ultrafast hydrogen sieving, J. Membr. Sci. 569 (2019) 117-123. https://doi.org/10.1016/j.memsci.2018.10.017
[123] M. Khazaei, A. Ranjbar, M. Ghorbani-asl, M. Arai, T. Sasaki, Y. Liang, S. Yunoki, Nearly free electron states in MXenes, Phys. Rev. B. 93 (2016) 205125. https://doi.org/10.1103/PhysRevB.93.205125
[124] I. Persson, J. Halim, H. Lind, T.W. Hansen, J.B. Wagner, L.-ake Näslund, V. Darakchieva, J. Palisaitis, J. Rosen, P.O.A. Persson, 2D transition metal carbides (MXenes) for carbon capture, Adv. Mater. 31 (2018) 1805472. https://doi.org/10.1002/adma.201805472
[125] A. Junkaew, R. Arroyave, Enhancement of the selectivity of MXenes (M2C, M = Ti, V, Nb, Mo) via oxygen-functionalization: promising materials for gas sensing and-separation, Phys. Chem. Chem. Phys. 20 (2018) 6073–6082. https://doi.org/10.1039/C7CP08622A
[126] S. Ma, D. Yuan, Z. Jiao, T. Wang, X. Dai, Monolayer Sc2CO2: A promising candidate as SO2 gas sensor or capturer, J. Phys. Chem. C. 121 (2017) 24077–24084. https://doi.org/10.1021/acs.jpcc.7b07921
[127] Q. Xue, H. Zhang, M. Zhu, Z. Pei, H. Li, Z. Wang, Y. Huang, Photoluminescent Ti3C2 Mxene quantum dots for multicolor cellular imaging, Adv. Mater. 29 (2017) 1604847. https://doi.org/10.1002/adma.201604847
[128] B. Xu, M. Zhu, W. Zhang, X. Zhen, Z. Pei, Q. Xue, C. Zhi, Ultrathin Mxene-micropattern-based field-effect transistor for probing neural activity, Adv. Mater. 28 (2016) 3333–3339. https://doi.org/10.1002/adma.201504657