Carbon Nanomaterials Beyond Graphene for Solar Cell and Electrochemical Sensing


Carbon Nanomaterials Beyond Graphene for Solar Cell and Electrochemical Sensing

Fethi Achi, Abdellah Henni, Sabah Menaa, Amira Bensana

Carbon-based nanomaterials have different structures with excellent physical and electronic properties. Graphene and carbon nanomaterials are widely used in sensing areas due to its high positive effect on the response of modified electrodes. Their presence increases sensitivities and gives the lower detection limits and enhances the analytical performance of biosensors for food safety and environmental monitoring. In addition, carbon nanomaterials play an important role for the good exploitation of solar energy by developing new structures of silicon-based photovoltaic cells. In this work we report the effect of the most recent graphene and carbon nonmaterial used for electrochemical detection of substances. This chapter also presents an overview of solar cell synthesis using graphene and carbon nanomaterials.

Carbon, Nanomaterials, Graphene, Solar Cells, Reduced Graphene Oxide, Food Safety, Environmental Monitoring

Published online 11/15/2020, 24 pages

Citation: Fethi Achi, Abdellah Henni, Sabah Menaa, Amira Bensana, Carbon Nanomaterials Beyond Graphene for Solar Cell and Electrochemical Sensing, Materials Research Foundations, Vol. 88, pp 62-85, 2021


Part of the book on Materials for Solar Cell Technologies I

[1] P.L. Wagner, V. Smil, General energetics: energy in the biosphere and civilization, Geogr. Rev. 83 (1993) 110–112.
[2] Best research-cell efficiency chart, Photovoltaic Research, (accessed May 18, 2020)
[3] M.H. Sayed, E.V.C. Robert, P.J. Dale, L. Gütay, Cu2SnS3 based thin film solar cells from chemical spray pyrolysis, Thin Solid Films. 669 (2019) 436–439.
[4] M.S. Hossain, K.S. Rahman, M.R. Karim, M.O. Aijaz, M.A. Dar, M.A. Shar, H. Misran, N. Amin, Impact of CdTe thin film thickness in ZnxCd1−xS/CdTe solar cell by RF sputtering, J. Sol. Energy. 180 (2019) 559–566.
[5] M.A. Correa-Duarte, J. Pérez-Juste, A. Sánchez-Iglesias, M. Giersig, L.M. Liz-Marzán, Aligning Au nanorods by using carbon nanotubes as templates, Angew. Chem. Int. Ed. 44 (2005) 4375–4378.
[6] J. Guerra, M.A. Herrero, Hybrid materials based on Pd nanoparticles on carbon nanostructures for environmentally benign C-C coupling chemistry, Nanoscale. 2 (2010)1390–1400.
[7] R. Muszynski, B. Seger, P. V. Kamat, Decorating graphene sheets with gold nanoparticles, J. Phys. Chem. C. 112 (2008) 5263–5266.
[8] J. Wu, S. Bai, X. Shen, L. Jiang, Preparation and characterization of graphene/CdS nanocomposites, Appl. Surf. Sci. 257 (2010) 747–751.
[9] G. Williams, B. Seger, P. V. Kamt, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide, ACS Nano. 2 (2008) 1487–1491.
[10] B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature. 353 (1991) 737–740.
[11] A. Kay, M. Grätzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder, Sol. Energy Mater. Sol. Cells. 44 (1996) 99–117.
[12] D. Selloum, A. Henni, A. Karar, A. Tabchouche, N. Harfouche, O. Bacha, S. Tingry, F. Rosei, Effects of Fe concentration on properties of ZnO nanostructures and their application to photocurrent generation, Solid State Sci. 92 (2019) 76–80.
[13] A. Henni, A. Merrouche, L. Telli, A. Karar, F.I. Ezema, H. Haffar, Optical, structural, and photoelectrochemical properties of nanostructured ln-doped ZnO via electrodepositing method, J. Solid State Electr. 20 (2016) 2135–2142.
[14] A. Henni, A. Merrouche, L. Telli, A. Karar, Studies on the structural, morphological, optical and electrical properties of Al-doped ZnOnanorods prepared by electrochemical deposition, J. Electroanal. Chem. 763 (2016) 149–154. j.jelechem.2015.12.037
[15] Y. Bouznit, A. Henni, Characterization of Sb doped SnO2 films prepared by spray technique and their application to photocurrent generation, Mater. Chem. Phys. 233 (2019) 242–248.
[16] A. Mahroug, B. Mari, M. Mollar, I. Boudjadar, L. Guerbous, A. Henni, N. Selmi, Studies on structural, surface morphological, optical, luminescence and Uvphotodetection properties of sol–gel Mg-doped ZnO thin films, Surf. Rev. Lett. 26 (2019) 1850167.
[17] A. Henni, N. Harfouche, A. Karar, D. Zerrouki, F.X. Perrin, F. Rosei, Synthesis of graphene–ZnO nanocomposites by a one-step electrochemical deposition for efficient photocatalytic degradation of organic pollutant, Solid State Sci. 98 (2019) 106039.
[18] A. Henni, A. Merrouche, L. Telli, S. Walter, A. Azizi, N. Fenineche, Effect of H2O2 concentration on electrochemical growth and properties of vertically oriented ZnOnanorods electrodeposited from chloride solutions, Mat. Sci. Semicon. Proc. 40 (2015) 585–590.
[19] R.D. Costa, F. Lodermeyer, R. Casillas, D.M. Guldi, Recent advances in multifunctional nanocarbons used in dye-sensitized solar cells, Energy Environ. Sci.7 (2014)1281–1296.
[20] T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, M. Grätzel, Highly efficient dye-sensitized solar cells based on carbon black counter electrodes, J. Electrochem. Soc.153 (2006) A2255–A2261.
[21] M.E. Plonska-Brzezinska, A. Lapinski, A.Z. Wilczewska, A.T. Dubis, A. Villalta-Cerdas, K. Winkler, L. Echegoyen, The synthesis and characterization of carbon nano-onions produced by solution ozonolysis, Carbon. 49 (2011) 5079–5089.
[22] L. Kavan, J.H. Yum, M. Grätzel, Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets, ACS Nano. 5 (2011) 165–172.
[23] G. Wang, S. Zhuo, W. Xing, Graphene/polyaniline nanocomposite as counter electrode of dye-sensitized solar cells, Mater. Lett. 69 (2012) 27–29.
[24] R. Bajpai, S. Roy, N. Kulshrestha, J. Rafiee, N. Koratkar, D.S. Misra, Graphene supported nickel nanoparticle as a viable replacement for platinum in dye sensitized solar cells, Nanoscale. 4 (2012) 926–930.
[25] D. Noureldine, T. Shoker, M. Musameh, T.H. Ghaddar, Investigation of carbon nanotube webs as counter electrodes in a new organic electrolyte based dye sensitized solar cell, J. Mater. Chem. 22 (2012) 862–869.
[26] S. Iijima, Helical microtubules of graphitic carbon, Nature. 354 (1991) 56–58.
[27] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature. 363 (1993) 603–605.
[28] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183–191.
[29] Y.F. Chan, C.C. Wang, B.H. Chen, C.Y. Chen, Dye-sensitized TiO2 solar cells based on nanocomposite photoanode containing plasma-modified multi-walled carbon nanotubes, Prog. Photovoltaics. 21(2013)47–57.
[30] X. Dang, H. Yi, M.H. Ham, J. Qi, D.S. Yun, R. Ladewski, M.S. Strano, P.T. Hammond, A.M. Belcher, Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices, Nat. Nanotechnol. 6 (2011) 377–384.
[31] P. Du, L. Song, J. Xiong, N. Li, L. Wang, Z. Xi, N. Wang, L. Gao, H. Zhu, Dye-sensitized solar cells based on anatase TiO2/multi-walled carbon nanotubes composite nanofibers photoanode, Electrochim. Acta. 87(2013) 651–656. j.electacta.2012.09.096
[32] W. Guo, Y. Shen, L. Wu, Y. Gao, T. Ma, Performance of dye-sensitized solar cells based on MWCNT/TiO2-xNx nanocomposite electrodes, Eur. J. Inorg. Chem. 2011 (2011) 1776–1783.
[33] Z. Lin, A. Orlov, R.M. Lambert, M.C. Payne, New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2, J. Phys. Chem. B. 109 (2005) 20948–20952.
[34] W. Guo, Y. Shen, G. Boschloo, A. Hagfeldt, T. Ma, Influence of nitrogen dopants on N-doped TiO2 electrodes and their applications in dye-sensitized solar cells, Electrochim. Act. 56 (2011) 4611–4617.
[35] K.T. Dembele, G.S. Selopal, C. Soldano, R. Nechache, J.C. Rimada, I. Concina, G. Sberveglieri, F. Rosei, A. Vomiero, Hybrid carbon nanotubes-TiO2 photoanodes for high efficiency dye-sensitized solar cells, J. Phys. Chem. C. 117 (2013) 14510–14517.
[36] H. Yan, J. Wang, B. Feng, K. Duan, J. Weng, Graphene and Ag nanowires co-modified photoanodes for high-efficiency dye-sensitized solar cells, Sol. Energy. 122 (2015) 966–975.
[37] F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics. 4 (2010) 611–622.
[38] C.W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48 (1986)183–185
[39] G. Zhao, Y. He, Z. Xu, J. Hou, M. Zhang, J. Min, H.Y. Chen, M. Ye, Z. Hong, Y. Yang, Y. Li, Effect of carbon chain length in the substituent of PCBM-like molecules on their photovoltaic properties, Adv. Funct. Mater. 20 (2010) 1480–1487.
[40] A. Mishra, M.K.R. Fischer, P. Bäuerle, Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules., Angew. Chem. Int. Ed. 48 (2009) 2474–2499.
[41] B. Ratier, J.M. Nunzi, M. Aldissi, T.M. Kraft, E. Buncel, Organic solar cell materials and active layer designs-improvements with carbon nanotubes: A review, Polym. Int. 61 (2012) 342–354.
[42] H. Derbal-Habak, C. Bergeret, J. Cousseau, J.M. Nunzi, Improving the current density Jsc of organic solar cells P3HT:PCBM by structuring the photoactive layer with functionalized SWCNTs, Sol. Energy Mater. Sol. Cells. 95 (2011) S53–S56. j.solmat.2010.12.047
[43] R. Radbeh, E. Parbaile, M. Chakaroun, B. Ratier, M. Aldissi, A. Moliton, Enhanced efficiency of polymeric solar cells via alignment of carbon nanotubes, Polym. Int. 59 (2010) 1514–1519.
[44] Y.S. Jung, Y.H. Hwang, A. Javey, M. Pyo, PCBM-grafted MWNT for enhanced electron transport in polymer solar cells, J. Electrochem. Soc. 158 (2011) A237–A240
[45] E. Kymakis, G.A.J. Amaratunga, Single-wall carbon nanotube/conjugated polymer photovoltaic devices, Appl. Phys. Lett. 80 (2002) 112–114.
[46] E. Kymakis, G.A.J. Amaratunga, Carbon nanotubes as electron acceptors in polymeric photovoltaics, Rev. Adv. Mater. Sci. 10 (2005) 300–305
[47] J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, L. Dai, Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells, Adv. Mater. Technol. 24 (2012) 2228–2233.
[48] S. Chen, X. Yu, M. Zhang, J. Cao, Y. Li, L. Ding, G. Shi, A graphene oxide/oxygen deficient molybdenum oxide nanosheet bilayer as a hole transport layer for efficient polymer solar cells, J. Mater. Chem. A. 3 (2015)18380–18383.
[49] D. Romero-Borja, J.L. Maldonado, O. Barbosa-García, M. Rodríguez, E. Pérez-Gutiérrez, R. Fuentes-Ramírez, G. De La Rosa, Polymer solar cells based on P3HT:PC71BM doped at different concentrations of isocyanate-treated graphene, Synth. Met. 200 (2015) 91–98.
[50] M.M. Stylianakis, D. Konios, G. Kakavelakis, G. Charalambidis, E. Stratakis, A.G. Coutsolelos, E. Kymakis, S.H. Anastasiadis, Efficient ternary organic photovoltaics incorporating a graphene-based porphyrin molecule as a universal electron cascade material, Nanoscale. 7 (2015)17827–17835.
[51] J.T.W. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H.J. Snaith, R.J. Nicholas, Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells, Nano Lett. 14 (2014)724–730.
[52] G.S. Han, Y.H. Song, Y.U. Jin, J.W. Lee, N.G. Park, B.K. Kang, J.K. Lee, I.S. Cho, D.H. Yoon, H.S. Jung, Reduced graphene oxide/mesoporous TiO2 nanocomposite based perovskite solar cells, ACS Appl. Mater. Interfaces. 7 (2015) 23521–23526.
[53] T. Umeyama, D. Matano, J. Baek, S. Gupta, S. Ito, V. Subramanian, H. Imahori, Boosting of the performance of perovskite solar cells through systematic introduction of reduced graphene oxide in TiO2 Layers, Chem. Lett. 44 (2015) 1410–1412.
[54] A. Agresti, S. Pescetelli, B. Taheri, A.E. Del Rio Castillo, L. Cinà, F. Bonaccorso, A. Di Carlo, Back cover: Graphene–perovskite solar cells exceed 18 % efficiency: A stability study (ChemSusChem 18/2016), ChemSusChem. 9 (2016) 2716–2716.
[55] A. Agresti, S. Pescetelli, A.L. Palma, A.E. Del Rio Castillo, D. Konios, G. Kakavelakis, S. Razza, L. Cinà, E. Kymakis, F. Bonaccorso, A. Di Carlo, Graphene interface engineering for perovskite solar modules: 12.6% power conversion efficiency over 50 cm2 active area, ACS Energy Lett. 2 (2017)279–287.
[56] S. Sidhik, S.S. Panikar, C.R. Pérez, T.L. Luke, R. Carriles, S.C. Carrera, E. De La Rosa, Interfacial engineering of TiO2 by graphene nanoplatelets for high-efficiency hysteresis-free perovskite solar cells, ACS. Sustain. Chem. Eng. 6 (2018) 15391–15401.
[57] P. Yang, Z. Hu, X. Zhao, D. Chen, H. Lin, X. Lai, L. Yang, cesium-containing perovskite solar cell based on graphene/TiO2 electron transport layer, Chemistry Select 2 (2017) 9433–9437.
[58] M.P. Ramuz, M. Vosgueritchian, P. Wei, C. Wang, Y. Gao, Y. Wu, Y. Chen, Z. Bao, Evaluation of solution-processable carbon-based electrodes for all-carbon solar cells, ACS Nano. 6 (2012) 10384–10395.
[59] M.S. Arnold, J.D. Zimmerman, C.K. Renshaw, X. Xu, R.R. Lunt, C.M. Austin, S.R. Forrest, Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors, Nano Lett. 9 (2009) 3354–3358.
[60] Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, H. Zhang, Electrochemical deposition of ZnOnanorods on transparent reduced graphene oxide electrodes for hybrid solar cells, Small. 6 (2010) 307–312.
[61] L. Kavan, J.H. Yum, M.K. Nazeeruddin, M. Grätzel, Graphene nanoplatelet cathode for Co(III)/(II) mediated dye-sensitized solar cells, ACS Nano. 5 (2011) 9171–9178.
[62] H. Park, P.R. Brown, V. Bulović, J. Kong, Graphene as transparent conducting electrodes in organic photovoltaics: Studies in graphene morphology, hole transporting layers, and counter electrodes, Nano Lett. 12 (2012) 133–140.
[63] L. Gomez De Arco, Y. Zhang, C.W. Schlenker, K. Ryu, M.E. Thompson, C. Zhou, Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics, ACS Nano. 4 (2010) 2865–2873.
[64] S. Li, Y. Luo, W. Lv, W. Yu, S. Wu, P. Hou, Q. Yang, Q. Meng, C. Liu, H.M. Cheng, Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells, Adv. Energy Mater. 1 (2011) 486–490.
[65] H. Bi, F. Huang, J. Liang, Y. Tang, X. Lü, X. Xie, M. Jiang, Large-scale preparation of highly conductive three dimensional graphene and its applications in CdTe solar cells, J. Mater. Chem.21 (2011) 17366–17370.
[66] P. You, Z. Liu, Q. Tai, S. Liu, F. Yan, Efficient semitransparent perovskite solar cells with graphene electrodes, Adv. Mater. 27 (2015) 3632–3638.
[67] N. Balis, A.A. Zaky, C. Athanasekou, A.M. Silva, E. Sakellis, M. Vasilopoulou, T. Stergiopoulos, A.G. Kontos, P. Falaras, Investigating the role of reduced graphene oxide as a universal additive in planar perovskite solar cells, J. Photochem. Photobiol. 386 (2020) 112141.
[68] X. Liu, R. Yan, J. Zhu, J. Zhang, X. Liu, Growing TiO2 nanotubes on graphene nanoplatelets and applying the nanonanocomposite as scaffold of electrochemical tyrosinase biosensor, Sensor Actuat. B-Chem. 209 (2015) 328–335.
[69] L. Fritea, A. Le Goff, J.L. Putaux, M. Tertis, C. Cristea, R. Săndulescu, S. Cosnier, Design of a reduced-graphene-oxide composite electrode from an electropolymerizable graphene aqueous dispersion using a cyclodextrin-pyrrole monomer. Application to dopamine biosensing, Electrochim. Acta. 178 (2015) 108–112.
[70] Y. Qu, M. Ma, Z. Wang, G. Zhan, B. Li, X. Wang, H. Fang, H. Zhang, C. Li, Sensitive amperometric biosensor for phenolic compounds based on graphene–silk peptide/tyrosinase composite nanointerface, Biosens. Bioelectron. 44 (2013) 85–88.
[71] Z. Hua, Q. Qin, X. Bai, X. Huang, Q. Zhang, An electrochemical biosensing platform based on 1-formylpyrene functionalized reduced graphene oxide for sensitive determination of phenol, RSC. Advances. 6 (2016) 25427–25434.
[72] X. Liu, R. Yan, J. Zhu, J. Zhang, X. Liu, Growing TiO2 nanotubes on graphene nanoplatelets and applying the nanonanocomposite as scaffold of electrochemical tyrosinase biosensor, Sensor Actuat. B-Chem. 209 (2015) 328–335.
[73] F.R. Caetano, E.A. Carneiro, D. Agustini, L.C.S. Figueiredo-Filho, C.E. Banks, M.F. Bergamini, L.H. Marcolino-Junior, Combination of electrochemical biosensor and textile threads: A microfluidic device for phenol determination in tap water, Biosens. Bioelectron. 99 (2018) 382–388.
[74] G. Alarcón, M. Guix, A. Ambrosi, M.T. Ramirez Silva, M.E. Palomar Pardave, A. Merkoçi, Stable and sensitive flow-through monitoring of phenol using a carbon nanotube based screen printed biosensor, Nanotechnology. 21 (2010) 245502.
[75] N. Zehani, P. Fortgang, M. S. Lachgar, A. Baraket, M. Arab, S.V. Dzyadevych, R. Kherrat, N. Jaffrezic-Renault, Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film, Biosens. Bioelectron. 74 (2015) 830–835.
[76] J.M. Lee, G.-R. Xu, B.K. Kim, H.N. Choi, W.-Y. Lee, Amperometric tyrosinase biosensor based on carbon nanotube-doped sol-gel-derived zinc oxide-nafion composite films, Electroanalysis. 23 (2011) 962–970.
[77] B. Pérez-López, A. Merkoçi, Magnetic nanoparticles modified with carbon nanotubes for electrocatalytic magnetoswitchable biosensing applications, Adv. Funct. Mater. 21 (2011) 255–260.
[78] H. Wang, Y. Qin, K. Chen, H. Xue, the phenol biosensor based on LDHS/SWNTS hybrid materials, Int. J. Electrochem. Sci. 11 (2016) 777–79
[79] H. Yin, Y. Zhou, J. Xu, S. Ai, L. Cui, L. Zhu, Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A, Anal. Chim. Acta. 659 (2010) 144–150.
[80] Y. Li, D. Li, W. Song, M. Li, J. Zou, Y. Long, Rapid method for on-site determination of phenolic contaminants in water using a disposable biosensor, Front. Environ. Sci. Eng. 6 (2012) 831–838.
[81] Z. Hua, Q. Qin, X. Bai, X. Huang, Q. Zhang, An electrochemical biosensing platform based on 1-formylpyrene functionalized reduced graphene oxide for sensitive determination of phenol, RSC. Adv. 6 (2016) 25427–25434.
[82] J. Ren, T.F. Kang, R. Xue, C.N. Ge, S.Y. Cheng, Biosensor based on a glassy carbon electrode modified with tyrosinase immmobilized on multiwalled carbon nanotubes, Microchim. Acta. 174 (2011) 303–309.
[83] K.-I. Kim, H.-Y. Kang, J.-C. Lee, S.-H. Choi, Fabrication of a multi-walled nanotube (MWNT) ionic liquid electrode and its application for sensing phenolics in red wines, Sensors. 9 (2009) 6701–6714.
[84] F.C. Vicentini, B.C. Janegitz, C.M.A. Brett, O. Fatibello-Filho, Tyrosinase biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and 1-butyl-3-methylimidazolium chloride within a dihexadecylphosphate film, Sensor Actuat. B Chem. 188 (2013) 1101–1108.
[85] M. Erbeldinger, A.J. Mesiano, A.J. Russell, Enzymatic catalysis of formation of Z-aspartame in ionic liquid-an alternative to enzymatic catalysis in organic solvents, Biotechnol. Prog. 16 (2000) 1129–1131.
[86] Y. Xiang, L. li, H. liu, Z. Shi, Y. Tan, C. Wu, Y. Liu, J. Wang, S. Zhang, One-step synthesis of three-dimensional interconnected porous carbon and their modified electrode for simultaneous determination of hydroquinone and catechol, Sensor Actuat. B Chem. 267 (2018) 302–311.
[87] Kh. Ghanbari, S. Bonyadi, An electrochemical sensor based on reduced graphene oxide decorated with polypyrrole nanofibers and zinc oxide–copper oxide p–n junction heterostructures for the simultaneous voltammetric determination of ascorbic acid, dopamine, paracetamol, and tryptophan, New J. Chem. 42 (2018) 8512–8523.
[88] S. Zheng, R. Huang, X. Ma, J. Tang, Z. Li, X. Wang, J. Wei, J. Wang, A highly sensitive dopamine sensor based on graphene quantum dots modified glassy carbon electrode, Int. J. Electrochem. Sci. 13 (2018) 5723–5735.
[89] G. Xu, Z.A. Jarjes, V. Desprez, P.A. Kilmartin, J. Travas-Sejdic, Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene, Biosens. Bioelectron. 107 (2018) 184–191.
[90] J. Zou, S. Wu, Y. Liu, Y. Sun, Y. Cao, J.P. Hsu, A.T. Shen Wee, J. Jiang, An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection, Carbon. 130 (2018) 652–663.
[91] A. Üğe, D. KoyuncuZeybek, B. Zeybek, An electrochemical sensor for sensitive detection of dopamine based on MWCNTs/CeO2 -PEDOT composite, J. Electroanal. Chem. 813 (2018) 134–142.
[92]V. Serafín, L. Agüí, P. Yáñez-Sedeño, J.M. Pingarrón, A novel hybrid platform for the preparation of disposable enzyme biosensors based on poly(3,4-ethylenedioxythiophene) electrodeposition in an ionic liquid medium onto gold nanoparticles-modified screen-printed electrodes, J. Electroanal. Chem. 656 (2011) 152–158. jelechem.2010.11.038
[93] V.M.A. Mohanan, A.K. Kunnummal, V.M.N. Biju, Selective electrochemical detection of dopamine based on molecularly imprinted poly(5-amino 8-hydroxy quinoline) immobilized reduced graphene oxide, J. Mater. Sci. 53 (2018) 10627–10639.
[94] D.P. Rocha, R.M. Dornellas, R.M. Cardoso, L.C.D. Narciso, M.N.T. Silva, E. Nossol, E.M. Richter, R.A.A. Munoz, Chemically versus electrochemically reduced graphene oxide: Improved amperometric and voltammetric sensors of phenolic compounds on higher roughness surfaces, Sensor Actuat. B Chem. 254 (2018) 701–708. 10.1016/j.snb.2017.07.070
[95] Z. Liu, M. Jin, J. Cao, R. Niu, P. Li, G. Zhou, Y. Yu, A. van den Berg, L. Shui, Electrochemical sensor integrated microfluidic device for sensitive and simultaneous quantification of dopamine and 5-hydroxytryptamine, Sensor Actuat. B Chem. 273 (2018) 873–883.
[96] W. Zhang, D. Duan, S. Liu, Y. Zhang, L. Leng, X. Li, N. Chen, Y. Zhang, Metal-organic framework-based molecularly imprinted polymer as a high sensitive and selective hybrid for the determination of dopamine in injections and human serum samples, Biosens. Bioelectron. 118 (2018) 129–136.
[97] P. Wiench, Z. González, R. Menéndez, B. Grzyb, G. Gryglewicz, Beneficial impact of oxygen on the electrochemical performance of dopamine sensors based on N-doped reduced graphene oxides, Sensor Actuat. B Chem. 257 (2018) 143–153.
[98] X. Yan, Y. Gu, C. Li, B. Zheng, Y. Li, T. Zhang, Z. Zhang, M. Yang, Morphology-controlled synthesis of Bi2S3 nanorods-reduced graphene oxide composites with high-performance for electrochemical detection of dopamine, Sensor Actuat. B Chem. 257 (2018) 936–943.