Development of Hybrid Materials Based on Polymers for Biomedical Applications: A Short Introduction


Development of Hybrid Materials Based on Polymers for Biomedical Applications: A Short Introduction

A. García-Peñas, S.C. Cifuentes, Y. Wang, V. San-Miguel

This chapter is focused on some of the most important polymers used for preparing hybrid materials applied in biomedicine. The work is divided into two parts: Non-degradable polymers used for hybrid materials in implants and degradable polymers employed to fabricate biomedical implants and devices. Each part describes the main characteristics of these structures, followed by a list of the most significant polymers and derivatives. This brief introduction could be useful for industry, students, or people interested in the recent advances of biomedical applications where polymers play an important role.

Composites, Non-Degradable Polymers, Degradable Materials, Biomedical Applications

Published online 11/20/2020, 28 pages

Citation: A. García-Peñas, S.C. Cifuentes, Y. Wang, V. San-Miguel, Development of Hybrid Materials Based on Polymers for Biomedical Applications: A Short Introduction, Materials Research Foundations, Vol. 87, pp 202-229, 2021


Part of the book on Nanohybrids

[1] S.V. Gohil, S. Suhail, J. Rose, T. Vella, L.S. Nair, Chapter 8 – Polymers and Composites for Orthopedic Applications, in: S. Bose, A. Bandyopadhyay (Eds.) Materials for Bone Disorders, Academic Press, (2017) 349-403.
[2] A. Bigi, S. Fare, P. Petrini, N. Roveri, M.C. Tanzi, Biointegrable 3D Polyurethane/a-TCP Composites for Bone Reconstruction, (2002).
[3] S. Lerouge, A. Simmons, Sterilisation of Biomaterials and Medical Devices, Elsevier Science, (2012).
[4] A. Subramaniam, S. Sethuraman, Chapter 18 – Biomedical Applications of Nondegradable Polymers, in: S.G. Kumbar, C.T. Laurencin, M. Deng (Eds.) Natural and Synthetic Biomedical Polymers, Elsevier, Oxford, (2014) 301-308.
[5] A. Gopanna, K.P. Rajan, S.P. Thomas, M. Chavali, Chapter 6 – Polyethylene and polypropylene matrix composites for biomedical applications, in: V. Grumezescu, A.M. Grumezescu (Eds.) Materials for Biomedical Engineering, Elsevier, (2019) 175-216.
[6] A.J.T. Teo, A. Mishra, I. Park, Y.-J. Kim, W.-T. Park, Y.-J. Yoon, Polymeric Biomaterials for Medical Implants and Devices, ACS Biomaterials Science & Engineering, 2 (2016) 454-472.
[7] S. Ramakrishna, J. Mayer, E. Wintermantel, K.W. Leong, Biomedical applications of polymer-composite materials: a review, Composites science and technology, 61 (2001) 1189-1224.
[8] T. Hutley, M. Ouederni, Polyolefin Compounds and Materials—Fundamentals and Industrial Applications; AlMa’adeed, MAA, Krupa, I., Eds, in, Springer: Heidelberg, Germany, (2016).
[9] M.J. Dalby, L. Di Silvio, E.J. Harper, W. Bonfield, Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response, Biomaterials, 23 (2002) 569-576.
[10] M.J. Dalby, S.J. Yarwood, M.O. Riehle, H.J.H. Johnstone, S. Affrossman, A.S.G. Curtis, Increasing Fibroblast Response to Materials Using Nanotopography: Morphological and Genetic Measurements of Cell Response to 13-nm-High Polymer Demixed Islands, Experimental Cell Research, 276 (2002) 1-9.
[11] Q. Wang, D. Zhang, S. Ge, Biotribological behaviour of ultra-high molecular weight polyethylene composites containing Ti in a hip joint simulator, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 221 (2007) 307-313.
[12] B.C. Anderson, P.D. Bloom, K.G. Baikerikar, V.V. Sheares, S.K. Mallapragada, Al–Cu–Fe quasicrystal/ultra-high molecular weight polyethylene composites as biomaterials for acetabular cup prosthetics, Biomaterials, 23 (2002) 1761-1768.
[13] X.L. Xie, C.Y. Tang, K.Y.Y. Chan, X.C. Wu, C.P. Tsui, C.Y. Cheung, Wear performance of ultrahigh molecular weight polyethylene/quartz composites, Biomaterials, 24 (2003) 1889-1896.
[14] Y. Huang, W. Wang, C. Liu, A.J. Rosakis, Analysis of intersonic crack growth in unidirectional fiber-reinforced composites, Journal of the Mechanics and Physics of Solids, 47 (1999) 1893-1916.
[15] V. Grumezescu, A. Grumezescu, Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers, Elsevier, (2019).
[16] X. Jiang, L.T. Drzal, Properties of injection molded high density polyethylene nanocomposites filled with exfoliated graphene nanoplatelets, Some critical issues for injection molding, (2012) 251-270.
[17] C. Liu, Y.-X. Guo, S. Xiao, Capacitively loaded circularly polarized implantable patch antenna for ISM band biomedical applications, IEEE transactions on antennas and propagation, 62 (2014) 2407-2417.
[18] W. Bonfield, M. Grynpas, A. Tully, J. Bowman, J. Abram, Hydroxyapatite reinforced polyethylene–a mechanically compatible implant material for bone replacement, Biomaterials, 2 (1981) 185-186.
[19] M. Wang, D. Porter, W. Bonfield, Processing, characterisation, and evaluation of hydroxyapatite reinforced polyethylene, Br. Ceram. Trans, 93 (1994) 91-95.
[20] S. Kanagaraj, F.R. Varanda, T.V. Zhil’tsova, M.S. Oliveira, J.A. Simões, Mechanical properties of high density polyethylene/carbon nanotube composites, Composites Science and Technology, 67 (2007) 3071-3077.
[21] M. Haneef, J.F. Rahman, M. Yunus, S. Zameer, S. Patil, T. Yezdani, Hybrid polymer matrix composites for biomedical applications, Int. J. Modern. Eng. Res, 3 (2013) 970-979. ISSN: 2249-6645
[22] C. Liu, L. Ren, R. Arnell, J. Tong, Abrasive wear behavior of particle reinforced ultrahigh molecular weight polyethylene composites, Wear, 225 (1999) 199-204.
[23] J. Juhasz, S. Best, R. Brooks, M. Kawashita, N. Miyata, T. Kokubo, T. Nakamura, W. Bonfield, Mechanical properties of glass-ceramic A–W-polyethylene composites: effect of filler content and particle size, Biomaterials, 25 (2004) 949-955.
[24] S. Hashmi, S. Neogi, A. Pandey, N. Chand, Sliding wear of PP/UHMWPE blends: effect of blend composition, Wear, 247 (2001) 9-14.
[25] S. Ziraki, S.M. Zebarjad, M.J. Hadianfard, A study on the tensile properties of silicone rubber/polypropylene fibers/silica hybrid nanocomposites, Journal of the Mechanical Behavior of Biomedical Materials, 57 (2016) 289-296.
[26] S.J. Peter, P. Kim, A.W. Yasko, M.J. Yaszemski, A.G. Mikos, Crosslinking characteristics of an injectable poly (propylene fumarate)/β‐tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials, 44 (1999) 314-321.<314::AID-JBM10>3.0.CO;2-W
[27] X. Shi, B. Sitharaman, Q.P. Pham, F. Liang, K. Wu, W.E. Billups, L.J. Wilson, A.G. Mikos, Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering, Biomaterials, 28 (2007) 4078-4090.
[28] K.W. Chan, H.M. Wong, K.W.K. Yeung, S.C. Tjong, Polypropylene biocomposites with boron nitride and nanohydroxyapatite reinforcements, Materials, 8 (2015) 992-1008.
[29] W. Ding, D. Jahani, E. Chang, A. Alemdar, C.B. Park, M. Sain, Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors, Composites Part A: Applied Science and Manufacturing, 83 (2016) 130-139.
[30] C.Z. Liao, H.M. Wong, K.W.K. Yeung, S.C. Tjong, The development, fabrication, and material characterization of polypropylene composites reinforced with carbon nanofiber and hydroxyapatite nanorod hybrid fillers, International journal of nanomedicine, 9 (2014) 1299-1310.
[31] L.C. Jones, L.T. Topoleski, A. Tsao, Biomaterials in orthopaedic implants, in: Mechanical Testing of Orthopaedic Implants, Elsevier, (2017) 17-32.
[32] S. Aghyarian, X. Hu, I.H. Lieberman, V. Kosmopoulos, H.K. Kim, D.C. Rodrigues, Two novel high performing composite PMMA-CaP cements for vertebroplasty: An ex vivo animal study, Journal of the mechanical behavior of biomedical materials, 50 (2015) 290-298.
[33] C. Fukuda, K. Goto, M. Imamura, M. Neo, T. Nakamura, Bone bonding ability and handling properties of a titania–polymethylmethacrylate (PMMA) composite bioactive bone cement modified with a unique PMMA powder, Acta biomaterialia, 7 (2011) 3595-3600.
[34] S. Khaled, P.A. Charpentier, A.S. Rizkalla, Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers, Journal of biomaterials applications, 25 (2011) 515-537.
[35] M. Fini, G. Giavaresi, N.N. Aldini, P. Torricelli, R. Botter, D. Beruto, R. Giardino, A bone substitute composed of polymethylmethacrylate and α-tricalcium phosphate: results in terms of osteoblast function and bone tissue formation, Biomaterials, 23 (2002) 4523-4531.
[36] H.S. Costa, M.F. Rocha, G.I. Andrade, E.F. Barbosa-Stancioli, M.M. Pereira, R.L. Orefice, W.L. Vasconcelos, H.S. Mansur, Sol–gel derived composite from bioactive glass–polyvinyl alcohol, Journal of Materials Science, 43 (2008) 494-502.
[37] M. Hakkarainen, New PVC materials for medical applications—the release profile of PVC/polycaprolactone–polycarbonate aged in aqueous environments, Polymer Degradation and Stability, 80 (2003) 451-458.
[38] V.F. Cardoso, D.M. Correia, C. Ribeiro, M.M. Fernandes, S. Lanceros-Méndez, Fluorinated polymers as smart materials for advanced biomedical applications, Polymers, 10 (2018) 161-187.
[39] B. Ameduri, Chlorotrifluoroethylene Copolymers for Energy-applied Materials, in: Fluorinated Polymers, (2016) 265-300.
[40] F. Boschin, N. Blanchemain, M. Bria, E. Delcourt‐Debruyne, M. Morcellet, H. Hildebrand, B. Martel, Improved drug delivery properties of PVDF membranes functionalized with β‐cyclodextrin—Application to guided tissue regeneration in periodontology, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 79 (2006) 78-85.
[41] A. Abdal-Hay, K.A. Khalil, F.F. Al-Jassir, A.M. Gamal-Eldeen, Biocompatibility properties of polyamide 6/PCL blends composite textile scaffold using EA. hy926 human endothelial cells, Biomedical Materials, 12 (2017) 035002.
[42] G. Kubyshkina, B. Zupančič, M. Štukelj, D. Grošelj, L. Marion, I. Emri, Sterilization effect on structure, thermal and time-dependent properties of polyamides, in: Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, 3(2011) 11-19.
[43] S. Samavedi, L.K. Poindexter, M. Van Dyke, A.S. Goldstein, Synthetic biomaterials for regenerative medicine applications, in: Regenerative Medicine Applications in Organ Transplantation, Elsevier, (2014) 81-99.
[44] S. Swar, V. Zajícová, M. Rysová, I. Lovětinská‐Šlamborová, L. Voleský, I. Stibor, Biocompatible surface modification of poly (ethylene terephthalate) focused on pathogenic bacteria: Promising prospects in biomedical applications, Journal of Applied Polymer Science, 134 (2017) 44990.
[45] S. Teoh, Z. Tang, G.W. Hastings, Thermoplastic polymers in biomedical applications: structures, properties and processing, in: Handbook of biomaterial properties, Springer, (1998) 270-301.
[46] L. Rubin, Polyethylene as a bone and cartilage substitute: a 32-year retrospective, Biomaterials in Plastic Surgery. St Louis, MO: CV Mosby, (1983) 477-493.
[47] H. Toiserkani, G. Yilmaz, Y. Yagci, L. Torun, Functionalization of polysulfones by click chemistry, Macromolecular Chemistry and Physics, 211 (2010) 2389-2395.
[48] H. Wang, Y. Li, Y. Zuo, J. Li, S. Ma, L. Cheng, Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering, Biomaterials, 28 (2007) 3338-3348.
[49] I. Shabani, V. Haddadi-Asl, M. Soleimani, E. Seyedjafari, S.M. Hashemi, Ion-Exchange Polymer Nanofibers for Enhanced Osteogenic Differentiation of Stem Cells and Ectopic Bone Formation, ACS Applied Materials & Interfaces, 6 (2014) 72-82.
[50] A. Akinci, Mechanical and structural properties of polypropylene composites filled with graphite flakes, Archives of Materials Science and Engineering, 35 (2009) 91-94.
[51] G. Kaur, R. Adhikari, P. Cass, M. Bown, A.V. Vashi, P. Gunatillake, Flexible conductive graphene/polyurethane composite films for biomedical applications, Frontiers in Bioengineering and Biotechnology, (2016).
[52] T. Yoshii, J.E. Dumas, A. Okawa, D.M. Spengler, S.A. Guelcher, Synthesis, characterization of calcium phosphates/polyurethane composites for weight-bearing implants, J Biomed Mater Res B Appl Biomater, 100 (2012) 32-40.
[53] F. Khan, Y. Dahman, A novel approach for the utilization of biocellulose nanofibres in polyurethane nanocomposites for potential applications in bone tissue implants, Designed Monomers and Polymers, 15 (2012) 1-29.
[54] S. Sahan, P. Hosseinian, D. Ozdil, M. Turk, H.M. Aydin, Polyurethane–Ceramic matrices as orbital implants, International Journal of Polymeric Materials and Polymeric Biomaterials, 67 (2018) 487-493.
[55] L. Wang, B. Sun, K.S. Ziemer, G.A. Barabino, R.L. Carrier, Chemical and physical modifications to poly (dimethylsiloxane) surfaces affect adhesion of Caco‐2 cells, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 93 (2010) 1260-1271.
[56] N. Ignjatović, J. Jovanović, E. Suljovrujić, D. Uskoković, Injectable polydimethylsiloxane–hydroxyapatite composite cement, Bio-medical materials and engineering, 13 (2003) 401-410.
[57] A. Larmagnac, S. Eggenberger, H. Janossy, J. Vörös, Stretchable electronics based on Ag-PDMS composites, Scientific Reports, 4 (2014) 7254.
[58] F. Rahmitasari, Y. Ishida, K. Kurahashi, T. Matsuda, M. Watanabe, T. Ichikawa, PEEK with Reinforced Materials and Modifications for Dental Implant Applications, Dentistry journal, 5 (2017).
[59] S.A. Stewart, J. Domínguez-Robles, R.F. Donnelly, E. Larrañeta, Implantable polymeric drug delivery devices: Classification, manufacture, materials, and clinical applications, Polymers, 10 (2018) 1379.
[60] J. Karlsson, H.J. Vaughan, J.J. Green, Biodegradable polymeric nanoparticles for therapeutic cancer treatments, Annual review of chemical and biomolecular engineering, 9 (2018) 105-127.
[61] D.S. Kohane, R. Langer, Polymeric biomaterials in tissue engineering, Pediatric research, 63 (2008) 487-491.
[62] D.F. Williams, On the mechanisms of biocompatibility, Biomaterials, 29 (2008) 2941-2953.
[63] S. Tabasum, A. Noreen, M.F. Maqsood, H. Umar, N. Akram, S.A.S. Chatha, K.M. Zia, A review on versatile applications of blends and composites of pullulan with natural and synthetic polymers, International journal of biological macromolecules, 120 (2018) 603-632.
[64] C. Sharma, N.K. Bhardwaj, Bacterial nanocellulose: Present status, biomedical applications and future perspectives, Materials Science and Engineering: C, (2019) 109963.
[65] C.H. Lee, A. Singla, Y. Lee, Biomedical applications of collagen, International journal of pharmaceutics, 221 (2001) 1-22.
[66] B. Seal, T. Otero, A. Panitch, Polymeric biomaterials for tissue and organ regeneration, Materials Science and Engineering: R: Reports, 34 (2001) 147-230.
[67] M. Zare-Gachi, H. Daemi, J. Mohammadi, P. Baei, F. Bazgir, S. Hosseini-Salekdeh, H. Baharvand, Improving anti-hemolytic, antibacterial and wound healing properties of alginate fibrous wound dressings by exchanging counter-cation for infected full-thickness skin wounds, Materials Science & Engineering C-Materials for Biological Applications, 107 (2020) 1-42.
[68] A.C. Hernandez-Gonzalez, L. Tellez-Jurado, L.M. Rodriguez-Lorenzo, Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review, Carbohydrate Polymers, 229 (2020) 1-52.
[69] R.K. Eid, D.S. Ashour, E.A. Essa, G.M. El Maghraby, M.F. Arafa, Chitosan coated nanostructured lipid carriers for enhanced in vivo efficacy of albendazole against Trichinella spiralis, Carbohydrate Polymers, 232 (2020) 1-13.
[70] Y. Wang, C. He, Y. Feng, Y. Yang, Z. Wei, W. Zhao, C. Zhao, A chitosan modified asymmetric small-diameter vascular graft with anti-thrombotic and anti-bacterial functions for vascular tissue engineering, Journal Of Materials Chemistry B, 8 (2020) 568-577.
[71] W. Chen, Y. Zhu, Z. Zhang, Y. Gao, W. Liu, Q. Borjihan, H. Qu, Y. Zhang, Y. Zhang, Y.-J. Wang, L. Zhang, A. Dong, Engineering a multifunctional N-halamine-based antibacterial hydrogel using a super-convenient strategy for infected skin defect therapy, Chemical Engineering Journal, 379 (2020) 1-13.
[72] N. Goonoo, A. Bhaw-Luximon, P. Passanha, S.R. Esteves, D. Jhurry, Third generation poly(hydroxyacid) composite scaffolds for tissue engineering, Journal Of Biomedical Materials Research Part B-Applied Biomaterials, 105 (2017) 1667-1684.
[73] I. Manavitehrani, A. Fathi, Y. Wang, P.K. Maitz, F. Mirmohseni, T.L. Cheng, L. Peacock, D.G. Little, A. Schindeler, F. Dehghani, Fabrication of a Biodegradable Implant with Tunable Characteristics for Bone Implant Applications, Biomacromolecules, 18 (2017) 1736-1746.
[74] L. Wang, X. Zhao, F. Yang, W. Wu, M. Wu, Y. Li, X. Zhang, Loading paclitaxel into porous starch in the form of nanoparticles to improve its dissolution and bioavailability, International Journal Of Biological Macromolecules, 138 (2019) 207-214.
[75] H. Luo, R. Cha, J. Li, W. Hao, Y. Zhang, F. Zhou, Advances in tissue engineering of nanocellulose-based scaffolds: A review, Carbohydrate Polymers, 224 (2019) 1-15.
[76] I. Khan, M. Apostolou, R. Bnyan, C. Houacine, A. Elhissi, S.S. Yousaf, Paclitaxel-loaded micro or nano transfersome formulation into novel tablets for pulmonary drug delivery via nebulization, International Journal Of Pharmaceutics, 575 (2020) 1-15.
[77] Y. Poetzinger, L. Rahnfeld, D. Kralisch, D. Fischer, Immobilization of plasmids in bacterial nanocellulose as gene activated matrix, Carbohydrate Polymers, 209 (2019) 62-73.
[78] S.I. Moon, K. Deguchi, M. Miyamoto, Y. Kimura, Synthesis of polyglactin by melt/solid polycondensation of glycolic/L‐lactic acids, Polymer international, 53 (2004) 254-258.
[79] E. Marin, M.I. Briceño, C. Caballero-George, Critical evaluation of biodegradable polymers used in nanodrugs, International journal of nanomedicine, 8 (2013) 3071-3091.
[80] D.J. Cameron, M.P. Shaver, Aliphatic polyester polymer stars: synthesis, properties and applications in biomedicine and nanotechnology, Chemical Society Reviews, 40 (2011) 1761-1776.
[81] J.B. Jonnalagadda, I.V. Rivero, J. Warzywoda, In-vitro degradation characteristics of poly (e-caprolactone)/poly (glycolic acid) scaffolds fabricated via solid-state cryomilling, Journal of biomaterials applications, 30 (2015) 472-483.
[82] H. Seyednejad, A.H. Ghassemi, C.F. van Nostrum, T. Vermonden, W.E. Hennink, Functional aliphatic polyesters for biomedical and pharmaceutical applications, Journal of Controlled release, 152 (2011) 168-176.
[83] R. Gaudin, C. Knipfer, A. Henningsen, R. Smeets, M. Heiland, T. Hadlock, Approaches to peripheral nerve repair: generations of biomaterial conduits yielding to replacing autologous nerve grafts in craniomaxillofacial surgery, BioMed research international, 2016 (2016) 1-18.
[84] M. Okamoto, B. John, Synthetic biopolymer nanocomposites for tissue engineering scaffolds, Progress in Polymer Science, 38 (2013) 1487-1503.
[85] V. Singh, M. Tiwari, Structure-processing-property relationship of poly (Glycolic Acid) for drug delivery systems 1: Synthesis and catalysis, International Journal of Polymer Science, 2010 (2010) 1-23.
[86] K. Okuyama, S. Yanamoto, T. Naruse, Y. Sakamoto, S. Rokutanda, S. Ohba, I. Asahina, M. Umeda, Clinical complications in the application of polyglycolic acid sheets with fibrin glue after resection of mucosal lesions in oral cavity, Oral surgery, oral medicine, oral pathology and oral radiology, 125 (2018) 541-546.
[87] H. Kobayashi, D. Terada, Y. Yokoyama, D.W. Moon, Y. Yasuda, H. Koyama, T. Takato, Vascular-inducing poly (glycolic acid)-collagen nanocomposite-fiber scaffold, Journal of biomedical nanotechnology, 9 (2013) 1318-1326.
[88] B.N. Kim, Y.-G. Ko, T. Yeo, E.J. Kim, O.K. Kwon, O.H. Kwon, Guided Regeneration of Rabbit Calvarial Defects Using Silk Fibroin Nanofiber–Poly (glycolic acid) Hybrid Scaffolds, ACS Biomaterials Science & Engineering, 5 (2019) 5266-5272.
[89] M. Porgham Daryasari, M. Dusti Telgerd, M. Hossein Karami, A. Zandi-Karimi, H. Akbarijavar, M. Khoobi, E. Seyedjafari, G. Birhanu, P. Khosravian, F. SadatMahdavi, Poly-l-lactic acid scaffold incorporated chitosan-coated mesoporous silica nanoparticles as pH-sensitive composite for enhanced osteogenic differentiation of human adipose tissue stem cells by dexamethasone delivery, Artificial cells, nanomedicine, and biotechnology, 47 (2019) 4020-4029.
[90] Y. Wang, L. Sun, Z. Mei, F. Zhang, M. He, C. Fletcher, F. Wang, J. Yang, D. Bi, Y. Jiang, 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma, Materials & Design, 186 (2020) 108336.
[91] R. Zhang, X. Wang, J. Wang, M. Cheng, Synthesis and characterization of konjac glucomannan/carrageenan/nano-silica films for the preservation of postharvest white mushrooms, Polymers, 11 (2019) 6.
[92] P. Saini, M. Arora, M.R. Kumar, Poly (lactic acid) blends in biomedical applications, Advanced Drug Delivery Reviews, 107 (2016) 47-59.
[93] A.H. Shamsah, S.H. Cartmell, S.M. Richardson, L.A. Bosworth, Tissue Engineering the Annulus Fibrosus Using 3D Rings of Electrospun PCL: PLLA Angle-Ply Nanofiber Sheets, Frontiers in Bioengineering and Biotechnology, 7 (2019) 1-13.
[94] S. Nanaki, P. Barmpalexis, A. Iatrou, E. Christodoulou, M. Kostoglou, D.N. Bikiaris, Risperidone Controlled Release Microspheres Based on Poly (Lactic Acid)-Poly (Propylene Adipate) Novel Polymer Blends Appropriate for Long Acting Injectable Formulations, Pharmaceutics, 10 (2018) 130 1-21.
[95] X. Si, X. Quan, Top capping of nanosilver-loaded titania nanotubes with norspermidine-incorporated polymer for sustained anti-biofilm effects, International Biodeterioration & Biodegradation, 123 (2017) 228-235.
[96] C. Liu, S. Zhang, D.J. McClements, D. Wang, Y. Xu, Design of astaxanthin-loaded core–shell nanoparticles consisting of chitosan oligosaccharides and poly (lactic-co-glycolic acid): Enhancement of water solubility, stability, and bioavailability, Journal of agricultural and food chemistry, 67 (2019) 5113-5121.
[97] S.J. Lee, G. Khang, Y.M. Lee, H.B. Lee, Interaction of human chondrocytes and NIH/3T3 fibroblasts on chloric acid-treated biodegradable polymer surfaces, Journal of Biomaterials Science, Polymer Edition, 13 (2002) 197-212.
[98] Z. Pan, J. Ding, Poly (lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus. 2 (2012) 366–377.
[99] R.K. Kankala, X.-M. Xu, C.-G. Liu, A.-Z. Chen, S.-B. Wang, 3D-printing of microfibrous porous scaffolds based on hybrid approaches for bone tissue engineering, Polymers, 10 (2018) 807.
[100] J.-W. Park, J.-U. Hwang, J.-H. Back, S.-W. Jang, H.-J. Kim, P.-S. Kim, S. Shin, T. Kim, High strength PLGA/Hydroxyapatite composites with tunable surface structure using PLGA direct grafting method for orthopedic implants, Composites Part B: Engineering, 178 (2019) 107449.
[101] R. Boia, P.A. Dias, J.M. Martins, C. Galindo-Romero, I.D. Aires, M. Vidal-Sanz, M. Agudo-Barriuso, H.C. de Sousa, A.F. Ambrósio, M.E. Braga, Porous poly (ε-caprolactone) implants: A novel strategy for efficient intraocular drug delivery, Journal of Controlled Release, 316 (2019) 331-348.
[102] H. Li, C. Huang, X. Jin, Q. Ke, An electrospun poly (ε-caprolactone) nanocomposite fibrous mat with a high content of hydroxyapatite to promote cell infiltration, RSC advances, 8 (2018) 25228-25235.
[103] J.M. Unagolla, A.C. Jayasuriya, Enhanced cell functions on graphene oxide incorporated 3D printed polycaprolactone scaffolds, Materials Science and Engineering: C, 102 (2019) 1-11.
[104] K. Zhou, R. Gao, S. Jiang, Morphology, thermal and mechanical properties of poly (ε-caprolactone) biocomposites reinforced with nano-hydroxyapatite decorated graphene, Journal of colloid and interface science, 496 (2017) 334-342.