2D Materials for Gas and Biosensing Applications


2D Materials for Gas and Biosensing Applications

Maneesh Kumar Singh, Narendra Pal, Sarika Pal, Y.K. Prajapati, J.P. Saini

This chapter discusses the unique and novel properties of 2D materials useful for toxic gas and biosensing applications. The work presented in this chapter mainly focuses on latest research done on 2D materials related to toxic gas and biosensing for surface plasmon resonance based sensors. Here, we proposed a surface plasmon resonance sensor utilizing P3OT thin films which can sense different concentration of NO2 gas. The performance of proposed design is evaluated by calculating sensitivity, detection accuracy and quality factor, with and without use of silicon layer. Sensitivity of proposed sensor increases by using silicon.

Two Dimensional (2D) Materials, Surface Plasmon Resonance (SPR), Gas Sensor, Biosensor, Sensitivity (S)

Published online 12/20/2020, 38 pages

Citation: Maneesh Kumar Singh, Narendra Pal, Sarika Pal, Y.K. Prajapati, J.P. Saini, 2D Materials for Gas and Biosensing Applications, Materials Research Foundations, Vol. 92, pp 69-106, 2021

DOI: https://doi.org/10.21741/9781644901175-3

Part of the book on Toxic Gas Sensors and Biosensors

[1] A. Bolotsky, D. Butler, C. Dong, K. Gerace, N. R. Glavin, C. Muratore, J. A. Robinson,A. Ebrahimi, Two-Dimensional materials in biosensing and healthcare: From in vitro diagnostics to optogenetics and beyond, ACS Nano 13 (2019) 9781-9810. https://doi.org/10.1021/acsnano.9b03632
[2] G. Maduraiveeran, M. Sasidharan, V. Ganesan, Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications, Biosen. and Bioelectron., 103 (2018) 113-129. https://doi.org/ 10.1016/j.bios.2017.12.031
[3] B. D. Malhotra & S. Srivastava, M. A. Ali, C. Singh, Nanomaterial-based biosensors for food toxin detection, Appl. Biochem. Biotechnol. 174 (2014) 880–896. https://doi.org/10.1007/s12010-014-0993-0
[4] S. Yang, C. Jiang, S. H. Wei, Gas sensing in 2D materials, Applied Physics Reviews. 4 (2017) 021304. https://doi.org/10.1063/1.4983310
[5] K. Shehzad, T. Shi, A. Qadir, X. Wan, H. Guo, A. Ali, W. Xuan, H. Xu, Z. Gu, X. Peng, J. Xie, L. Sun, Q. He, Z. Xu, C.o Gao, Y. Rim, Y. Dan, T. Hasan, P. Tan, E. Li, W. Yin, Z. Cheng, B. Yu, Y. Xu, J. Luo,X. Duan, Designing an efficient multimode environmental sensor based on graphene–silicon heterojunction, Adv. Mater. Technol. 2 (2017) 1600262. https://doi.org/10.1002/admt.201600262
[6] R. Kurapati, K. Kostarelos, M. Prato, A. Bianco, Biomedical uses for 2D materials beyond graphene: Current advances and challenges ahead, Adv. Mater. 28 (2016) 6052−6074. https://doi.org/10.1002/adma.201506306
[7] X. Gan, H. Zhao, X. Quan, Two-Dimensional MoS2: A Promising building block for biosensors, Biosens. Bioelectron. 89 (2017) 56−71. https://doi.org/ 10.1016/j.bios.2016.03.042
[8] K. Shavanova, Y. Bakakina, I. Burkova, I. Shtepliuk, R. Viter, A. Ubelis, V. Beni, N. Starodub, R. Yakimova, V. Khranovskyy, Application of 2D non-graphene materials and 2D oxide nanostructures for biosensing technology, Sensors. 16 (2016) 223. https://doi.org/10.3390/s16020223
[9] M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials, Chem. Rev. 113 (2013) 3766−3798. https://doi.org/10.1021/cr300263a
[10] M. Holzinger, A. L. Goff, S. Cosnier, Nanomaterials for biosensing applications: A review, Front. Chem. 2 (2014) 63. https://doi.org/10.3389/fchem.2014.00063
[11] S. Varghese, K. Singh, S. Swaminathan, S. Varghese, V. Mittal, Two-dimensional materials for sensing: graphene and beyond, Electronics. 4 (2015) 651−687. https://doi.org/10.3390/electronics4030651
[12] Z. Lin, B. R. Carvalho, E. Kahn, R. Lv, R. Rao, H. Terrones, M. A. Pimenta, M. Terrones, Defect engineering of two-dimensional transition metal dichalcogenides, 2D Mater. 3 (2016) 022002. https://doi.org/10.1088/2053-1583/3/2/022002
[13] S. Zhang, R. Geryak, J. Geldmeier, S. Kim, V. V. Tsukruk, Synthesis, assembly, and applications of hybrid nanostructures for biosensing, Chem Rev. 117 (2017) 12942−13038. https://doi.org/10.1021/acs.chemrev.7b00088
[14] N. Kamaruddin, A. A. Bakar, N. Mobarak, M. S. Zan, N. Arsad, Binding affinity of a highly sensitive Au/Ag/Au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions, Sensors (Basel). 17 (2017) 2277. https://doi.org/ 10.3390/s17102277
[15] M. Shorie, V. Kumar, H. Kaur, K. Singh, V.K. Tomer, P. Sabherwal, Plasmonic DNA hotspots made from tungsten disulfide nanosheets and gold nanoparticles for ultrasensitive aptamer-based SERS detection of myoglobin, Mikrochim. Acta. 185 (2018) 158. https://doi.org/10.1007/s00604-018-2705-x
[16] A. A. Ebrahimi, K. Zhang, C. Dong, D. Butler, A. Bolotsky, Y. Cheng, J.A. Robinson, FeSx-graphene heterostructures: Nanofabrication-compatible catalysts for ultra-sensitive electrochemical detection of hydrogen peroxide, Sensors Actuators B. Chem. 285 (2019) 631–638. https://doi.org/10.1016/j.snb.2018.12.033
[17] Z. Wang, W. Zhu, Y. Qiu, X. Yi, A. V. D. Bussche, A. Kane, H. Gao, K. Koski, R. Hurt, Biological and environmental interactions of emerging two-dimensional nanomaterials, Chem. Soc. Rev. 45 (2016) 1750−1780. https://doi.org/ 10.1039/c5cs00914f
[18] V. C. Sanchez, A. Jachak, R. H. Hurt, A. B. Kane, Biological interactions of graphene-family nanomaterials: An interdisciplinary review, Chem Res Toxicol. 25 (2012) 15−34. https://doi.org/10.1021/tx200339h
[19] A. M. Pinto, I. C. Gonçalves, F. D. Magalhães, Graphene-based materials biocompatibility: A review, Colloids Surf. B. 111 (2013) 188−202. https://doi.org/ 10.1016/j.colsurfb.2013.05.022
[20] X. Guo, N. Mei, Assessment of the toxic potential of graphene family nanomaterials, J. Food Drug Anal. 22 (2014) 105−115. https://doi.org/ 10.1016/j.jfda.2014.01.009
[21] E. L. K. Chng, M. Pumera, Toxicity of graphene related materials and transition metal dichalcogenides, RSC Adv. 5 (2015) 3074−3080. https://doi.org/10.1039/C4RA12624F
[22] L. M. Guiney, X. Wang, T. Xia, A. E. Nel, M. C. Hersam, Assessing and mitigating the hazard potential of two-dimensional materials, ACS Nano. 12 (2018) 6360−6377. https://doi.org/10.1021/acsnano.8b02491
[23] A. K. Mishra, A. K. Mishra, R. K. Verma, Graphene and beyond graphene MoS2: a new window in surface-plasmon-resonance based fiber optic sensing. The Journal of Physical Chemistry C, 120 (2016) 2893–2900. https://doi.org/ 10.1021/acs.jpcc.5b08955
[24] J. B. Maurya, Y. K. Prajapati, R. Tripathi, Effect of molybdenum disulfide layer on surface plasmon resonance biosensor for the detection of bacteria, Silicon. 10 (2018) 245–256. https://doi.org/10.1007/s12633-016-9431-y
[25] P. Bridgman, Two new modifications of phosphorus, J. Am. Chem. Soc. 36 (1914) 1344-1363 https://doi.org/10.1021/ja02184a002
[26] F. Xia, H. Wang, Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat Commun. 5 (2014) 4458. https://doi.org/10.1038/ncomms5458
[27] Y. Cai, G. Zhang, Y. W. Zhang, Layer-dependent band alignment and work function of few-layer phosphorene, Sci. Rep. 4 (2014) 6677–6682. https://doi.org/ 10.1038/srep06677
[28] S. Y. Cho, Y. Lee, H. J. Koh, H. Jung, J. S. Kim, H. W. Yoo, J. Kim, H. T. Jung, Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene, Adv. Mater. 28 (2016) 7020–7028. https://doi.org/ 10.1002/adma.201601167
[29] L. Kou, Phosphorene: fabrication, properties, and applications, J. Phys. Chem. Lett. 6 (2015) 2794-2805. https://doi.org/10.1021/acs.jpclett.5b01094
[30] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P. D. Ye, Phosphorene, An unexplored 2D semiconductor with a high hole mobility, ACS Nano. 8 (2014) 4033–4041. https://doi.org/10.1021/nn501226z
[31] A. C.Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. N.Acharya, S. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. Zandbergen, J. J. Palacios, H. S. J. V. D. Jant Isolation and characterization of few-layer black phosphorus, 2D Mater. 1 (2014) 025001. https://doi.org/10.1088/2053-1583/1/2/025001
[32] J. Miao, L. Cai, S. Zhang, J. Nah, J. Yeom, C. Wang, Air-stable humidity sensor using few-layer black phosphorus, ACS Appl. Mater. Interfaces. 9 (2017) 10019–10026. https://doi.org/10.1021/acsami.7b01833
[33] Y. Xu, Y. S. Ang, L. Wu, L. K. Ang, High sensitivity of surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: A theoretical study, Nanomaterial (Basel). 9 (2019) 165. https://doi.org/10.3390/nano9020165
[34] L. Wu, Q. You, Y. Shan, S. Gan, Y. Zhao, X. Dai, Y. Xiang, Few-layer Ti3C2Tx MXene: A promising surface plasmon resonance biosensing material to enhance the sensitivity, Sens. Actuators B Chem. 277 (2018) 210–215. https://doi.org/ 10.1016/j.snb.2018.08.154
[35] K. Hantanasirisakul, M. Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C. E. Ren, M. W. Barsoum, Y. Gogotsi, Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties, Adv. Electron. Mater. 2 (2016) 1600050. https://doi.org/10.1002/aelm.201600050
[36] S. J. Kim, H. J. Koh, C. E. Ren, O. Kwon, K. Maleski, S. Y. Cho, B. Anasori, C. K. Kim, Y. K. Choi, J. Kim, Y. Gogotsi, H. T. Jung, Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio, ACS Nano. 12 (2018) 986-993. https://doi.org/10.1021/acsnano.7b07460
[37] J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang, G. Yue, L. Hu, N. Sun, Y. Wang, L. Y. S. Lee, Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption, Coord. Chem. Rev. 352 (2017) 306–327. https://doi.org/10.1016/j.ccr.2017.09.012
[38] Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology 7 (2012) 699–712. doi.org/10.1038/nnano.2012.193
[39] Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X. Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, K. T. Yong, Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor, Sci. Rep. 6 (2016) 28190. https://doi.org/10.1038/srep28190
[40] L. Yan, F. Zhao, S. Li, Z. Hu, Y. Zhao, Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale. 3 (2011) 362−382. https://doi.org/10.1039/c0nr00647e
[41] W. Z. Teo, E. L. K. Chng, Z. Sofer, M. Pumera, Cytotoxicity of exfoliated transition-metal dichalcogenides (MoS2, WS2, and WSe2) is lower than that of graphene and its analogues, Chem. Eur. J. 20 (2014) 9627−9632. https://doi.org/ 10.1002/chem.201402680
[42] G. Yang, C. Zhu, D. Du, J. Zhu, Y. Lin, Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine, Nanoscale. 7 (2015) 14217-14231. https://doi.org/10.1039/C5NR03398E
[43] K. K. Zadeh, J. Z. Ou, T. Daeneke, A. Mitchell, T. Sasaki, M.S. Fuhrer, Two dimensional and layered transition metal oxides, Applied Materials Today. 5 (2016) 73-89. https://doi.org/10.1016/j.apmt.2016.09.012
[44] R. M. Kong, L. Ding, Z. Wang, J. You, F. Qu, A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen, Anal. Bioanal. Chem. 407 (2015) 369–377. https://doi.org/10.1007/s00216-014-8267-9
[45] R. W. Wood, On a remarkable case of uneven distribution of lighting a diffraction grating spectrum, Phil. Magm. 4 (1902) 396 – 402. https://doi.org/10.1080/14786440209462857
[46] E. Kretschmann, H. Raether, Radiative decay of non-radiative surface plasmons excited by light, Z. Naturforsch. 23A (1968) 2135 – 2136. https://doi.org/10.1515/zna-1968-1247
[47] J. Homola, S. S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review, Sensors and Actuators B. 54 (1999) 3–15. https://doi.org/10.1016/j.proeng.2010.11.071
[48] B. H. Ong, X. Yuan, S. C. Tijn, J. Zhang, H. M. Ng , Optimized layer thickness for maximum evanescent field enhancement of a bimetallic layer surface plasmon resonance biosensor, Sens. Actuator B Chem. 114 (2006) 1028–1034. https://doi.org/ 10.1016/j.snb.2005.07.064
[49] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Berlin (1988).
[50] S. Pal, Y. K. Prajapati, J. P. Saini, V. Singh, Sensitivity enhancement of metamaterial based surface plasmon resonance biosensor for near infrared, Optica Applicata. 46 (2016) 131–143, 2016. https://doi.org/10.5277/oa160112
[51] Y. K. Prajapati, S. Pal, J. P. Saini, Effect of metamaterial and silicon layers on performance of surface plasmon resonance biosensor in infrared range, Silicon. 10 (2017) 1451–1460. https://doi.org/ 10.1007/s12633-017-9625-y
[52] S. Pal, Y. K. Prajapati, J. P. Saini, V. Singh, Resolution enhancement of optical surface plasmon resonance sensor using metamaterial, Photonic sensors. 5 (2015) 330-338. https://doi.org/10.1007/s13320-015-0269-5
[53] J. A. Crump, Progress in typhoid fever epidemiology, Clinical infectious diseases. 68 (2019) S4–S9. https://doi.org/10.1093/cid/ciy846
[54] Nilima, A. Kamath, K. Shetty, B. Unnikrishnan, S. Kaushik, S. N. Rai Prevalence, patterns, and predictors of diarrhea: a spatial-temporal comprehensive evaluation in India, BMC public health. 18 (2018) 1288–1288. https://doi.org/ 10.1186/s12889-018-6213-z
[55] T. Shi, A. Denouel, A.K. Tietjen et al., Global and regional burden of hospital admissions for pneumonia in older adults: A systematic review and meta-analysis, The Journal of infectious diseases. (2019) https://doi.org/10.1093/infdis/jiz053
[56] S. M. Pradhan, A. P. Rao, S. M. Pattanshetty, A. R. Nilima, Knowledge and perception regarding childhood pneumonia among mothers of under-five children in rural areas of Udupi Taluk, Karnataka: A cross-sectional study, Indian Journal of Health Sciences. 9 (2016) 35. https://doi.org/ 10.4103/2349-5006.183690
[57] S. Palanisamy, S. Ku, S. M. Chen, Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite, Microchim. Acta., 180 (2013) 1037−1042. https://doi.org/ 10.1007/s00604-013-1028-1
[58] J. Lavanya, N. Gomathi, High-sensitivity ascorbic acid sensor using graphene sheet/graphene nanoribbon hybrid material as an enhanced electrochemical sensing platform, Talanta. 144 (2015) 655−661. https://doi.org/ 10.1016/j.talanta.2015.07.018
[59] Z. H. . Sheng, X. Q. . Zheng, J. Y. Xu, W. J. Bao, F. B. Wang, X. H. Xia, Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric Acid, Biosens. Bioelectron. 34 (2012) 125−131. https://doi.org/10.1016/j.bios.2012.01.030
[60] L. Wu, H. S. Chu, W. S. Koh, E. P. Li, Highly sensitive graphene biosensors based on surface plasmon resonance, Opt. Express. 18 (2010) 14395–14400. https://doi.org/10.1364/OE.18.014395
[61] R. Verma, B. D. Gupta, R. Jha, Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers, Sensors and Actuators B. 160 (2011) 623– 631. https://doi.org/10.1016/j.snb.2011.08.039
[62] S. H. Choi, Y. L. Kim, K. M. Byun, Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors, Opt. Express. 19 (2011) 458–466. https://doi.org/10.1361/OE.19.000458
[63] P. K. Maharana, R. Jha, Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance, Sensors and Actuators B. 169 (2012) 161– 166. https://doi.org/10.1016/j.snb.2012.04.051
[64] J. A. Kim, T. Hwang, S. R. Dugasani, R. Amin, R. Kulkarni, S. H. Park and T. Kim, Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications, Sensors and Actuators B. 187 (2013) 426-433. https://doi.org/ 10.1016/j.snb.2013.01.040
[65] R. Galatus, l. Szolga, E. Voiculescu, Sensitivity enhancement of a D-shape SPR-pof low-cost sensor using graphene, International Journal of Education and Research. 1 (2013).
[66] P. K. Maharana, R. Jha, S. Palei, Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared, Sensors and Actuators B. 190 (2014) 494–501. https://doi.org/10.1016/j.snb.2013.08.089
[67] A. Verma, A. Prakash, R. Tripathi, Performance analysis of graphene based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria, Optical and Quantum Electronics. 47 (2015) 1197-1205. https://doi.org/10.1007/s11082-014-9976-1
[68] A. Verma, A. Prakash, R. Tripathi, Sensitivity enhancement of surface plasmon resonance biosensors using graphene and air gap, Optics Communications. 357 (2015) 106- 112. https://doi.org/10.1016/j.optcom.2015.08.076
[69] S. Pal, A. Verma, Y. K. Prajapati, J. P. Saini., Influence of black phosphorous on performance of surface plasmon resonance biosensor, Optical and Quantum Electronics. 49 (2017) 403. https://doi.org/ 10.1007/s11082-017-1237-7
[70] J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, J. Lammertyn, Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions, Biosensors and Bioelectronics. 25 (2009) 864-869. https://doi.org/10.1016/j.bios.2009.08.045
[71] S. Pal, A. Verma, S. Raikwar, Y. K. Prajapati, J. P. Saini, Detection of DNA hybridization using black phosphorus-graphene coated surface plasmon resonance Sensor, Applied Physics A. 124 (2018) 394. https://doi.org/10.1007/s00339-018-1804-1
[72] B. Meshginqalam, J. Barvestani, Aluminum and phosphorene based ultrasensitive SPR biosensor. Optical Materials. 86 (2018) 119–125. https://doi.org/ 10.1016/j.optmat.2018.10.003
[73] S. Zenga, S. Hub, J. Xia, T. Anderson, X. Q. Dinh, X. M. Meng, P. Coquet, K. T. Yong, Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors, Sensors and Actuators B. 207 (2015) 801–810. https://doi.org/ 10.1016/j.snb.2014.10.124
[74] N. A. Jamil, P. S. Menon, F. A. Said, K. A. Tarumaraja, G. S. Mei, B. Y. Majlis, Graphene based surface plasmon resonance urea biosensor using Kretschmann configuration, IEEE Regional Symposium on Micro and Nanoelectronics (RSM) Batu Ferringhi. (2017) 112-115. https://doi.org/ 10.1109/RSM41573.2017
[75] L Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, D. Fan, Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor, Sensors and Actuators B: Chemical. 249 (2017) 542-548. https://doi.org/ 10.1016/j.snb.2017.04.110
[76] S. Pal, A. Verma, Y. K. Prajapati, J. P. Saini, Sensitivity enhancement using silicon-black phosphorus-TDMC coated surface plasmon resonance biosensor, IET Optoelectronics. 13 (2019) 196-201. https://doi.org/10.1049/iet-opt.2018.5023
[77] B. Meshginqalam, J. Barvestani, Performance Enhancement of SPR biosensor based on phosphorene and transition metal dichalcogenides for sensing DNA hybridization, IEEE Sensors Journal. 18 (2018) 7537-7543. https://doi.org/ 10.1109/JSEN.2018.2861829
[78] A. Srivastava, A. Verma, R. Das, Y. K. Prajapati, A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus, Optik. 203 (2019) 163430. https://doi.org/10.1016/j.ijleo.2019.163430
[79] N. A. S.Omar, Y. W. Fen, S. Saleviter, W. Daniyal, N. Anas, N. S. M. Ramdzan, M. D. A. Roshidi, Development of a graphene-based surface plasmon esonance optical sensor chip for potential biomedical application, Materials (Basel, Switzerland). 12 (2019) 1928. https://doi.org/10.3390/ma12121928
[80] G. Kaur, A. Paliwal, M. Tomar, V. Gupta, Detection of Neisseria meningitidis using surface plasmon resonance based DNA biosensor, Biosensors and Bioelectronics. 78 (2016) 106–110. https://doi.org/10.1016/j.bios.2015.11.025
[81] S. Pal, Y. K. Prajapati, J. P. Saini, Influence of graphene’s chemical potential on SPR biosensor using ZnO for DNA hybridization, Opt. Rev., 27 (1) (2019) 57-64. https://doi.org/10.1007/s10043-019-00564-w.
[82] Y. J. Lei, Sensors for toxic gas detection, Platinum Metals Rev. 37 (1993) 146-150.
[83] A. Paliwal, A. Sharma, M. Tomar, V. Gupta, Carbon monoxide (CO) optical gas sensor based on ZnO thin films, Sensors and Actuators B: Chemical. 250 (2017) 679-685. https://doi.org/10.1016/j.snb.2017.05.064
[84] E. D. Gaspera, A. Martucci, Sol-Gel thin films for plasmonic gas sensors, Sensors. 15 (2015) 16910-16928. https://doi.org/10.3390/s150716910
[85] H. D. Wiemhöfer, W. Göpel, Fundamentals and principles of potentiometric gas sensors based upon solid electrolytes, Sensors and Actuators B: Chemical. 4 (1991) 365-372. https://doi.org/10.1016/0925-4005(91)80137-9
[86] C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: Sensitivity and influencing factors, Sensors (Basel). 10 (2010) 2088–2106. https://doi.org/ 10.3390/s100302088
[87] W. P. Jakubik, Surface acoustic wave-based gas sensors, Thin Solid Films. 520 (2011) 986-993. https://doi.org/10.1016/j.tsf.2011.04.174
[88] J. Yanga, L. Zhoua, J. Huanga, C. Taob, X. Lic, W. Chen, Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition, Sensors and Actuators B. 207 (2015) 477–480. https://doi.org/10.1016/j.snb.2014.10.013
[89] W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, Y. Zhu, Graphene-based long-period fiber grating surface plasmon resonance sensor for high-sensitivity gas sensing, Sensors. 17 (2017) 2. https://doi.org/10.3390/s17010002
[90] T. Srivastava, A. Purkayastha, R. Jha, Graphene based surface plasmon resonance gas sensor for terahertz, Opt Quant Electron. 48 (2016) 334. https://doi.org/10.1007/s11082-016-0462-9
[91] A. Purkayastha, T. Srivastava, R. Jha, Ultrasensitive THz-plasmonics gaseous sensor using doped graphene, Sens. Actuators B Chem. 227 (2016) 291–295. https://doi.org/10.1016/j.snb.2015.12.055
[92] P. K. Maharanaa, R. Jha, P. Padhy, On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared, Sensors and Actuators B. 207 (2015), 117-122. https://doi.org/10.1016/j.snb.2014.10.006
[93] J. B. Maurya, S. Raikawar, Y. K. Prajapati, J. P. Saini, A Silicon-black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas, Optik. 160 (2018) 428-433. https://doi.org/10.1016/j.ijleo.2018.02.002
[94] L. Wu, Q. Wang, B. Ruan, J. Zhu, Q. You, X. Dai, Y. Xiang, High performance lossy-mode resonance sensor based on few-layer black phosphorus, The Journal of Physical Chemistry C. 122 (2018) 7368-7373. https://doi.org/ 10.1021/acs.jpcc.7b12549
[95] Y. Singh S. K. Raghuwanshi, Sensitivity enhancement of the surface plasmon resonance gas sensor with black phosphorus, IEEE sensor letters. 3 (2019) 1-4. https://doi.org/10.1109/LSENS.2019.2954052
[96] H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, Y. Luo, Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer, Photonics Research. 6 (2018) 485-491. https://doi.org/ 10.1364/PRJ.6.000485
[97] G. A. Asres, J. J. Baldoví, A. Dombovari, T. Järvinen, G. S. Lorite, M. Mohl, A. Shchukarev, A. P. Paz, L. Xian, J. P. Mikkola, A. L. Spetz, H. Jantunen, Á. Rubio, K. Kordas, Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials, Nano Research. 11 (2018) 4215–4224. https://doi.org/10.1007/s12274-018-2009-9
[98] A. Sharma, A. Pandey, Blue Phosphorene/MoS2 heterostructure based SPR sensor with enhanced Sensitivity, IEEE Photonics Technology Letters. PP (99) 1-1 (2018) https://doi.org/10.1109/LPT.2018.2803747
[99] E. Lee, A. V. Mohammadi, B. C. Prorok, Y. S. Yoon, M. Beidaghi, D. J. Kim, Room temperature gas-sensing of two-dimensional titanium carbide (MXene), ACS Applied Materials & Interfaces. 9 (2017) 37184-37190. https://doi.org/ 10.1021/acsami.7b11055
[100] L. Lorencová, T. Bertok, E. Dosekova, A. Holazová, D. Paprckova, A. Vikartovská, V. Sasinková, J. Filip, P. Kasák, M. Jerigová, Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing, Electrochim. Acta. 235 (2017) 471–479. https://doi.org/ 10.1016/j.electacta.2017.03.073
[101] S. K. Mishra, D. Kumari, B. D. Gupta, Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline, Sensors and Actuators, B: Chemical. 171–172 (2012) 976–983. https://doi.org/10.1016/j.snb.2012.06.013
[102] R. Tabassum, S. K. Mishra, B. D. Gupta, Surface plasmon resonance-based fiber optic hydrogen sulphide gas sensor utilizing Cu–ZnO thin films, Phys. Chem. Chem. Phys. 15 (2013) 11 868–11 874. https://doi.org/10.1039/C3CP51525G
[103] A. Paliwal, A. Sharma, M. Tomar, V. Gupta, Carbon monoxide (CO) optical gas sensor based on ZnO thin films. Sensors and Actuators, B: Chemical. 250 (2017) 679–685. https://doi.org/ 10.1016/j.snb.2017.05.064
[104] T. S. Kim, Y. B. Kim, K. S. Yoo, G. S. Sung, H. J. Jung, Sensing characteristics of dc reactive sputtered WO3 thin films as an NOx gas sensor, Sensors and Actuators B. 62 (2000) 102-108. https://doi.org/10.1016/S0925-4005(99)00360-3
[105] E. LeBlanc, L. P. Camby, G. Thomas, R. Gibert, M. Primet, P. Gelin, NOx adsorption onto dehydroxylated or hydroxylated tin dioxide surface. Application to SnO2-based sensors, Sensors and Actuators B. 62 (2000) 67. https://doi.org/ 10.1016/S0925-4005(99)00376-7
[106] C. Cantalini, W. Wlodarsky, H. T. Sun, M. Z. Atashbar, M. Passacantando, S. Santucci, NO2 response of In2O3 thin film gas sensors prepared by sol–gel and vacuum thermal evaporation techniques, Sensors and Actuators B. 65 (2000) 101-104. https://doi.org/10.1016/S0925-4005(99)00439-6.
[107] D. D. Lee, D. S. Lee, Environmental gas sensors, IEEE Sensors Journal. 1 (2001) 214. https://doi.org/10.1109/JSEN.2001.954834
[108] G. Harsanyi, Polymer films in sensor applications: a review of present uses and future possibilities, Sensor Review. 20 (2000) 98-105. https://doi.org/ 10.1108/02602280010319169
[109] D. Li, Y. Jiang, Z. Wu, X. Chen, Y. Li, Self-assembly of polyaniline ultrathin films based on doping-induced deposition effect and applications for chemical sensors, Sensors and Actuators B. 66 (2000) 125-127. https://doi.org/ 10.1016/S0925-4005(00)00315-4.
[110] T. A. Chen, X. Wu, R. D. Rieke, Regiocontrolled synthesis of Poly(3-alkylthiophenes) mediated by rieke Zinc: Their characterization and solid-state properties, Journal of American Chemical Society. 117 (1995) 233-244. https://doi.org/ 10.1021/ja00106a027
[111] J. C. Solı´s, E. D. L. Rosa, E. P. Cabrera, Absorption and refractive index changes of poly (3-octylthiophene) under NO2 gas exposure, Optical Materials. 29 (2006) 167–172. https://doi.org/10.1016/j.optmat.2005.07.009