Monocrystalline Silicon Solar Cells


Monocrystalline Silicon Solar Cells

M. Rizwan, Waheed S. Khan, S. Aleena

Monocrystalline silicon based solar cells have the attributes that includes elemental semiconductor nature and balancing properties making it extensively applicable in the field of microelectronics. Silicon based solar cells make about 90% of today’s photovoltaic technology. The highest experimental efficiency reported for monocrystalline solar cells so far is 26.6%. The V-I characteristics of monocrystalline silicon based solar cells have been deliberated in the contextual of silicon as substrate material. The theoretical value of Shockely-Queisser (SQ) limit for monocrystalline solar cells is 30% that invocate further efficiency developments. The typical monocrystalline structure and recent advancements in monocrystalline solar cells are emphasized with appropriate examples to understand the photovoltaic phenomenon. Power conversion efficiency (PCE) enhancement is of prime importance in photovoltaic industry (PV) and hence different techniques analyze the question of PCE in context of cost effective solar cell production. In light of the literature, the texturizing, anti-reflecting coating and metallization are proposed as the efficient methods for reduction in losses and enhancement in efficiency.

Photovoltaic, Solar Cell, Monocrystalline, Shockely-Queisser, PCE

Published online 11/15/2020, 29 pages

Citation: M. Rizwan, Waheed S. Khan, S. Aleena, Monocrystalline Silicon Solar Cells, Materials Research Foundations, Vol. 88, pp 148-175, 2021


Part of the book on Materials for Solar Cell Technologies I

[1] W.B. Stine, R.W. Harrigan, Solar energy fundamentals and design, (1985) 536
[2] P.M. Ushasree, B. Bora, Silicon solar cells, R. Soc. Chem. (2019)1-55.
[3] N. Panwar, S. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: a review, Renew. Sust. Energ. Rev. 15 (2011) 1513-1524.
[4] P.P. Barker, J.M. Bing, Advances in solar photovoltaic technology: an applications perspective, IEEE Power Engineering Society General Meeting, IEEE. (2005)1955-1960.
[5] H. Mehmood, T. Tauqeer, S. Hussain, Recent progress in silicon based solid state solar cells, Int. J. Electron. 105 (2018) 1568-1582.
[6] H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding,Progress in electrical energy storage system: a critical review, Prog. Nat. Sci. 19 (2009) 291-312.
[7] A. McEvoy, T. Markvart, L. Castaner, Solar cells: materials, manufacture and operation, Solar cells: materials, manufacture and operation, Academic Press. (2012)
[8] A. Fahrenbruch, R. Bube, Fundamentals of solar cells: photovoltaic solar energy conversion, Elsevier. (2012)
[9] M. Bertolli, Solar cell materials, Course: Solid State II. Department of Physics, University of Tennessee, Knoxville. (2008)
[10] K.H. Raut, H.N. Chopde, D.W. Deshmukh, A review on comparative studies of diverse generation in solar cell, IJEE (2018).
[11] S. Sharma, K.K. Jain, A. Sharma, Solar cells: in research and applications: a review, Mater.Sci. Appl. 6 (2015) 1145-1155.
[12] M.A. Green, Polycrystalline silicon on glass for thin film solar cells, Appl. Phys. A. 96 (2009) 153-159.
[13] R.M. Izatt, S.R. Izatt, R.L. Bruening, N.E. Izatt, B.A. Moyer, Challenges to achievement of metal sustainability in our high-tech society, Chem. Soc. Rev. 43 (2014) 2451-2475.
[14] J. Narayan, S. Kim, K. Vedam, R. Manukonda, Formation and nondestructive characterization of ion implanted silicononinsulator layers, Appl. Phys. Lett. 51 (1987) 343-345.
[15] M.A. Green, High efficiency silicon solar cells, Seventh EC Photovoltaic Solar Energy Conference, Springer, (1987), pp. 681-687. Https://
[16] R.N. Castellano, Solar panel processing, Archives contemporaines. (2010)
[17] A. Yadav, P. Kumar, M. RPSGOI, Enhancement in efficiency of PV cell through P&O algorithm, IJTRE. 2 (2015) 2642-2644.
[18] B. Srinivas, S. Balaji, M. Nagendra Babu, Y. Reddy, Srinivas, B., S. Balaji, Review on present and advance materials for solar cells, . Int. J. Eng. Res. 3 (2015) 178-182
[19] P. Würfel, U. Würfel, Physics of solar cells: from basic principles to advanced concepts, John Wiley &Sons.(2016) 122-288
[20] N. ElAtab, N. Qaiser, R. Bahabry, M.M. Hussain, Corrugation enabled asymmetrically ultrastretchable (95%) monocrystalline silicon solar cells with high efficiency (19%), Adv. Energy Mater.(2019) 1-7.
[21] K. Wang, D. Yang, C. Wu, J. Shapter, S. Priya, Monocrystalline perovskite photovoltaics toward ultrahigh efficiency?, Joule. 3 (2019) 311-316.
[22] A. Goetzberger, J. Knobloch, B. Voss, Crystalline silicon solar cells, New York (1998) 114-118
[23] M.A. Green, The path to 25% silicon solar cell efficiency: history of silicon cell evolution, Prog. Photovolt. 17 (2009) 183-189.
[24] D.I. Paul, M. Smyth, Enhancing the performance of a building integrated compound parabolic photovoltaic concentrator using a hybrid photovoltaic cell, Int. J. Renew. Energy Technol. 11 (2020) 49-69.
[25] L. Yang, Q. Ye, A. Ebong, W. Song, G. Zhang, J. Wang, et al., High efficiency screen printed bifacial solar cells on monocrystalline CZ silicon, Prog. Photovolt. 19 (2011) 275-279.
[26] J. Liu, Y. Yao, S. Xiao, X. Gu, Review of status developments of high efficiency crystalline silicon solar cells,J. Phys. D appl. Phys. 51 (2018) 123001.
[27] C.P. Liu, M.W. Chang, C.L. Chuang, Effect of rapid thermal oxidation on structure and photoelectronic properties of silicon oxide in monocrystalline silicon solar cells,
Curr. Appl. Phys. 14 (2014) 653-658.
[28] J. Zhao, A. Wang, M.A. Green, 24· 5%Efficiency silicon pert cells on mcz substrates and 24·7% efficiency perl cells on fz substrates, Prog. Photovolt. 7 (1999) 471-474.<471::AID-PIP298>3.0.CO;2-7
[29] A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, S.W. Glunz, Ntype si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation, Sol. Energy Mater. Sol. Cells. 173 (2017) 96-105.
[30] D.D. Smith, P.J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, et al., Sunpower’s maxeon gen iii solar cell: high efficiency and energy yield,2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), IEEE, 2013, pp. 0908-0913.
[31] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, et al., 24.7% record efficiency HIT solar cell on thin silicon wafer, IEEE J.Photovolt. 4 (2013) 96-99.
[32] S. Maity, C. Bhunia, P. Sahu, Improvement in optical and structural properties of ZnO thin film through hexagonal nanopillar formation to improve the efficiency of a Si–ZnO heterojunction solar cell, J. Phys. D.appl. Phys.49 (2016) 205104.10.1088/0022-3727/49/20/205104
[33] D. Muchahary, S. Maity, High-efficiency thin film ZnMgO/ZnO solar cell simulation approach: Temperature dependency, BSF and efficient small signal analysis, Superlattice. Microst. 109 (2017) 209-216.
[34] T. Markvart, L. Castañer, Solar cells: materials, manufacture and operation/edited by tom markvart and luis castañer, Elsevier J. Adv. Tech.(2010)
[35] S.W. Glunz, High-efficiency crystalline silicon solar cells, Adv. Opt. Photonics. (2007)15.
[36] T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production, npg asia mater. 2 (2010) 96-102., T., Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater. 2 (2010) 96-102.
[37] A.R. Whitson, H.L. Walster, Soil fertility, Webb Publishing Company. (1912)
[38] D. Furkan, M. Mehmet Emin, Critical factors that affecting efficiency of solar cells, SGRE. 1(2010) 1-4.
[39] M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl‐Ebinger, et al., Solar cell efficiency tables (version 50), Prog. Photovolt.25 (2017) 668-676.
[40] E. Yablonovitch, G.D. Cody, Intensity enhancement in textured optical sheets for solar cells, IEEE
Trans. Electron Devices. 29 (1982) 300-305.
[41] J.A. Ramos Hernanz, J. Campayo, E. Zulueta, O. Barambones, P. Eguía, I. Zamora, Obtaining the characteristics curves of a photocell by different methods, IJRET.1(2013)1-6
[42] M.A. Green, Solar cells: operating principles, technology, and system applications, Englewood Cliffs NJ. Prentice Hall Inc. (1982)288
[43] T. Rendler, J. Neburkova, O. Zemek, J. Kotek, A. Zappe, Z. Chu, et al., Optical imaging of localized chemical events using programmable diamond quantum nanosensors , Nat. Commun. 8 (2017) 1-9.
[44] A.A. El Maksood, Performance dependence of (IV) and (CV) for solar cells on environmental conditions, (2018) 5329-5349.
[45] R.P. Smith, A.A.C. Hwang, T. Beetz, E. Helgren, Introduction to semiconductor processing: fabrication and characterization of pn junction silicon solar cells, Am. J. Phys. 86 (2018) 740-746.
[46] L. Zhao, Y. Zuo, C. Zhou, H. Li, H. Diao, W. Wang, Theoretical investigation on the absorption enhancement of the crystalline silicon solar cells by pyramid texture coated with SiNx: H layer, Elsevier Sol. energy 85 (2011) 530-537.
[47] N. Kannan, D. Vakeesan, Solar energy for future world: a review, renew. Sust. Energ. Rev. 62 (2016) 1092-1105.
[48] L. Lalouat, H. Ding, B. Gonzalez-Acevedo, A. Harouri, R. Orobtchouk, V. Depauw, et al., Pseudo disordered structures for light trapping improvement in mono crystalline Si thin films, Sol.Energ. Mat. Sol. C. 159 (2017) 649-656.
[49] Y. Jiang, I. Almansouri, S. Huang, T. Young, Y. Li, Y. Peng, et al., Optical analysis of perovskite/silicon tandem solar cells, J. Mater. Chem. C. 4 (2016) 5679-5689.
[50] K. Nguyen, D. Abi-Saab, P. Basset, E. Richalot, M. Malak, N. Pavy, et al., Study of black silicon obtained by cryogenic plasma etching: approach to achieve the hot spot of a thermoelectric energy harvester, Microsyst. Technol. 18 (2012) 1807-1814.
[51] M. Abdullah, M. Alghoul, H. Naser, N. Asim, S. Ahmadi, B. Yatim, et al., Research and development efforts on texturization to reduce the optical losses at front surface of silicon solar cell, Renew. Sust. Energ. Rev. 66 (2016) 380-398.
[52] D.H. Neuhaus, A. Münzer, Industrial silicon wafer solar cells, Adv. Opt. Photonics. (2007)1-15.
[53] U. Gangopadhyay, K. Kim, A. Kandol, J. Yi, H. Saha, Role of hydrazine monohydrate during texturization of large area crystalline silicon solar cell fabrication, Sol. Energ. Mat. Sol. C. 90 (2006) 3094-3101.
[54] H. Saha, S.K. Datta, K. Mukhopadhyay, S. Banerjee, M. Mukherjee, Influence of surface texturization on the light trapping and spectral response of silicon solar cells, IEEE T. Electron dev. 39 (1992) 1100-1107.
[55] P. Cousins, D. Smith, H. Luan, J. Manning, T. Dennis, A. Waldhauer, et al., 35th IEEE Photovoltaic Specialists Conference (PVSC 2010), June 20–25, 2010, Honolulu, Hawaii, USA (2010) 000275
[56] I. Zubel, M. Kramkowska, The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions, Sensor Actuat. A.phys. 93 (2001) 138-147.
[57] K. Araki , M.Yamaguchi,An Si concentrator cell by single photolithography process, Sol. Energy Mater. Sol. Cells.65(2001)437-443.
[58] P. Fath, C. Borst, C. Zechner, E. Bucher, G. Willeke, S. Narayanan, Progress in a novel high throughput mechanical texturization technology for highly efficient multicrystalline silicon solar cells, Sol. Energ. Mat. Sol. C. 48 (1997) 229-236.
[59] L.L. Kazmerski, Photovoltaics: A review of cell and module technologies, Renew. Sust. Energ. Rev 1 (1997) 71-170.
[60] B. Terheiden, P. Fath, Highly efficient double side mechanically textured novel silicon solar cell concepts, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of, IEEE, (2003)1443-1446
[61] W. Soppe, H. Rieffe, A. Weeber, Bulk and surface passivation of silicon solar cells accomplished by silicon nitride deposited on industrial scale by microwave PECVD, Prog. Photovolt. 13 (2005) 551-569.
[62] B. Fischer, Loss analysis of crystalline silicon solar cells using photoconductance and quantum efficiency measurements, Cuvillier Göttingen. (2003)
[63] P.K. Basu, D. Sarangi, K.D. Shetty, M.B. Boreland, Liquid silicate additive for alkaline texturing of mono Si wafers to improve process bath lifetime and reduce IPA consumption, Sol. Energy Mater. Sol. Cells 113 (2013) 37-43.
[64] K. Chen, Y. Liu, X. Wang, L. Zhang, X. Su, Novel texturing process for diamond wire sawn single crystalline silicon solar cell, Sol. Energy Mater. Sol. Cells 133 (2015) 148-155.
[65] L. Wang, F. Wang, X. Zhang, N. Wang, Y. Jiang, Q. Hao, et al., Improving efficiency of silicon heterojunction solar cells by surface texturing of silicon wafers using tetramethylammonium hydroxide, J. Power Sources. 268 (2014) 619-624.
[66] P.K. Basu, A. Khanna, Z. Hameiri, The effect of front pyramid heights on the efficiency of homogeneously textured inline-diffused screen-printed monocrystalline silicon wafer solar cells, Renew. Energg.78 (2015) 590-598.
[67]Z. Xu, X. Xu, C. Cui, H. Huang, A new uniformity coefficient parameter for the quantitative characterization of a textured wafer surface and its relationship with the photovoltaic conversion efficiency of monocrystalline silicon cells, Sol. Energy 191 (2019) 210-218.
[68] Z. Fang, Z. Xu, D. Wang, S. Huang, H. Li, The influence of the pyramidal texture uniformity and process optimization on monocrystalline silicon solar cells, J. Mater. Sci. (2020) 1-9.
[69] H.K. Raut, V.A. Ganesh, A.S. Nair, S. Ramakrishna, Anti reflective coatings: A critical, in depth review, Energy Environ. Sci. 4 (2011) 3779-3804.
[70] M.A. Green, M.J. Keevers, Optical properties of intrinsic silicon at 300 K, Prog. Photovolt. 3 (1995) 189-192.
[71] G. Shao, C. Lou, D. Xiao, Enhancing the efficiency of solar cells by down shifting YAG: Ce3+ phosphors, J. Lumin. 157 (2015) 344-348.
[72] B. Richards, Comparison of TiO2 and other dielectric coatings for buried‐contact solar cells: a review, Prog. Photovolt. 12 (2004) 253-281.
[73] N.S. Beattie, P. See, G. Zoppi, P.M. Ushasree, M. Duchamp, I. Farrer, et al., Quantum engineering of InAs/GaAs quantum dot based intermediate band solar cells, Acs Photonics 4 (2017) 2745-2750.
[74] I.G. Kavakli, K. Kantarli, Single and double layer antireflection coatings on silicon, Turk. J. Phys.26 (2002) 349-354
[75] A. Rohatgi, P. Doshi, J. Moschner, T. Lauinger, A. Aberle, D. Ruby, Comprehensive study of rapid, low cost silicon surface passivation technologies, IEEE T. Electron dev. 47 (2000) 987-993.
[76] C. Keavney, V. Haven, S. Vernon, 21st IEEE Photovoltaic Specialists Conference Proc. (1990) 141-144
[77] A. Stephens, A. Aberle, M. Green, Surface recombination velocity measurements at the silicon silicon dioxide interface by microwave‐detected photoconductance decay, J. Appl. Phys. 76 (1994) 363-370.
[78] S.W. Glunz, A.B. Sproul, W. Warta, W. Wettling, Injection level dependent recombination velocities at the Si‐SiO2 interface for various dopant concentrations, J. Appl. Phys. 75 (1994) 1611-1615.
[79] N. Bosco, Reliability concerns associated with PV technologies, NREL(2010)
[80] A.G. Aberle, Crystalline silicon solar cells: advanced surface passivation and analysis, Centre for Photovoltaic Engineering. University of New South wales. (1999)
[81] A.G. Aberle , Surface passivation of crystalline silicon solar cells: a review, Prog. Photovolt.8(2000)473-487.<473::AID-PIP337>3.0.CO;2-D
[82] V. Sharma, C. Tracy, D. Schroder, S. Herasimenka, W. Dauksher, S. Bowden, Manipulation of K center charge states in silicon nitride films to achieve excellent surface passivation for silicon solar cells, Appl. Phys. Lett. 104 (2014) 053503.
[83] G. Bauhuis, P. Mulder, J. Schermer, E. Haverkamp, J. van Deelen, P. Larsen, Proceedings of the 20th European Photovoltaic Solar Energy Conference, (2005) 468-471
[84] A. Sassella, A. Borghesi, S. Rojas, L. Zanotti, Optical properties of CVD-deposited dielectric films for microelectronic devices, J. Phys. Colloq. IV. 5 (1995) C5-843-C845-859.
[85] J. Hong, W. Kessels, W. Soppe, a. W. Weeber, WM Arnoldbik, and M. CM van de Sanden,Influence of the high temperature firing step on high-rate plasma deposited silicon nitride films used as bulk passivating antireflection coatings on silicon solar cells, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 21 (2003) 2123.
[86] J. Shingledecker, M. Takeyama, Joint EPRI 123HiMAT International conference on advances in hightemperature materials, ASM International. (2019)
[87] R.G. Loasby, Handbook of thick film technology, Electrochem. Publ. Ltd.(1976)
[88] K.A. Munzer, K.T. Holdermann, R.E. Schlosser, S. Sterk, Thin monocrystalline silicon solar cells, IEEE T. Electron dev. 46 (1999) 2055-2061.
[89] J.F. Nijs, J. Szlufcik, J. Poortmans, S. Sivoththaman, R.P. Mertens, Advanced manufacturing concepts for crystalline silicon solar cells, IEEE T. Electron dev. 46 (1999) 1948-1969.
[90] R.J. Knuesel, H.O. Jacobs, Self assembly of microscopic chiplets at a liquid liquid solid interface forming a flexible segmented monocrystalline solar cell, PNAS. 107 (2010) 993-998.