Material Challenges in Next Generation Solar Cells


Material Challenges in Next Generation Solar Cells

Aamir Ahmed, Sandeep Arya

Solar cells have emerged as a substitute for fuels, generating energy which is both renewable and pollution-free at reasonable prices. On the commercial scale, the silicon-based solar cells are still being used despite their efficiency decreasing over time. With the advancement in technology, efforts are being made to develop new materials for solar cells with higher efficiency and stability. The development of materials such as multijunctions, ultrathin films, quantum dots, dye sensitized materials, and perovskites has opened a new dimension to the solar cell technology. These are often referred to as next-generation materials for solar cell technology. In this chapter, an effort has been made to address the various issues these new generation solar technologies face and why there is a need to search for various new materials in order to improve and make these technologies commercially viable.

Solar Cells, Photovoltaics (PVs), Perovskites, Device, Quantum Dots, Multijunction, Power Conversion Efficiency (PCE), Nanocrystalline, Efficiency, Shockley-Queisser (SQ) Limit, Quantum Dot Sensitized Solar Cell (QDSSC)

Published online 11/15/2020, 28 pages

Citation: Aamir Ahmed, Sandeep Arya, Material Challenges in Next Generation Solar Cells, Materials Research Foundations, Vol. 88, pp 1-28, 2021


Part of the book on Materials for Solar Cell Technologies I

[1] E. Bequerel, Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen des courants électriques, CR Acad. Sci. 9 (1839) 145-149
[2] W.G. Adams, R.E. Day, The action of light on selenium, Philos. Trans. R. Soc. Lond. 167 (1877) 313-349.
[3] D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power, J. Appl. Phys. 25 (1954) 676–677.
[4] D.J. Feldman, R.M. Margolis, Q2/Q3 2018 Solar industry update. National renewable energy lab. (NREL), Golden, CO (United States), (2018).
[5] International Energy Agency (IEA). Electricity Information 2016. Paris, France: IEA. Available at:
[6] V. Petrova-Koch, R. Hezel, A. Goetzberger, High efficient low-cost photovoltaics: recent developments, Berlin Heidelberg: Springer 2008.
[7] U. Gangopadhyay, S. Jana, S. Das, State of art of solar photovoltaic technology. InConference papers in science Hindawi 2013 (2013).
[8] Energy SP. Technology roadmap. 2014 [cited 2017 May11]. Available from:
[9] M. Schmela., Global market outlook for solar power/2016-2020
[10] S. Battersby, News feature: The solar cell of the future, Proc. Natl. Acad. Sci. 116 (2019) 7-10.
[11] K. P. Bhandari, J.M. Collier, R.J. Ellingson, D.S. Apul, Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis, Renew. Sustain. Energy Rev. 47 (2015) 133-141.
[12] W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys. 32 (1961) 510–519.
[13] S. Almosni, A. Delamarre, Z. Jehl, D. Suchet, L. Cojocaru, M. Giteau, B. Behaghel, A. Julian, C. Ibrahim, L. Tatry, H. Wang, Material challenges for solar cells in the twenty-first century: directions in emerging technologies, Sci. Technol. Adv. Mater. 19 (2018) 336-69.
[14] Photovoltaic Research | NREL [Internet]. [cited 2017 May 12]. Available from:
[15] C.H. Henry, Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells, J. Appl. Phys. 51 (2008),
[16] Rahim Esfandyarpour. multijunction solar cells, December 12, 2012. Available from:
[17] D.J. Friedman, Progress and challenges for next-generation high-efficiency multijunction solar cells, Curr. Opin. Solid State Mater. Sci. 14 (2010) 131-138.
[18] R.M. Swanson, The promise of concentrators, Prog. Photovolt. Res. Appl. 8 (2000) 93–111
[19] W. Guter, J. Schone, S.P. Phillips, M. Steiner, F. Siefer, A. Wekkeli, E. Welser, E. Oliva, A.W. Bett, F. Dimroth, Current matched triple junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight, Appl. Phys. Lett. 94 (2009) 223504.
[20] R.R. King, A. Boca, W. Hong, X.Q. Liu, D. Bhusari, D. Larrabee, K.M. Edmondson, D.C. Law, C.M. Fetzer, S. Mesropian, N.H. Karam, Band-gap-engineered architectures for high-efficiency multi-junction concentrator solar cells, 24th EPSEC. (2009) 55–61.
[21] P.T. Chiu, D.C. Law, R.L. Woo, S.B. Singer, D. Bhusari, W.D. Hong, A. Zakaria, J. Boisvert, S. Mesropian, R. King, N.H. Karam, Direct semiconductor bonded 5 J cell for space and terrestrial applications, IEEE J. Photovolt. 4 (2014) 493–497.
[22] R. Cariou, J. Benick, P. Beutel, N. Razek, C. Flotgen, M. Hermle, D. Lackner, S.W. Glunz, A.W. Bett, M. Wimplinger, F. Dimroth, Monolithic two- terminal III-V//Si triple-junction solar cells with 30.2% efficiency under 1-Sun AM1.5 g, IEEE J. Photovolt. 7 (2017) 367–373.
[23] Press release-New world record for solar cell efficiency at 46%-Fraunhofer ISE [Internet], Fraunhofer institute for solar energy systems ISE. (cited 2017). Available from: http://www.ise.fraunhofer. de/en/press-media/press-releases/2014/new-world- record-for-solar-cell-efficiency-at-46-percent.html
[24] Press release-sharp develops concentrator solar cell with world’s highest conversion efficiency of 43.5% | Press Releases | Sharp Global [Internet]. (cited 2017 ). Available from: corporate/news/120531.html
[25] P. Patel, D. Aiken, A. Boca, B. Cho, D. Chumney, M.B. Clevenger, A. Cornfeld, N. Fatemi, Y. Lin, J. McCarty, F. Newman, P. Sharps, J. Spann, M. Stan, J. Steinfeldt, C. Strautin, T. Varghese, Experimental results from performance improvement and radiation hardening of inverted metamorphic multi-junction solar cells, IEEE J. Photovolt. 2 (2012) 377–381.
[26] S. Wojtczuk, P. Chiu, X. Zhang, D. Pulver, C. Harris, M. Timmons, Bi-facial growth InGaP/GaAs/InGaAs concentrator solar cells, IEEE J. Photovolt. 2 (2012) 371-376.
[27] V. Sabnis, H. Yuen, M. Wiemer, High-efficiency multi-junction solar cells employing dilute nitrides, AIP Conf Proc. Toledo (2012).
[28] K.W.J. Barnham, G. Duggan, A new approach to high-efficiency multi-bandgap solar cells, J. Appl. Phys. 67 (1990) 3490–3493.
[29] H. Fujii, K. Toprasertpong, Y. Wang, K. Watanabe, M. Sugiyama, Y. Nakano, 100-period, 1.23-eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: toward current- matched Ge-based tandem cells, Prog. Photovolt. Res. Appl. 22 (2013) 784–795.
[30] K. Toprasertpong, H. Fujii, T. Thomas, M. Führer, D.A. Álvarez, D.J. Farrell, K. Watanabe, Y. Okada, N. J. Daukes, M. Sugiyama, Y. Nakano, Absorption threshold extended to 1.15 eV using InGaAs/GaAsP quantum wells for over-50%-efficient lattice-matched quad-junction solar cells, Prog. Photovolt. Res. Appl. 24 (2016) 533–542.
[31] Available from:
[32] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska,
N. Vlachopoulos, M. Gratzel, Conversion of light to electricity by cis-X2bis (2,2′-bipyridyl- 4,4′-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc. 115 (1993) 6382–6390.
[33] S. Mathew, A. Yella, P. Gao, R.H. Baker, B.F.E. Curchod, N.A. Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Gratzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat. Chem. 6 (2014) 242–247.
[34] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawab, M. Hanaya, Highly efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes, Chem. Commun. 51 (2015) 15894–15897.
[35] X. Zhang, Y. Xu, F. Giordano, M. R. Schreier, N. Pellet, Y. Hu, C. Yi, N. Robertson, J. Hua, S.M. Zakeeruddin, H. Tian, M. Gratzel, Molecular engineering of potent sensitizers for very efficient light harvesting in thin-film solid-state dye-sensitized solar cells, J. Am. Chem. Soc. 138 (2016) 10742–10745.
[36] A. Yella, C.L. Mai, S.M. Zakeeruddin, S.N. Chang, C.H. Hsieh, C.Y. Yeh, M. Gratzel, Molecular engineering of push-pull porphyrin dyes for highly efficient dye-sensitized solar cells: the role of benzene spacers, Angew Chem. Int. Ed. 53 (2014) 2973–2977.
[37] C. Lee, R.Y. Lin, L. Lin, C. Li, T. Chu, S. Sun, J.T. Lin, K. Ho, Recent progress in organic sensitizers for dye-sensitized solar cells, RSC Adv. 5 (2015) 23810–23825.
[38] R. Sivakumar, R. Recabarren, S. Ramkumar, A. Manivel, J. A. Morales, D. Contreras, M. Paulraj, Ruthenium (II) complexes incorporating carbazole-diazafluorenebased bipolar ligands for dye sensitized solar cell applications, New J. Chem. 41 (2017) 5605-5612.
[39] T. Horiuchi, T. Yashiro, R. Kawamura, S. Uchida, H. Segawa, Indoline dyes with benzothiazole unit for dye-sensitized solar cells, Chem. Lett. 45 (2016) 517-529.
[40] J.M. Caruge, J.E. Halpert, V. Wood, V. Bulovic, M.G. Bawendi, Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers, Nat. phot. 2 (2008) 247-250.
[41] W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod polymer solar cells, Science. 295 (2002) 2425– 2427.
[42] M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science. 281 (1998) 2013-2016.
[43] J.M. Luther, M. Law, Q. Song, C.L. Perkins, M.C. Beard, A.J. Nozik, Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1, 2-ethanedithiol, ACS nano. 2 (2008) 271-280.
[44] G.H. Carey, A.L. Abdelhady, Z. Ning, S.M. Thon, O.M. Bakr, E.H. Sargent, Colloidal quantum dot solar cells, Chem. Rev. 115 (2015) 12732-12763.
[45] J. An, X. Yang, W. Wang, J. Li, H. Wang, Z. Yu, C. Gong, X. Wang, L. Sun, Stable and efficient PbS colloidal quantum dot solar cells incorporating low-temperature processed carbon paste counter electrodes, Sol. Energy. 158 (2017) 28-33.
[46] X. Lan, S. Masala, E.H. Sargent, Charge-extraction strategies for colloidal quantum dot photovoltaics, Nat. Mater. 13 (2014) 233–240.
[47] M. Liu, O. Voznyy, R. Sabatini, F.P. Arquer, R. Munir, A.H. Balawi, X. Lan, F. Fan, G. Walters, A.R. Kirmani, S. Hoogland, Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids, Nat. Mater. 16 (2017) 258-263.
[48] X.Y. Yu, J.Y. Liao, K.Q. Qiu, D.B. Kuang, C.Y. Su, Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition, ACS Nano. 5 (2011) 9494-9500.
[49] R.S. Mane, C.D. Lokhande, Chemical deposition method for metal chalcogenide thin films, Mater. Chem. Phys. 65 (2000) 1-31.
[50] Y. Wang, A. Hu, Carbon quantum dots: synthesis, properties and applications, J. Mater. Chem. C. 2 (2014) 6921-6939.
[51] R. Wang, K.Q. Lu, Z.R. Tang, Y.J. Xu, Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis, J. Mater. Chem. A. 5 (2017) 3717-3734.
[52] M.A. Green, Third generation photovoltaics: solar cells for 2020 and beyond. Low-dimensional systems and nanostructures, Phys. E. 14 (2002) 65-70.
[53] G. Hodes, Comparison of dye and semiconductor-sensitized porous nanocrystalline liquid junction solar cells, J. Phys. Chem. C, 112 (2008) 17778–17787.
[54] I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Quantum dot solar cells, Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films, J. Am. Chem. Soc. 128 (2006) 2385-2393.
[55] A.M. Zaban, O.I. Mićić, B.A. Gregg, A.J. Nozik, Photosensitization of nanoporous TiO2 electrodes with InP quantum dots, Langmuir. 14 (1998) 3153-3156.
[56] I. Mora-Sero, S. Gimenez, F. Fabregat-Santiago, R. Gomez, Q. Shen, T. Toyoda, J. Bisquert, Recombination in quantum dot sensitized solar cells, Acc. Chem. Res. 42 (2009) 1848-1857.
[57] J.H. Bang, P.V. Kamat, Solar cells by design: photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe, Adv. Funct. Mater. 20 (2010) 1970-1976.
[58] V.G. Pedro, X. Xu, I.M. Sero, J. Bisquert, Modeling high-efficiency quantum dot sensitized solar cells, ACS Nano. 4 (2010) 5783-5790.
[59] X.Y. Yu, J.Y. Liao, K.Q. Qiu, D.B. Kuang, C.Y. Su, Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition, ACS Nano. 5 (2011) 9494-9500.
[60] C. Cheng, S.K. Karuturi, L. Liu, J. Liu, H. Li, L.T. Su, A.I. Tok, H.J. Fan, Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation, Small. 8 (2012) 37-42.
[61] Available from: solar-cell/attachment/dssc/
[62] M. Chatsko, 3 Wild solar power technologies that could secure the industry’s future. (2018), Retrieved from
[63] M. Bernechea, N.C. Miller, G. Xercavins, D. So, A. Stavrinadis, G. Konstantatos, Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals, Nat. Phot. 10 (2016) 521.
[64] G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li, Q. Meng, Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects, Nano Energy. 35 (2017) 17-25.
[65] W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, Molecular optimization enables over 13% efficiency in organic solar cells, J. Am. Chem. Soc. 139 (2017) 7148–7151.
[66] S. Berny, N. Blouin, A. Distler, H.J. Egelhaaf, M. Krompiec, A. Lohr, O.R. Lozman, G.E. Morse, L. Nanson, A. Pron, T. Sauermann, Solar trees: first large-scale demonstration of fully solution coated, semitransparent, flexible organic photovoltaic modules, Adv. Sci. 3 (2016) 1500342.
[67] N. Espinosa, R. Garcia-Valverde, A. Urbina, F.C. Krebs, A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions, Sol. Energy Mater. Sol. Cells. 95 (2011) 1293-1302.
[68] S. Lizin, S.V. Passel, E.D. Schepper, W. Maes, L. Lutsen, J. Manca, D. Vanderzande, Life cycle analyses of organic photovoltaics: a review, Energy Environ. Sci. 6 (2013) 3136-3149.
[69] H.K. Lee, Z. Li, J.R. Durrant, W.C. Tsoi, Is organic photovoltaics promising for indoor applications?, Appl. Phys. Lett. 108 (2016) 253301.
[70] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, 2.5% efficient organic plastic solar cells, Appl. Phys. Lett. 78 (2001) 841-843.
[71] M.M. Wienk, J.M. Kroon, W.J. Verhees, J. Knol, J.C. Hummelen, P.A. van Hal, R.A. Janssen, Efficient methano [70] fullerene/MDMO-PPV bulk heterojunction photovoltaic cells, Angew Chem. Int. Ed. 42 (2003) 3371-3375.
[72] J. Subbiah, P.M. Beaujuge, K.R. Choudhury, S. Ellinger, J.R. Reynolds, F. So, Combined effects of MoO3 interlayer and PC70BM on polymer photovoltaic device performance, Org. Electron. 11 (2010) 955-958.
[73] G.J. Zhao, Y.J. He, Y. Li, 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and Indene-C60 bisadduct by device optimization, Adv. Mater. 22 (2010) 4355–4358.
[74] J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, H. Yan, Efficient organic solar cells processed from hydrocarbon solvents, Nat. Energy. 1 (2016) 1-7.
[75] M.C. Scharber, On the efficiency limit of conjugated polymer: fullerene-based bulk hetero-junction solar cells, Adv. Mater. 28 (2016) 1994–2001.
[76] S. Bertho, G. Janssen, T.J. Cleij, B. Conings, W. Moons, A. Gadisa, J. D’Haen, E. Goovaerts, L. Lutsen, J. Manca, D. Vanderzande, Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer: fullerene solar cells, Sol. Energ. Mater. Sol. Cell. 92 (2008) 753-760.
[77] S. Holliday, R.S. Ashraf, C.B. Nielsen, M. Kirkus, J.A. Röhr, C.H. Tan, E. Collado-Fregoso, A.C. Knall, J.R. Durrant, J. Nelson, I. McCulloch, A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics, J. Am. Chem. Soc. 137 (2015) 898-904.
[78] S. Holliday, R.S. Ashraf, A. Wadsworth, D. Baran, S.A. Yousaf, C.B. Nielsen, C.H. Tan, S.D. Dimitrov, Z. Shang, N. Gasparini, M. Alamoudi, High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor, Nat. Commun. 7 (2016) 11585.
[79] D. Baran, T. Kirchartz, S. Wheeler, S. Dimitrov, M. Abdelsamie, J. Gorman, R.S. Ashraf, S. Holliday, A. Wadsworth, N. Gasparini, P. Kaienburg, Reduced voltage losses yield 10% efficient fullerene free organic solar cells with> 1 V open circuit voltages, Energy Env. Sci. 9 (2016) 3783-3793.
[80] W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganas, F. Gao, J. Hou, Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability, Adv. Mater. 28 (2016) 4734-4739.
[81] A.S. Gertsen, M.F. Castro, R.R. Sondergaard, J.W. Andreasen, Scalable fabrication of organic solar cells based on non-fullerene acceptors, Flex. Print. Electron. 5 (2020) 014004.
[82] S.A. Gevorgyan, N. Espinosa, L. Ciammaruchi, B. Roth, F. Livi, S. Tsopanidis, S. Zufle, S. Queiros, A. Gregori, G.A. Benatto, M. Corazza, Baselines for lifetime of organic solar cells, Adv. Energy Mater. 6 (2016) 1600910.
[83] M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO under layer, Appl. Phys. Lett. 89 (2006) 143517.
[84] G. Li, C.W. Chu, V. Shrotriya, J. Huang, Y. Yang, Efficient inverted polymer solar cells, Appl. Phys. Lett. 88 (2006) 253503.
[85] S.K. Hau, H.L. Yip, N.S. Baek, J. Zou, K. O’Malley, A.K. Jen, Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer, Appl. Phys. Lett. 92 (2008) 225.
[86] H. Cha, J. Wu, A. Wadsworth, J. Nagitta, S. Limbu, S. Pont, Z. Li, J. Searle, M.F. Wyatt, D. Baran, J.S. Kim, An efficient, “burn in” free organic solar cell employing a nonfullerene electron acceptor, Adv. Mater. 29 (2017) 1701156.
[87] N. Gasparini, M. Salvador, S. Strohm, T. Heumueller, I. Levchuk, A. Wadsworth, J.H. Bannock, J.C. de Mello, H.J. Egelhaaf, D. Baran, I. McCulloch, C.J. Brabec, Burn-in free nonfullerene-based organic solar cells, Adv. Energy Mater. 7 (2017) 1700770.
[88] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science. 338 (2012) 643-647.
[89] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050-6051.
[90] M. Gratzel, The light and shade of perovskite solar cells, Nat. Mater. 13 (2014) 838–842.
[91] N-G. Park, Perovskite solar cells: an emerging photovoltaic technology, Mat. Today. 18 (2015) 65–72.
[92] N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature. 517 (2015) 476-480.
[93] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (Version 45), Prog. Photovolt. Res. Appl. 23 (2015) 1-9.
[94] N.G. Park, Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell, J. Phys. Chem. Lett. 4 (2013) 2423– 2429.
[95] N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat. Mater. 13 (2014) 897-903.
[96] M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci. 9 (2016) 1989-97.
[97] T. Salim, S. Sun, Y. Abe, A. Krishna, A.C. Grimsdale, Y.M. Lam, Perovskite-based solar cells: impact of morphology and device architecture on device performance, J. Mater. Chem. A. 3 (2015) 8943-8969.
[98] H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. J.T. Stranks, Wang, K. Wojciechowski, W. Zhang, Anomalous hysteresis in perovskite solar cells, J. Phys. Chem. Lett. 5 (2014) 1511-1515.
[99] L. Cojocaru, S. Uchida, P.V. Jayaweera, S. Kaneko, J. Nakazaki, T. Kubo, H. Segawa, Origin of the hysteresis in I-V curves for planar structure perovskite solar cells rationalized with a surface boundary-induced capacitance model, Chem. Lett. 44 (2015) 1750-1752.
[100] S. van Reenen, M. Kemerink, H.J. Snaith, Modeling anomalous hysteresis in perovskite solar cells, J. Phys. Chem. Lett. 6 (2015) 3808-3814.
[101] M.T. Neukom, S. Zufle, E. Knapp, M. Makha, R. Hany, B. Ruhstaller, Why perovskite solar cells with high efficiency show small IV-curve hysteresis, Sol. Energ. Mater. Sol. Cell. 169 (2017) 159-166.
[102] P. Calado, A.M. Telford, D. Bryant, X. Li, J. Nelson, B.C. O’Regan, P.R. Barnes, Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis, Nat. Commun. 7 (2016) 1-10.
[103] J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Hysteresis-less inverted CH3 NH3PbI 3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency, Energy Environ. Sci. 8 (2015) 1602-1608.
[104] F. Li, M. Liu, Recent efficient strategies for improving the moisture stability of perovskite solar cells, J. Mater. Chem. A. 5 (2017) 15447-15459.
[105] N.G. Park, T. Miyasaka, M. Gratzel, Organic-inorganic halide perovskite photovoltaics, Cham, Switzerland: Springer. (2016).
[106] L. Calió, S. Kazim, M. Gratzel, S. Ahmad, Hole-transport materials for perovskite solar cells, Angew Chem. Int. Ed. 55 (2016) 14522–14545.
[107] E.H. Anaraki, A. Kermanpur, L. Steier, K. Domanski, T. Matsui, W. Tress, M. Saliba, A. Abate, M. Gratzel, A. Hagfeldt, J.P. Correa-Baena, Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide, Energy Environ. Sci. 9 (2016) 3128-3134.
[108] S.S. Shin, E.J. Yeom, W.S. Yang, S. Hur, M.G. Kim, J. Im, J. Seo, J.H. Noh, S.I. Seok, Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells, Science. 356 (2017) 167-171.
[109] X. Dong, X. Fang, M. Lv, B. Lin, S. Zhang, J. Ding, N. Yuan, Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition, J. Mater. Chem. A. 3 (2015) 5360-5367.
[110] G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A. 2 (2014) 705–710.
[111] F. Giordano, A. Abate, J.P. Baena, M. Saliba, T. Matsui, S.H. Im, S.M. Zakeeruddin, M.K. Nazeeruddin, A. Hagfeldt, M. Graetzel, Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 7 (2016) 10379.
[112] H. Yoon, S.M. Kang, J.K. Lee, M. Choi, Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency, Energy Environ. Science. 9 (2016) 2262-2266.