Nitrogen Dioxide Sensing Technologies


Nitrogen Dioxide Sensing Technologies

Shabbir Hussain, Khalida Nazir, Ata-ur-Rehman, Syed Mustansar Abbas

The harmful impacts of nitrogen dioxide (NO2) include acid rain, respiratory diseases, allergy and photochemical smog. These also causes throat, eye and nose problems, cough, nausea and tiredness in extremely low concentrations (<10 ppm). So, detection and the sensing of NO2 gas is considered as one of the most important detecting techniques. Numerous electronic sensors, semiconductor nanomaterials, carbon nanotubes, graphene, activated carbon and mixed metal oxides have been investigated in order to detect and sense NO2. Several varieties of gas sensors including electrochemical, catalytic combustion, semiconductor and solid electrolyte gas sensors, have been industrialized.
Nitrogen Dioxide, Sensors, Wet Oxidation, Carbon Nanotubes, Graphene

Published online 12/20/2020, 38 pages

Citation: Shabbir Hussain, Khalida Nazir, Ata-ur-Rehman, Syed Mustansar Abbas, Nitrogen Dioxide Sensing Technologies, Materials Research Foundations, Vol. 92, pp 1-38, 2021


Part of the book on Toxic Gas Sensors and Biosensors

[1] C.K. Wilkins, P.A. Clausen, P. Wolkoff, S.T. Larsen, M. Hammer, K. Larsen, V. Hansen, G.D. Nielsen, Formation of strong airway irritants in mixtures of isoprene/ozone and isoprene/ozone/nitrogen dioxide, Environ. Health Perspect. 109 (2001) 937-941.
[2] R. Binions, A. Naik, Metal oxide semiconductor gas sensors in environmental monitoring, in Semiconductor gas sensors. 2013, Elsevier. pp. 433-466.
[3] C. Zhang, Y. Luo, J. Xu, M. Debliquy, Room temperature conductive type metal oxide semiconductor gas sensors for NO2 detection, Sens. Actuators, A. 289 (2019) 118-133.
[4] S.C. Anenberg, J. Miller, R. Minjares, L. Du, D.K. Henze, F. Lacey, C.S. Malley, L. Emberson, V. Franco, Z. Klimont, Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets, Nature. 545 (2017) 467-471.
[5] G.J. Velders, G.P. Geilenkirchen, R. de Lange, Higher than expected NOx emission from trucks may affect attainability of NO2 limit values in the netherlands, Atmos. Environ. 45 (2011) 3025-3033.
[6] M.A.H. Khan, M.V. Rao, Q. Li, Recent advances in electrochemical sensors for detecting toxic gases: NO2, SO2 and H2S, Sensors. 19 (2019) 905.
[7] A. Afzal, N. Cioffi, L. Sabbatini, L. Torsi, NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives, Sens. Actuators, B. 171 (2012) 25-42.
[8] M.A. Bauer, M.J. Utell, P.E. Morrow, D.M. Speers, F.R. Gibb, Inhalation of 0.30 ppm nitrogen dioxide potentiates exercise-induced bronchospasm in asthmatics, Am.Rev. Respir. Dis. 134 (1986) 1203-1208.
[9] R. Ehrlich, Effect of nitrogen dioxide on resistance to respiratory infection, Bacter.Rev. 30 (1966) 604-614
[10] P. Barth, B. Muller, U. Wagner, A. Bittinger, Quantitative analysis of parenchymal and vascular alterations in NO2-induced lung injury in rats, Eur. Respir. J. 8 (1995) 1115-1121.
[11] M. Wegmann, A. Fehrenbach, S. Heimann, H. Fehrenbach, H. Renz, H. Garn, U. Herz, NO2-induced airway inflammation is associated with progressive airflow limitation and development of emphysema-like lesions in C57bl/6 mice, Exp. Toxicol. Pathol. 56 (2005) 341-350.
[12] A. Ponka, M. Virtanen, Chronic bronchitis, emphysema, and low-level air pollution in helsinki, 1987-1989, Environ. Res. 65 (1994) 207-217.
[13] F.Y. Niyat, I. Sabzevar, M.H.S. Abadi, The review of semiconductor gas sensor for NOx detecting, Turkish Online J. Des. Art Commun. 6 (2016) 898-937.
[14] J.A. Bernstein, N. Alexis, C. Barnes, I.L. Bernstein, A. Nel, D. Peden, D. Diaz-Sanchez, S.M. Tarlo, P.B. Williams, Health effects of air pollution, J. Aller.Clinic. Immun. 114 (2004) 1116-1123.
[15] L. Calderón-Garcidueñas, B. Azzarelli, H. Acuna, R. Garcia, T.M. Gambling, N. Osnaya, S. Monroy, M. Del Rosario Tizapantzi, J.L. Carson, A. Villarreal-Calderon, Air pollution and brain damage, Toxicol. Pathol. 30 (2002) 373-389.
[16] N.M. Elsayed, Toxicity of nitrogen dioxide: An introduction, Toxicol. 89 (1994) 161-174.
[17] S. Genc, Z. Zadeoglulari, S.H. Fuss, K. Genc, The adverse effects of air pollution on the nervous system, J. Toxicol. 2012 (2012) 1-23. 10.1155/2012/782462
[18] J. Brunet, V.P. Garcia, A. Pauly, C. Varenne, B. Lauron, An optimised gas sensor microsystem for accurate and real-time measurement of nitrogen dioxide at ppb level, Sens. Actuators, B. 134 (2008) 632-639.
[19] K. Victorin, Review of the genotoxicity of nitrogen oxides, Mut. Res/Rev Gen. Toxicol. 317 (1994) 43-55.
[20] W. Yan, Y. Yun, T. Ku, G. Li, N. Sang, NO2 inhalation promotes alzheimer’s disease-like progression: Cyclooxygenase-2-derived prostaglandin E-2 modulation and monoacylglycerol lipase inhibition-targeted medication, Sci. Rep. 6 (2016) 22429.
[21] R.J. Wild, W.P. Dubé, K.C. Aikin, S.J. Eilerman, J.A. Neuman, J. Peischl, T.B. Ryerson, S.S. Brown, On-road measurements of vehicle NO2/NOx emission ratios in denver, colorado, USA, Atmos. Environ. 148 (2017) 182-189.
[22] H.E. Stokinger, Evaluation of the hazards of ozone and oxides of nitrogen-factors modifying acute toxicity, J. Air Pollut. Cont. Assoc. 8 (1958) 129-137.
[23] D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices, Nano Lett. 4 (2004) 1919-1924.
[24] R. Atkinson, Atmospheric chemistry of VOCs and NOx, Atmos. Environ. 34 (2000) 2063-2101.
[25] T.-Y. Wong, Smog induces oxidative stress and microbiota disruption, J. Food Drug Anal. 25 (2017) 235-244.
[26] W. Iqbal, Y. Bo, Z. Xu, M. Rauf, M. Waqas, Y. Gong, J, Zhang, Y, Mao,Controllable synthesis of graphitic carbon nitride nanomaterials for solar energy conversion and environmental remediation: The road travelled and the way forward, Catal. Sci. Technol. 8 (2018) 4576-4599.
[27] W. Yuan, L. Huang, Q. Zhou, G. Shi, Ultrasensitive and selective nitrogen dioxide sensor based on self-assembled graphene/polymer composite nanofibers, ACS Appl. Mater. Interfaces. 6 (2014) 17003-17008.
[28] H.S. Koren, Associations between criteria air pollutants and asthma, Environ. Health Perspect. 103 (1995) 235-242.
[29] J.Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A.F. Chrimes, W. Wlodarski, Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing, ACS Nano. 9 (2015) 10313-10323.
[30] J. Brunet, M. Dubois, A. Pauly, L. Spinelle, A. Ndiaye, K. Guérin, C. Varenne, B. Lauron, An innovative gas sensor system designed from a sensitive organic semiconductor downstream a nanocarbonaceous chemical filter for the selective detection of NO2 in an environmental context: Part I: Development of a nanocarbon filter for the removal of ozone, Sens. Actuators, B. 173 (2012) 659-667.
[31] S. Vilcekova, Indoor nitrogen oxides, in Advanced air pollution. 2011, IntechOpen.
[32] G. Busca, L. Lietti, G. Ramis, F. Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review, Appl. Catal., B. 18 (1998) 1-36.
[33] A. Elia, C. Di Franco, A. Afzal, N. Cioffi, L. Torsi, Advanced NOx sensors for mechatronic applications, in Advances in mechatronics. 2011, IntechOpen.
[34] H. Nakamura, I. Haga, K. Murakami, Trend of exhaust emission standards for diesel-powered vehicles, RTRI Report (Railway Technical Research Institute). 20 (2006) 53-56.
[35] İ.A. Reşitoğlu, NOx pollutants from diesel vehicles and trends in the control technologies, in Diesel engines. 2018, IntechOpen.
[36] J.W. Erisman, J. Galloway, S. Seitzinger, A. Bleeker, K. Butterbach-Bahl, Reactive nitrogen in the environment and its effect on climate change, Curr. Opin. Environ. Sustain. 3 (2011) 281-290.
[37] L. Cui, F. Han, W. Dai, E.P. Murray, Influence of microstructure on the sensing behavior of NOx exhaust gas sensors, J. Electrochem. Soc. 161 (2014) B34-B38.
[38] Y. Huang, Y.S. Yam, C.K. Lee, B. Organ, J.L. Zhou, N.C. Surawski, E.F. Chan, G. Hong, Tackling nitric oxide emissions from dominant diesel vehicle models using on-road remote sensing technology, Environ. Pollut. 243 (2018) 1177-1185.
[39] A. Font, G.W. Fuller, Did policies to abate atmospheric emissions from traffic have a positive effect in london?, Environ. Pollut. 218 (2016) 463-474.
[40] M. Akiyama, J. Tamaki, N. Miura, N. Yamazoe, Tungsten oxide-based semiconductor sensor highly sensitive to NO and NO2, Chem. Lett. 20 (1991) 1611-1614.
[41] N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors, Catal. Surv. Asia. 7 (2003) 63-75.
[42] L. Teoh, I. Hung, J. Shieh, W. Lai, M.-H. Hon, High sensitivity semiconductor NO2 gas sensor based on mesoporous WO3 thin film, Electrochem.Solid-State Lett. 6 (2003) G108-G111.
[43] H. Kurosawa, Y. Yan, N. Miura, N. Yamazoe, Stabilized zirconia-based NOx sensor operative at high temperature, Solid State Ionics. 79 (1995) 338-343.
[44] L. Wang, Y. Wang, L. Dai, Y. Li, J. Zhu, H. Zhou, High temperature amperometric NO2 sensor based on nano-structured Gd0.2Sr0.8Fe3-δ prepared by impregnating method, J. Alloys Compd. 583 (2014) 361-365.
[45] S. Fischer, R. Pohle, B. Farber, R. Proch, J. Kaniuk, M. Fleischer, R. Moos, Method for detection of NOx in exhaust gases by pulsed discharge measurements using standard zirconia-based lambda sensors, Sens. Actuators, B. 147 (2010) 780-785.
[46] M. Jeguirim, M. Belhachemi, L. Limousy, S. Bennici, Adsorption/reduction of nitrogen dioxide on activated carbons: Textural properties versus surface chemistry–a review, Chem. Eng. J. 347 (2018) 493-504.
[47] M.J. Kim, K.H. Kim, X. Yang, Y. Yu, Y.S. Lee, Improvement in no gas-sensing properties using heterojunctions between polyaniline and nitrogen on activated carbon fibers, J. Ind. Eng. Chem. 76 (2019) 181-187.
[48] J. Lee, N. Choi, H. Lee, J. Kim, S. Lim, J. Kwon, S. Lee, S. Moon, J. Jong, D. Yoo, Low power consumption solid electrochemical-type micro CO2 gas sensor, Sens. Actuators, B. 248 (2017) 957-960.
[49] A. Bandivadekar, K. Bodek, L. Cheah, C. Evans, T. Groode, J. Heywood, E. Kasseris, M. Kromer, M. Weiss, Reducing transportation’s petroleum consumption and GHG emissions, (2008).
[50] F. Menil, V. Coillard, C. Lucat, Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines, Sens. Actuators, B. 67 (2000) 1-23.
[51] N. Miura, G. Lu, N. Yamazoe, High-temperature potentiometric/amperometric nox sensors combining stabilized zirconia with mixed-metal oxide electrode, Sens. Actuators, B. 52 (1998) 169-178.
[52] J.W. Fergus, Materials for high temperature electrochemical NOx gas sensors, Sens. Actuators, B. 121 (2007) 652-663. 10.1016/j.snb.2006.04.077
[53] J.C. Yang, P.K. Dutta, High temperature amperometric total NOx sensors with platinum-loaded zeolite y electrodes, Sens. Actuators, B. 123 (2007) 929-936.
[54] J. Yoo, F.M. Van Assche, E.D. Wachsman, Temperature-programmed reaction and desorption of the sensor elements of a WO3∕YSZ∕ Pt potentiometric sensor, J. Electrochem. Soc. 153 (2006) H115-H121.
[55] S.A. Kharitonov, P.J. Barnes, Exhaled markers of pulmonary disease, Am. J. Respir. Crit. Care Med. 163 (2001) 1693-1722.
[56] T. Malinski, S. Mesaros, P. Tomboulian, Nitric oxide measurement using electrochemical methods, in Methods in enzymology. 1996, Elsevier. pp. 58-69.
[57] A. Fontijn, A.J. Sabadell, R.J. Ronco, Homogeneous chemiluminescent measurement of nitric oxide with ozone. Implications for continuous selective monitoring of gaseous air pollutants, Anal. Chem. 42 (1970) 575-579.
[58] P.J. Kipping, P. Jeffery, Detection of nitric oxide by gas-chromatography, Nature. 200 (1963) 1314.
[59] R.M. Palmer, D.D. Rees, D.S. Ashton, S. Moncada, L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation, Biochem. Biophys. Res. Commun. 153 (1988) 1251-1256.
[60] A.A. Kosterev, A.L. Malinovsky, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser, Appl. Opt. 40 (2001) 5522-5529.
[61] T. Johnson, Vehicular emissions in review, SAE Int. J. Engines. 6 (2013) 699-715.
[62] A. Gurlo, N. Barsan, M. Ivanovskaya, U. Weimar, W. Göpel, In2O3 and MoO3–In2O3 thin film semiconductor sensors: Interaction with NO2 and O3, Sens. Actuators, B. 47 (1998) 92-99.
[63] W.F. Bosch, S.A. Dynan, M.D. Shull, Semiconductor processing equipment having improved particle performance. 2003, Google Patents
[64] N. Barsan, M. Schweizer-Berberich, W. Göpel, Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: A status report, J. Anal. Chem. 365 (1999) 287-304.
[65] N. Yamazoe, J. Fuchigami, M. Kishikawa, T. Seiyama, Interactions of tin oxide surface with O2, H2O and H2, Surf. Sci. 86 (1979) 335-344.
[66] G. Ko, H.Y. Kim, J. Ahn, Y.M. Park, K.Y. Lee, J. Kim, Graphene-based nitrogen dioxide gas sensors, Curr. Appl. Phys. 10 (2010) 1002-1004.
[67] S. Kannan, H. Steinebach, L. Rieth, F. Solzbacher, Selectivity, stability and repeatability of In2O3 thin films towards NOx at high temperatures (≥ 500° c), Sens. Actuators, B. 148 (2010) 126-134.
[68] C. Cantalini, L. Valentini, I. Armentano, L. Lozzi, J. Kenny, S. Santucci, Sensitivity to NO2 and cross-sensitivity analysis to NH3, ethanol and humidity of carbon nanotubes thin film prepared by PECVD, Sens. Actuators, B. 95 (2003) 195-202.
[69] S. Peng, K. Cho, P. Qi, H. Dai, Ab initio study of CNT NO2 gas sensor, Chem. Phys. Lett. 387 (2004) 271-276.
[70] I. Sayago, H. Santos, M. Horrillo, M. Aleixandre, M. Fernández, E. Terrado, I. Tacchini, R. Aroz, W. Maser, A. Benito, Carbon nanotube networks as gas sensors for NO2 detection, Talanta. 77 (2008) 758-764.
[71] M. Qazi, T. Vogt, G. Koley, Trace gas detection using nanostructured graphite layers, Appl. Phys. Lett. 91 (2007) 233101.
[72] M.W. Nomani, R. Shishir, M. Qazi, D. Diwan, V. Shields, M. Spencer, G.S. Tompa, N.M. Sbrockey, G. Koley, Highly sensitive and selective detection of NO2 using epitaxial graphene on 6h-SiC, Sens.Actuators, B. 150 (2010) 301-307.
[73] N. Iqbal, A. Afzal, N. Cioffi, L. Sabbatini, L. Torsi, NOx sensing one-and two-dimensional carbon nanostructures and nanohybrids: Progress and perspectives, Sens. Actuators, B. 181 (2013) 9-21.
[74] Y.T. Ong, A.L. Ahmad, S.H.S. Zein, S.H. Tan, A review on carbon nanotubes in an environmental protection and green engineering perspective, Braz. J. Chem. Eng. 27 (2010) 227-242.
[75] M. Penza, D. Suriano, G. Cassano, V. Pfister, M. Alvisi, R. Rossi. Portable chemical sensor-system for urban air-pollution monitoring. in Proceedings of the 14th International Meeting on Chemical Sensors, Nuremberg, Germany. 2012. Citeseer.
[76] A. Vaseashta, M. Vaclavikova, S. Vaseashta, G. Gallios, P. Roy, O. Pummakarnchana, Nanostructures in environmental pollution detection, monitoring, and remediation, Sci. Technol. Adv. Mater. 8 (2007) 47.
[77] M. Penza, R. Rossi, M. Alvisi, E. Serra, Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications, Nanotechnol. 21 (2010) 105501
[78] M.N. Hamidon, Z. Yunusa, P. Wang, Sensing materials for surface acoustic wave chemical sensors, in Progresses in chemical sensor. 2016, InTech. pp. 161-179.
[79] A. Kaushik, R. Khan, V. Gupta, B. Malhotra, S. Ahmad, S. Singh, Hybrid cross-linked polyaniline-WO3 nanocomposite thin film for NOx gas sensing, J. Nanosci. Nanotechnol. 9 (2009) 1792-1796.
[80] J. Song, Y. Lin, K. Kan, J. Wang, S. Liu, L. Li, K. Shi, Enhanced NOx gas sensing performance based on indium-doped Co(OH)2 nanowire–graphene nanohybrids, Nano. 10 (2015) 1550079.
[81] G. Eranna, Metal oxide nanostructures as gas sensing devices. 2016: CRC press.
[82] E. Llobet, Gas sensors using carbon nanomaterials: A review, Sens. Actuators, B. 179 (2013) 32-45.
[83] N.A. Travlou, M. Seredych, E. Rodríguez-Castellón, T.J. Bandosz, Activated carbon-based gas sensors: Effects of surface features on the sensing mechanism, J. Mater. Chem. A. 3 (2015) 3821-3831.
[84] R.H. Baughman, A.A. Zakhidov, W.A. De Heer, Carbon nanotubes–the route toward applications, Science. 297 (2002) 787-792.
[85] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors, Science. 287 (2000) 622-625.
[86] D. Kumar, P. Chaturvedi, P. Saho, P. Jha, A. Chouksey, M. Lal, J. Rawat, R. Tandon, P. Chaudhury, Effect of single wall carbon nanotube networks on gas sensor response and detection limit, Sens. Actuators, B. 240 (2017) 1134-1140.
[87] P.G. Su, C.T. Lee, C.Y. Chou, K.H. Cheng, Y.S. Chuang, Fabrication of flexible NO2 sensors by layer-by-layer self-assembly of multi-walled carbon nanotubes and their gas sensing properties, Sens. Actuators B. 139 (2009) 488-493.
[88] C.P. Fonseca, D.A. Almeida, M.R. Baldan, N.G. Ferreira, NO2 gas sensing using a CF/PANI composite as electrode, ECS Trans. 41 (2012) 21-28.
[89] Y.J. Yun, W.G. Hong, N.J. Choi, B.H. Kim, Y. Jun, H.-K. Lee, Ultrasensitive and highly selective graphene-based single yarn for use in wearable gas sensor, Sci. Rep. 5 (2015) 10904.
[90] W. Zhao, C. Yang, D. Zou, Z. Sun, G. Ji, Possibility of gas sensor based on C20 molecular devices, Phys. Lett A. 381 (2017) 1825-1830.
[91] W.J. Liou, H.M. Lin, Nanohybrid TiO2/carbon black sensor for NO2 gas, China Part. 5 (2007) 225-229.
[92] H. Dai, Carbon nanotubes: Opportunities and challenges, Surf. Sci. 500 (2002) 218-241. 10.1016/S0039-6028(01)01558-8
[93] J. Suehiro, H. Imakiire, S.I. Hidaka, W. Ding, G. Zhou, K. Imasaka, M. Hara, Schottky-type response of carbon nanotube NO2 gas sensor fabricated onto aluminum electrodes by dielectrophoresis, Sens. Actuators, B. 114 (2006) 943-949. 10.1016/j.snb.2005.08.043
[94] S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids, Sens. Actuators,B. 202 (2014) 272-278.
[95] F.H. Saboor, T. Ueda, K. Kamada, T. Hyodo, Y. Mortazavi, A.A. Khodadadi, Y. Shimizu, Enhanced NO2 gas sensing performance of bare and Pd-loaded SnO2 thick film sensors under UV-light irradiation at room temperature, Sens. Actuators, B. 223 (2016) 429-439.
[96] J.J. Adjizian, R. Leghrib, A.A. Koos, I. Suarez-Martinez, A. Crossley, P. Wagner, N. Grobert, E. Llobet, C.P. Ewels, Boron-and nitrogen-doped multi-wall carbon nanotubes for gas detection, Carbon. 66 (2014) 662-673.
[97] J.L. Figueiredo, Functionalization of porous carbons for catalytic applications, J. Mater. Chem. A. 1 (2013) 9351-9364.
[98] J.g. Liu, M. Ueda, High refractive index polymers: Fundamental research and practical applications, J. Mater. Chem. 19 (2009) 8907-8919.
[99] R.-J. Xie, N. Hirosaki, T. Suehiro, F.-F. Xu, M. Mitomo, A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light-emitting diodes, Chem. Mater. 18 (2006) 5578-5583.
[100] K.A. Nielsen, W.S. Cho, G.H. Sarova, B.M. Petersen, A.D. Bond, J. Becher, F. Jensen, D.M. Guldi, J.L. Sessler, J.O. Jeppesen, Supramolecular receptor design: Anion‐triggered binding of C60, Angew. Chem. Int. Ed. 45 (2006) 6848-6853.
[101] R. Saito, M. Fujita, G. Dresselhaus, U.M. Dresselhaus, Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 60 (1992) 2204-2206.
[102] B. Seger, P.V. Kamat, Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells, J. Phys. Chem. C, 113 (2009) 7990-7995.
[103] E.J. Biddinger, U.S.J Ozkan, Role of graphitic edge plane exposure in carbon nanostructures for oxygen reduction reaction, J. Phys. Chem. C, 114 (2010) 15306-15314.
[104] S.W. Lee, W. Lee, Y. Hong, G. Lee, D.S. Yoon, Recent advances in carbon material-based NO2 gas sensors, Sens. Actuators, B. 255 (2018) 1788-1804.
[105] T. Becker, S. Mühlberger, C.B.V. Braunmühl, G. Müller, T. Ziemann, K. Hechtenberg, Air pollution monitoring using tin-oxide-based microreactor systems, Sens. Actuators, B. 69 (2000) 108-119.
[106] M. Labaki, M. Issa, S. Smeekens, S. Heylen, C. Kirschhock, K. Villani, M. Jeguirim, D. Habermacher, J. Brilhac, J. Martens, Modeling of NOx adsorption–desorption–reduction cycles on a ruthenium loaded Na–Y zeolite, Appl. Catal., B. 97 (2010) 13-20.
[107] I. Ghouma, M. Jeguirim, U. Sager, L. Limousy, S. Bennici, E. Däuber, C. Asbach, R. Ligotski, F. Schmidt, A.J.E. Ouederni, The potential of activated carbon made of agro-industrial residues in NOx immissions abatement, Energies, 10 (2017) 1508.
[108] I. Ghouma, M. Jeguirim, L. Limousy, N. Bader, A. Ouederni, S.J.M. Bennici, Factors influencing NO2 adsorption/reduction on microporous activated carbon: Poros. Surf. Chem. 11 (2018) 622.
[109] M. Jeguirim, M. Belhachemi, L. Limousy, S.J.C.E.J. Bennici, Adsorption/reduction of nitrogen dioxide on activated carbons: Textural properties versus surface chemistry–a review, Chem. Eng. J. 347 (2018) 493-504.
[110] U. Sager, W. Schmidt, F.J.A. Schmidt, Catalytic reduction of nitrogen oxides via nanoscopic oxide catalysts within activated carbons at room temperature, Adsorption19 (2013) 1027-1033.
[111] X. Zhu, L. Zhang, M. Zhang, C.J.F. Ma, Effect of N-doping on NO2 adsorption and reduction over activated carbon: An experimental and computational study, Fuel. 258 (2019) 116109.
[112] M. Jeguirim, V. Tschamber, J. Brilhac, P. Ehrburger, Interaction mechanism of NO2 with carbon black: Effect of surface oxygen complexes, J. Anal. Appl. Pyrol. 72 (2004) 171-181.
[113] E.M. Suuberg, H. Teng, J.M. Calo. Studies on the kinetics and mechanism of the reaction of no with carbon. in Symposium (International) on combustion. 1991. Elsevier.
[114] P.A. Lowe, M. Perlsweig. Recent experience for scr systems at coal-fired utility boilers. in Proceedings of the American Power Conference;(United States). 1990
[115] H. Teng, E.M. Suuberg, Chemisorption of nitric oxide on char. 1. Reversible nitric oxide sorption, J. Phys. Chem. 97 (1993) 478-483.
[116] M. Belhachemi, M. Jeguirim, L. Limousy, F. Addoun, Comparison of NO2 removal using date pits activated carbon and modified commercialized activated carbon via different preparation methods: Effect of porosity and surface chemistry, Chem. Eng. J. 253 (2014) 121-129.
[117] C.L. Mangun, K.R. Benak, J. Economy, K.L. Foster, Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia, Carbon. 39 (2001) 1809-1820.
[118] F. Kapteijn, J. Moulijn, S. Matzner, H.P. Boehm, The development of nitrogen functionality in model chars during gasification in CO2 and O2, Carbon. 37 (1999) 1143-1150.
[119] R. Pietrzak, XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal, Fuel. 88 (2009) 1871-1877.
[120] N.M. Nor, L.C. Lau, K.T. Lee, A.R. Mohamed, Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control-a review, J. Environ. Chem. Eng. 1 (2013) 658-666.
[121] K. Noll, V. Gounaris, W. Hou, Adsorption technology for air and water pollution control, CRC Press. (1992) pp. 21-22.
[122] R. Pietrzak, T.J. Bandosz, Activated carbons modified with sewage sludge derived phase and their application in the process of NO2 removal, Carbon. 45 (2007) 2537-2546.
[123] U. Sager, E. Däuber, D. Bathen, C. Asbach, F. Schmidt, J.C. Tseng, A. Pommerin, C. Weidenthaler, W. Schmidt, Influence of the degree of infiltration of modified activated carbons with CuO/ZnO on the separation of NO2 at ambient temperatures, Adsorpt. Sci. Technol. 34 (2016) 307-319.
[124] R. Pietrzak, Sawdust pellets from coniferous species as adsorbents for NO2 removal, Bioresour. Technol. 101 (2010) 907-913.
[125] P. Nowicki, R. Pietrzak, H. Wachowska, Sorption properties of active carbons obtained from walnut shells by chemical and physical activation, Catal. Today. 150 (2010) 107-114.
[126] P. Nowicki, H. Wachowska, R. Pietrzak, Active carbons prepared by chemical activation of plum stones and their application in removal of NO2, J. Hazard. Mater. 181 (2010) 1088-1094. 10.1016/j.jhazmat.2010.05.12
[127] S. Bashkova, T.J. Bandosz, The effects of urea modification and heat treatment on the process of NO2 removal by wood-based activated carbon, J. Colloid Interface Sci. 333 (2009) 97-103.
[128] P. Nowicki, P. Skibiszewska, R. Pietrzak, NO2 removal on adsorbents prepared from coffee industry waste materials, Adsorption. 19 (2013) 521-528.
[129] K. Pathakoti, M. Manubolu, H.M. Hwang, Nanotechnology applications for environmental industry, in Handbook of nanomaterials for industrial applications. 2018, Elsevier. pp. 894-907.
[130] G. Korotcenkov, Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches, Sens. Actuators, B. 107 (2005) 209-232.
[131] W.T. Moon, K.S. Lee, Y.K. Jun, H.S. Kim, S.H. Hong, Orientation dependence of gas sensing properties of TiO2 films, Sens. Actuators, B. 115 (2006) 123-127.
[132] J. Chang, H. Kuo, I. Leu, M. Hon, The effects of thickness and operation temperature on ZnO: Al thin film co gas sensor, Sens. Actuators, B. 84 (2002) 258-264.
[133] G. Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors, Mater. Sci. Eng., R. 61 (2008) 1-39.
[134] A. Afaah, Z. Khusaimi, M. Rusop. A review on zinc oxide nanostructures: Doping and gas sensing. in Advanced Materials Research. 2013. Trans Tech Publ.
[135] M. Arafat, B. Dinan, S.A. Akbar, A. Haseeb, Gas sensors based on one dimensional nanostructured metal-oxides: A review, Sensors. 12 (2012) 7207-7258.
[136] C. Wang, X. Chu, M. Wu, Detection of H2S down to ppb levels at room temperature using sensors based on zno nanorods, Sens. Actuators, B. 113 (2006) 320-323.
[137] Y. Min, H.L. Tuller, S. Palzer, J. Wöllenstein, H. Böttner, Gas response of reactively sputtered ZnO films on si-based micro-array, Sens. Actuators, B. 93 (2003) 435-441.
[138] Z. Yang, L.M. Li, Q. Wan, Q.H. Liu, T.H. Wang, High-performance ethanol sensing based on an aligned assembly of ZnO nanorods, Sens. Actuators, B. 135 (2008) 57-60.
[139] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers, Science. 292 (2001) 1897-1899.
[140] Q. Wan, Q. Li, Y. Chen, T.-H. Wang, X. He, J. Li, C. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett. 84 (2004) 3654-3656.
[141] L.T.N. Le Viet Thong, N.V.H. Loan, Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures, Sens. Actuators, B. 150 (2010) 112-119.
[142] E. Oh, H.Y. Choi, S.H. Jung, S. Cho, J.C. Kim, K.H. Lee, S.W. Kang, J. Kim, J.Y. Yun, S.H. Jeong, High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation, Sens. Actuators, B. 141 (2009) 239-243.
[143] O. Lupan, G. Chai, L. Chow, Novel hydrogen gas sensor based on single ZnO nanorod, Microelectron. Eng. 85 (2008) 2220-2225.
[144] Q. Qi, T. Zhang, L. Liu, X. Zheng, Synthesis and toluene sensing properties of SnO2 nanofibers, Sens. Actuators, B. 137 (2009) 471-475.
[145] X. Lu, L. Yin, Porous indium oxide nanorods: Synthesis, characterization and gas sensing properties, J. Mater. Sci.Technol. 27 (2011) 680-684.
[146] A. Hu, C. Cheng, X. Li, J. Jiang, R. Ding, J. Zhu, F. Wu, J. Liu, X. Huang, Two novel hierarchical homogeneous nanoarchitectures of TiO2 nanorods branched and P25-coated TiO2 nanotube arrays and their photocurrent performances, Nanoscale Res. Lett. 6 (2011) 91.
[147] D. Wang, X. Chu, M. Gong, Gas-sensing properties of sensors based on single-crystalline SnO2 nanorods prepared by a simple molten-salt method, Sens. Actuators, B. 117 (2006) 183-187.
[148] Y. Cao, P. Hu, W. Pan, Y. Huang, D. Jia, Methanal and xylene sensors based on ZnO nanoparticles and nanorods prepared by room-temperature solid-state chemical reaction, Sens. Actuators, B. 134 (2008) 462-466.
[149] M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Catalytic growth of zinc oxide nanowires by vapor transport, Adv. Mater. 13 (2001) 113-116.;2-H
[150] S.S. Kim, J.Y. Park, S.W. Choi, H.S. Kim, H.G. Na, J.C. Yang, H.W. Kim, Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles, Nanotechnol. 21 (2010) 415502.
[151] C.M. Carney, S. Yoo, S.A. Akbar, TiO2-SnO2 nanostructures and their H2 sensing behavior, Sens. Actuators, B. 108 (2005) 29-33.
[152] H.T. Wang, B.S. Kang, F. Ren, L.C. Tien, P. Sadik, D. Norton, S. Pearton, J. Lin, Hydrogen-selective sensing at room temperature with ZnO nanorods, Appl. Phys. Lett. 86 (2005) 243503.
[153] C. Baratto, G. Sberveglieri, A. Onischuk, B. Caruso, S. Di Stasio, Low temperature selective NO2 sensors by nanostructured fibres of ZnO, Sens. Actuators, B. 100 (2004) 261-265.
[154] A.Z. Sadek, S. Choopun, W. Wlodarski, S.J. Ippolito, K. Kalantar-zadeh, Characterization of NO2 nanobelt-based gas sensor forH2, NO2, and hydrocarbon sensing, IEEE Sensors Journal. 7 (2007) 919-924.
[155] N. Zhang, K. Yu, Q. Li, Z. Zhu, Q. Wan, Room-temperature high-sensitivity H2S gas sensor based on dendritic ZnO nanostructures with macroscale in appearance, J. Appl. Phys. 103 (2008) 104305.
[156] Q. Wan, C. Lin, X. Yu, T. Wang, Room-temperature hydrogen storage characteristics of ZnO nanowires, Appl. Phys. Lett. 84 (2004) 124-126.
[157] L. Francioso, A. Taurino, A. Forleo, P. Siciliano, TiO2 nanowires array fabrication and gas sensing properties, Sens. Actuators, B. 130 (2008) 70-76.
[158] S. Liu, L. Zhou, L. Yao, L. Chai, L. Li, G. Zhang, K. Shi, One-pot reflux method synthesis of cobalt hydroxide nanoflake-reduced graphene oxide hybrid and their NOx gas sensors at room temperature, J. AlloysCompd. 612 (2014) 126-133.
[159] A.A. Tomchenko, G.P. Harmer, B.T. Marquis, J.W. Allen, Semiconducting metal oxide sensor array for the selective detection of combustion gases, Sens. Actuators, B. 93 (2003) 126-134.
[160] V. Bochenkov, G. Sergeev, Preparation and chemiresistive properties of nanostructured materials, Adv. Colloid Interface Sci. 116 (2005) 245-254.
[161] G. Martinelli, M.C. Carotta, M. Ferroni, Y. Sadaoka, E. Traversa, Screen-printed perovskite-type thick films as gas sensors for environmental monitoring, Sens. Actuators, B. 55 (1999) 99-110.
[162] I. Hotovy, V. Rehacek, P. Siciliano, S. Capone, L. Spiess, Sensing characteristics of NiO thin films as NO2 gas sensor, Thin Solid Films. 418 (2002) 9-15.
[163] W. Noh, Y. Shin, J. Kim, W. Lee, K. Hong, S.A. Akbar, J. Park, Effects of NiO addition in WO3-based gas sensors prepared by thick film process, Solid State Ionics. 152 (2002) 827-832.
[164] M. Law, H. Kind, B. Messer, F. Kim, P. Yang, Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature, Angew. Chem. Int. Ed. 41 (2002) 2405-2408.;2-3
[165] S. Navale, D. Bandgar, S. Nalage, G. Khuspe, M. Chougule, Y. Kolekar, S. Sen, V. Patil, Synthesis of Fe2O3 nanoparticles for nitrogen dioxide gas sensing applications, Ceram. Int. 39 (2013) 6453-6460.
[166] M. Chougule, S. Sen, V. Patil, Fabrication of nanostructured ZnO thin film sensor for NO2 monitoring, Ceram. Int. 38 (2012) 2685-2692.
[167] S. Pawar, S. Patil, M. Chougule, B. Raut, S. Pawar, R. Mulik, V. Patil, Nanocrystalline TiO2 thin films for NH3 monitoring: Microstructural and physical characterization, J. Mater Sci. Mater. Electron. 23 (2012) 273-279.
[168] S. Wang, L. Wang, T. Yang, X. Liu, J. Zhang, B. Zhu, S. Zhang, W. Huang, S. Wu, Porous α-Fe2O3 hollow microspheres and their application for acetone sensor, J. Solid State Chem. 183 (2010) 2869-2876.
[169] L. Huo, Q. Li, H. Zhao, L. Yu, S. Gao, J. Zhao, Sol–gel route to pseudocubic shaped α-Fe2O3 alcohol sensor: Preparation and characterization, Sens. Actuators, B. 107 (2005) 915-920.
[170] S. Wang, W. Wang, W. Wang, Z. Jiao, J. Liu, Y. Qian, Characterization and gas-sensing properties of nanocrystalline iron (iii) oxide films prepared by ultrasonic spray pyrolysis on silicon, Sens. Actuators, B. 69 (2000) 22-27.
[171] E.T. Lee, G.E. Jang, C.K. Kim, D.H. Yoon, Fabrication and gas sensing properties of α-Fe2O3 thin film prepared by plasma enhanced chemical vapor deposition (PECVD), Sens. Actuators, B. 77 (2001) 221-227.
[172] Q. Hao, L. Li, X. Yin, S. Liu, Q. Li, T. Wang, Anomalous conductivity-type transition sensing behaviors of n-type porous α-Fe2O3 nanostructures toward H2S, Mater. Sci.Eng. B. 176 (2011) 600-605.
[173] G. Eranna, B. Joshi, D. Runthala, R. Gupta, Oxide materials for development of integrated gas sensors – A comprehensive review, Crit. Rev. Solid State Mater. Sci. 29 (2004) 111-188.
[174] S. Bai, D. Li, D. Han, R. Luo, A. Chen, C.L. Chung, Preparation, characterization of WO3– SnO2 nanocomposites and their sensing properties for NO2, Sens. Actuators, B. 150 (2010) 749-755.
[175] Y.X. Nan, F. Chen, L.G. Yang, H.Z. Chen, Electrochemical synthesis and charge transport properties of CdS nanocrystalline thin films with a conifer-like structure, J. Phys. Chem. C. 114 (2010) 11911-11917.
[176] E. Comini, M. Ferroni, V. Guidi, G. Faglia, G. Martinelli, G. Sberveglieri, Nanostructured mixed oxides compounds for gas sensing applications, Sens. Actuators, B. 84 (2002) 26-32.
[177] R. Ferro, J. Rodriguez, I. Jimenez, A. Cirera, J. Cerda, J. Morante, Gas-sensing properties of sprayed films of CdOx/ZnO1-x/mixed oxide, IEEE Sensors Journal. 5 (2005) 48-52.
[178] K. Galatsis, Y. Li, W. Wlodarski, E. Comini, G. Sberveglieri, C. Cantalini, S. Santucci, M. Passacantando, Comparison of single and binary oxide MoO3, TiO2 and WO3 sol–gel gas sensors, Sens. Actuators, B. 83 (2002) 276-280.
[179] I.S. Hwang, S.J. Kim, J.K. Choi, J. Choi, H. Ji, G.T. Kim, G. Cao, J.H. Lee, Synthesis and gas sensing characteristics of highly crystalline ZnO– SnO2 core–shell nanowires, Sens. Actuators, B. 148 (2010) 595-600.
[180] Z. Jiao, M. Wu, Z. Qin, M. Lu, J. Gu, The NO2 sensing ito thin films prepared by ultrasonic spray pyrolysis, Sensors. 3 (2003) 285-289.
[181] D.S. Lee, J.W. Lim, S.M. Lee, J.S. Huh, D.D. Lee, Fabrication and characterization of micro-gas sensor for nitrogen oxides gas detection, Sens. Actuators, B. 64 (2000) 31-36.
[182] I. Murase, A. Moriyama, T. Ito, A. Shimozono, Device for measuring concentration of nitrogen oxide in combustion gas. 1991, Google Patents.
[183] S.J. Hansen, C. HE Burroughs, Managing indoor air quality fifth edition. 2013: Lulu Press, Inc.
[184] X. Kou, C. Wang, M. Ding, C. Feng, X. Li, J. Ma, H. Zhang, Y. Sun, G. Lu, Synthesis of Co-doped SnO2 nanofibers and their enhanced gas-sensing properties, Sens. Actuators, B. 236 (2016) 425-432.
[185] A. Sharma, M. Tomar, V. Gupta, Low temperature operating SnO2 thin film sensor loaded with WO3 micro-discs with enhanced response for NO2 gas, Sens. Actuators, B. 161 (2012) 1114-1118.
[186] S.W. Choi, J.Y. Park, S.S. Kim, Synthesis of SnO2–ZnO core–shell nanofibers via a novel two-step process and their gas sensing properties, Nanotechnol. 20 (2009) 465603.
[187] C. Liangyuan, B. Shouli, Z. Guojun, L. Dianqing, C. Aifan, C.C. Liu, Synthesis of ZnO– SnO2 nanocomposites by microemulsion and sensing properties for NO2, Sens. Actuators, B. 134 (2008) 360-366.
[188] J.A. Park, J. Moon, S.J. Lee, S.H. Kim, H.Y. Chu, T. Zyung, SnO2–ZnO hybrid nanofibers-based highly sensitive nitrogen dioxides sensor, Sens. Actuator,s B. 145 (2010) 592-595.
[189. N. Yamazoe, N. Miura, Some basic aspects of semiconductor gas sensors, Chem. Sensor Technol. 4 (1992) 19-42.
[190] N. Dirany, Elaboration de matériaux micro-nanostructurés à morphologies contrôlées, à base de tungstates, pour la photo-dégradation. 2017, Toulon
[191] C.Y. Lin, Y.Y. Fang, C.W. Lin, J.J. Tunney, K.C. Ho, Fabrication of NOx gas sensors using In2O3-ZnO composite films, Sens. Actuators, B. 146 (2010) 28-34.
[192] T. Lee, T. Yun, B. Park, B. Sharma, H.K. Song, B.S. Kim, Hybrid multilayer thin film supercapacitor of graphene nanosheets with polyaniline: Importance of establishing intimate electronic contact through nanoscale blending, J. Mater. Chem. 22 (2012) 21092-21099.
[193] A. Katoch, Z.U. Abideen, H.W. Kim, S.S. Kim, Grain-size-tuned highly H2-selective chemiresistive sensors based on ZnO–SnO2 composite nanofibers, ACS Appl. Mater. Interfaces. 8 (2016) 2486-2494.
[194] T.O. Delmont, E. Prestat, K.P. Keegan, M. Faubladier, P. Robe, I.M. Clark, E. Pelletier, P.R. Hirsch, F. Meyer, J.A. Gilbert, Structure, fluctuation and magnitude of a natural grassland soil metagenome, ISME J. 6 (2012) 1677.
[195] C. Balázsi, K. Sedlácková, E. Llobet, R. Ionescu, Novel hexagonal WO3 nanopowder with metal decorated carbon nanotubes as NO2 gas sensor, Sens. Actuators, B. 133 (2008) 151-155.
[196] W. Gomes, S. Lingier, D. Vanmaekelbergh, Anodic stabilization and decomposition mechanisms in semiconductor (photo)-electrochemistry, J. Electroanal. Chem. Interfacial Electrochem. 269 (1989) 237-249.
[197] R. Leghrib, R. Pavelko, A. Felten, A. Vasiliev, C. Cané, I. Gràcia, J.-J. Pireaux, E. Llobet, Gas sensors based on multiwall carbon nanotubes decorated with tin oxide nanoclusters, Sens. Actuators B. 145 (2010) 411-416.
[198] F. Kong, Y. Wang, J. Zhang, H. Xia, B. Zhu, Y. Wang, S. Wang, S. Wu, The preparation and gas sensitivity study of polythiophene/SnO2 composites, Mater. Sci. Eng: B. 150 (2008) 6-11.