Application of Biopolymeric Electrospun Nanofibers in Biological Science


Application of Biopolymeric Electrospun Nanofibers in Biological Science

Mehdihasan I. Shekh, Jhaleh Amirian, Gisya Abdi, Dijit M. Patel, Bing Du

Biopolymers are those class of macromolecules which are found in nature or extracted from the living organisms. Various structures and properties of the biopolymers-based materials are well researched till to date. These mainly includes hydrogels, bio glasses, bio inks, biocomposites, fibers and others. These biopolymers-based structures have some limitations. However, Biopolymers have some common advantages (i.e., non-toxicity, easy availability, monodispersity, degradability, and better solubility etc.) and disadvantages (i.e., poor thermal and chemical stabilities, brittleness etc.). To overcome these disadvantages, it is necessary to tailor these polymers by few emerging techniques like “Electrospinning”. Electrospinning is one of the easiest techniques to prepare nanofibers from polymeric solutions by applying high voltage. Obtained nano/micro structural polymeric fibers have good properties like high surface area, porosity and low weights etc. The materials having high surface area and porosity can easily interact with cells and tissues, are better mobile vehicles for drugs, as well as possess good filtration and adsorption abilities. Thus, these one-dimensional structures of the biopolymers are very useful in various fields of biomedical especially water sanitation/desalination, tissue engineering, drug delivery and scaffolds. Various biopolymers like chitosan, chitin, sodium alginate, guar gum, polylactic acid and others are successfully fabricated as fibers and used in various fields of biomedical.

Bioengineering Biopolymers, Electrospinning, Nanofibers, Scaffolds, Drug Delivery

Published online 11/20/2020, 46 pages

Citation: Mehdihasan I. Shekh, Jhaleh Amirian, Gisya Abdi, Dijit M. Patel, Bing Du, Application of Biopolymeric Electrospun Nanofibers in Biological Science, Materials Research Foundations, Vol. 87, pp 156-201, 2021


Part of the book on Nanohybrids

[1] B.-D. Gisela, H. Andrew, C. Jared, Electrospun nanofibers from biopolymers and their biomedical applications, in: J.V. Edwards (Ed.), Modified Fibers with Medical and Specialty Applications, Springer, Netherland, 2006, pp. 67-80.
[2] A. V. Vasenkov, Big data is the future of material science, Journal of Material Science & Engineering, S2(01) (2013).
[3] J.V. Edwards, B.-D. Gisela, S.C. Goheen, Modified Fibers with Medical and Specialty Applications, Springer, 2006.
[4] S. Wang, Y. Zhao, M. Shen, X. Shi, Electrospun hybrid nanofibers doped with nanoparticles or nanotubes for biomedical applications, Therapeutic Delivery 3(10) (2012) 1155-1169.
[5] N. Chirani, L. Yahia, L. Gritsch, F.L. Motta, S. Chirani, S. Faré, History and Applications of Hydrogels, Journal of Biomedical Sciences 4(2) (2015) 13-23.
[6] B. M. Baker, A. M. Handorf, L. C. Lonescu, L. Wan-Ju, R. L. Mauck, New directions in nanofibrous scaffolds for soft tissue engineering and regeneration, Expert Rev. Med. Devices 6(5) (2009) 515-532.
[7] T. Ondaruchu, C. Jaochim, Drawing a single nanofibre over hundreds of microns, EUROPHYSICS LETTERS 42(2) (1998) 15-220.
[8] M. R. Charles., Membrane-Based Synthesis of Nanomaterials, Chem. Mater. 8 (1996) 1739-1746.
[9] P.X. Ma, R. Zhang, Synthetic nano-scale fibrous extracellular matrix, Journal of Biomedical Materials Research 46(1) (1999) 60-72.<60::AID-JBM7>3.0.CO;2-H
[10] L. Guojun, D. Jianfu, Q. Lijie, G. Andrew, D.B. P., G.J. T., H. T., S. K., Polystyrene-block-poly(2-cinnamoylethyl methacrylate) Nanofibers: Preparation, Characterization, and Liquid Crystalline Properties, Chem. Eur. J 5(9) (1999) 2740-2749.<2740::AID-CHEM2740>3.0.CO;2-V
[11] J. M. Deitzal, J. D. Kleinmeyer, J. K. Hirvonen, N.C. Beck Tan, Controlled deposition of electrospun poly(ethylene oxide) fibers, Polymer 42 (2001) 8163-8170.
[12] J. Li, S. Vadahanambi, C.D. Kee, I.K. Oh, Electrospun fullerenol-cellulose biocompatible actuators, Biomacromolecules 12(6) (2011) 2048-54.
[13] S. An, A. Sankaran, A.L. Yarin, Natural Biopolymer-Based Triboelectric Nanogenerators via Fast, Facile, Scalable Solution Blowing, ACS Appl Mater Interfaces 10(43) (2018) 37749-37759.
[14] X. Huang, X. Li, Y. Li, X. Wang, Biopolymer as Stabilizer and Adhesive To in Situ Precipitate CuS Nanocrystals on Cellulose Nanofibers for Preparing Multifunctional Composite Papers, ACS OMEGA 3 (2018) 8083-8090.
[15] M.I. Shekh, J. Amirian, F.J. Stadler, B. Du, Y. Zhu, Oxidized chitosan modified electrospun scaffolds for controllable release of acyclovir, Int J Biol Macromol 151 (2020) 787-796.
[16] S. Khansari, Ray Suman Sinha-, A.L. Yarin, B. Pourdeyhimi, Biopolymer-Based Nanofiber Mats and Their Mechanical Characterization, Ind. Eng. Chem. Res. 52 (2013) 15104−15113.
[17] J. D. Schiffman, C. L. Schauer, A Review: Electrospinning of Biopolymer Nanofibers and their Applications, Polymer Reviews 48(2) (2008) 317-352.
[18] Q. Zhang, Y. Li, Z.Y.W. Lin, K.K.Y. Wong, M. Lin, L. Yildirimer, X. Zhao, Electrospun polymeric micro/nanofibrous scaffolds for long-term drug release and their biomedical applications, Drug discovery today 22(9) (2017) 1351-1366.
[19] P. Zahedi , M. Fallah-Darrehchi, Electrospun Egg Albumin-PVA Nanofibers Containing Tetracycline Hydrochloride: Morphological, Drug Release, Antibacterial, Thermal and Mechanical Properties, Fibers and Polymers 16(10) (2015) 2184-2192.
[20] N.N. Maslakci, S. Ulusoy, E. Uygun, H. Cevikbas, L. Oksuz, H.K. Can, A.U. Oksuz, Ibuprofen and acetylsalicylic acid loaded electrospun PVP-dextran nanofiber mats for biomedical applications, Polymer Bulletin 74 (2017) 3283–3299.
[21] R.T. De Silva, R.K. Dissanayake, M. Mantilaka, W. Wijesinghe, S.S. Kaleel, T.N. Premachandra, L. Weerasinghe, G.A.J. Amaratunga, K.M.N. de Silva, Drug-Loaded Halloysite Nanotube-Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Sustained Antimicrobial Protection, ACS Appl Mater Interfaces 10(40) (2018) 33913-33922.
[22] Y. Wang, L. Chen, Cellulose nanowhiskers and fiber alignment greatly improve mechanical properties of electrospun prolamin protein fibers, ACS Appl Mater Interfaces 6(3) (2014) 1709-18.
[23] A. El-Fiqi, J.H. Kim, H.W. Kim, Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug, ACS Appl Mater Interfaces 7(2) (2015) 1140-52.
[24] S. Khansari, S. Duzyer, S. Sinha-Ray, A. Hockenberger, A.L. Yarin, B. Pourdeyhimi, Two-stage desorption-controlled release of fluorescent dye and vitamin from solution-blown and electrospun nanofiber mats containing porogens, Molecular pharmaceutics 10(12) (2013) 4509-26.
[25] Huarong Nie, S. Xu, J. Li, A. He, Qingsong Jiang, a.C.C. Han, Carrier System of Chemical Drugs and Isotope from Gelatin Electrospun Nanofibrous Membranes, Biomacromolecules 11 (2010) 2190–2194.
[26] G. Celik, A.U. Oksuz, Controlled Release of Ibuprofen From Electrospun Biocompatible Nanofibers With In Situ QCM Measurements, Journal of Macromolecular Science, Part A Pure and Applied Chemistry 52 (2015) 76-83.
[27] C.R. Reshmi, M. Tara, B. Anupama, M. Nandita, E.K. K., SujithcA., Poly(L-lactide-co-caprolactone)/collagen electrospun mat: Potential for wound dressing and controlled drug delivery, International Journal of Polymeric Materials and Polymeric Biomaterials 66(13) (2017) 645-657.
[28] Wei Li, T. Luo, Y. Shi, Y. Yang, X. Huang, K. Xing, L. Liu, M. Wang, Preparation, Characterization, and Property of Chitosan/Polyethylene Oxide Electrospun Nanofibrous Membrane for Controlled Drug Release, Integrated Ferroelectrics 151(1) (2014) 164-178.
[29] A. Soroush, H. Leila, A. Elham, A.A. Hemati, Preparation of electrospun nanofibers based on wheat gluten containing azathioprine for biomedical application, International Journal of Polymeric Materials and Polymeric Biomaterials (2018).
[30] B. Maryam, N. Mahdi, M. Javad, Electrospinning of cyclodextrin functionalized chitosan/PVA nanofibers as a drug delivery system, Chinese Journal of Polymer Science 31(10) (2013) 1343 1351.
[31] Y. Hou-Yong, W. Chuang, S.Y.H. Abdalkarim, Cellulose nanocrystals/polyethylene glycol as bifunctional reinforcing/compatibilizing agents in poly(lactic acid) nanofibers for controlling long-term in vitro drug release, Cellulose 24 (2017) 4461–4477.
[32] S. Tang, Z. Zhao, G. Chen, Y. Su, L. Lu, B. Li, D. Liang, R. Jin, Fabrication of ampicillin/starch/polymer composite nanofibers with controlled drug release properties by electrospinning, J Sol-Gel Sci Technol 77 (2016) 594–603.
[33] X. Chen, H. Yan, W. Sun, Y. Feng, J. Li, Q. Lin, Z. Shi, X. Wang, Synthesis of amphiphilic alginate derivatives and electrospinning blend nanofibers: a novel hydrophobic drug carrier, Polym. Bull. 72 (2017) 30973117.
[34] A. Kyziołq, J. Michna, I. Moreno, E. Gamezb, S. Irustab, Preparation and characterization of electrospun alginate nanofibers loaded with ciprofloxacin hydrochloride, European Polymer Journal 96 (2017) 350–360.
[35] E. Shekarforoush, F. Ajalloueian, G. Zeng, A.C. Mendes, I.S. Chronakis, Electrospun xanthan gum-chitosan nanofibers as delivery carrier of hydrophobic bioactives, Materials Letters 228 (2018) 322–326.
[36] A. Laha, Y. Shital, M. Saptarshi, S.C. S., In-vitro release study of hydrophobic drug using electrospun cross-linked gelatin nanofiber, Biochemical Engineering Journal 105 (2016) 481–488.
[37] A.MeeraMoydeen, M.S.A. Padusha, E.F. Aboelfetoh, S. Al-Deyab3, M.H. El-Newehy, Fabrication of electrospun poly(vinyl alcohol)/dextran nanofibers via emulsion process as drugdelivery system: Kinetics and in vitro release study, International Journal of Biological Macromolecules 116 (2018) 1250–1259.
[38] L. Xinkuan, Y. Yaoyao, Y. Deng-Guang, Z. Ming-Jie, Z. Min, W.G. R., Tunable zero-order drug delivery systems created by modified triaxial electrospinning, Chemical Engineering Journal 356 (2019) 886–894.
[39] R. Sedghi, A. Shaabani, Z. Mohammadi, F.Y. Samadi, E. Isaei, Biocompatible electrospinning chitosan nanofibers: A novel delivery system with superior local cancer therapy, Carbohydrate polymers 159 (2017) 1-10.
[40] A. Laha, C.S. Sharma, S. Majumdar, Sustained drug release from multi-layered sequentially crosslinked electrospun gelatin nanofiber mesh, Materials science & engineering. C, Materials for biological applications 76 (2017) 782-786.
[41] Q. Sang, G.R. Williams, H. Wu, K. Liu, H. Li, L.M. Zhu, Electrospun gelatin/sodium bicarbonate and poly(lactide-co-epsilon-caprolactone)/sodium bicarbonate nanofibers as drug delivery systems, Materials science & engineering. C, Materials for biological applications 81 (2017) 359-365.
[42] A. Hivechi, S.H. Bahrami, R.A. Siegel, Drug release and biodegradability of electrospun cellulose nanocrystal reinforced polycaprolactone, Materials science & engineering. C, Materials for biological applications 94 (2019) 929-937.
[43] X. Zhang, K. Tang, X. Zheng, Electrospinning and crosslinking of COL/PVA Nanofiber-microsphere Containing Salicylic Acid for Drug Delivery, Journal of Bionic Engineering 13(1) (2016) 143-149.
[44] Ş.M. Eskitoros-Togay, Y.E. Bulbul, N. Dilsiz, Quercetin-loaded and unloaded electrospun membranes: Synthesis, characterization and in vitro release study, Journal of Drug Delivery Science and Technology 47 (2018) 22-30.
[45] P. Jaiturong, B. Sirithunyalug, S. Eitsayeam, C. Asawahame, P. Tipduangta, J. Sirithunyalug, Preparation of glutinous rice starch/polyvinyl alcohol copolymer electrospun fibers for using as a drug delivery carrier, Asian Journal of Pharmaceutical Sciences 13(3) (2018) 239-247.
[46] A. Laha, C.S. Sharma, S. Majumdar, Electrospun gelatin nanofibers as drug carrier: effect of crosslinking on sustained release, Materials Today: Proceedings 3(10) (2016) 3484-3491.
[47] H. Almasi, P. Jafarzadeh, L. Mehryar, Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: Characterization, antimicrobial and release properties, Carbohydrate polymers 186 (2018) 273-281.
[48] S. Liu, Y. Su, Y. Chen, Fabrication, surface properties and protein encapsulation/release studies of electrospun gelatin nanofibers, Journal of biomaterials science. Polymer edition 22(7) (2011) 945-55.
[49] M.H. El-Newehy, M.E. El-Naggar, S. Alotaiby, H. El-Hamshary, M. Moydeen, S. Al-Deyab, Preparation of biocompatible system based on electrospun CMC/PVA nanofibers as controlled release carrier of diclofenac sodium, Journal of Macromolecular Science, Part A 53(9) (2016) 566-573.
[50] R. Ravikumar, M. Ganesh, U. Ubaidulla, E. Young Choi, H. Tae Jang, Preparation, characterization, and in vitro diffusion study of nonwoven electrospun nanofiber of curcumin-loaded cellulose acetate phthalate polymer, Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society 25(6) (2017) 921-926.
[51] J. Quirós, K. Boltes, R. Rosal, Bioactive Applications for Electrospun Fibers, Polymer Reviews 56(4) (2016) 631-667.
[52] M.I. Shekh, N.N. Patel, K.P. Patel, R.M. Patel, A. Ray, Nano silver-embedded electrospun nanofiber of poly(4-chloro-3-methylphenyl methacrylate): use as water sanitizer, Environmental science and pollution research international 24(6) (2017) 5701-5716.
[53] M.I. Shekh, D.M. Patel, K.P. Patel, R.M. Patel, Electrospun nanofibers of poly(NPEMA-co.-CMPMA): Used as Heavy metal ion remover and water sanitizer, Fibers and Polymers 17(3) (2016) 358-370.
[54] M.I. Shekh, K.P. Patel, R.M. Patel, Electrospun ZnO Nanoparticles Doped Core–Sheath Nanofibers: Characterization and Antimicrobial Properties, Journal of Polymers and the Environment 26(12) (2018) 4376-4387.
[55] I. Esparza, N. Jimenez-Moreno, F. Bimbela, C. Ancin-Azpilicueta, L.M. Gandia, Fruit and vegetable waste management: Conventional and emerging approaches, J Environ Manage 265 (2020) 110510.
[56] M. Thakur, G. Sharma, T. Ahamad, A.A. Ghfar, D. Pathania, M. Naushad, Efficient photocatalytic degradation of toxic dyes from aqueous environment using gelatin-Zr(IV) phosphate nanocomposite and its antimicrobial activity, Colloids Surf B Biointerfaces 157 (2017) 456-463.
[57] G. Sharma, B. Thakur, M. Naushad, A. Kumar, F.J. Stadler, S.M. Alfadul, G.T. Mola, Applications of nanocomposite hydrogels for biomedical engineering and environmental protection, Environmental Chemistry Letters 16(1) (2017) 113-146.
[58] L. Rubio, M.J. Motilva, M.P. Romero, Recent advances in biologically active compounds in herbs and spices: a review of the most effective antioxidant and anti-inflammatory active principles, Crit Rev Food Sci Nutr 53(9) (2013) 943-53.
[59] D. Pathania, D. Gupta, N.C. Kothiyal, G. Sharma, G.E. Eldesoky, M. Naushad, Preparation of a novel chitosan-g-poly(acrylamide)/Zn nanocomposite hydrogel and its applications for controlled drug delivery of ofloxacin, Int J Biol Macromol 84 (2016) 340-8.
[60] B.S. Rathore, G. Sharma, D. Pathania, V.K. Gupta, Synthesis, characterization and antibacterial activity of cellulose acetate-tin (IV) phosphate nanocomposite, Carbohydr Polym 103 (2014) 221-7.
[61] D. Pathania, G. Sharma, R. Thakur, Pectin @ zirconium (IV) silicophosphate nanocomposite ion exchanger: Photo catalysis, heavy metal separation and antibacterial activity, Chemical Engineering Journal 267 (2015) 235-244.
[62] G. Sharma, S. Bhattacharya, V. Chauhan, A. Kumar, I. Inamuddin, A.M. Asiri, K.A. Alamry, Chemical modification of raw Quercus leucotricophora wood strips and studies of its physicochemical properties and antifungal behavior, Desalination and Water Treatment 150 (2019) 252-262.
[63] V.K. Gupta, S. Agarwal, I. Tyagi, D. Pathania, B.S. Rathore, G. Sharma, Synthesis, characterization and analytical application of cellulose acetate-tin (IV) molybdate nanocomposite ion exchanger: binary separation of heavy metal ions and antimicrobial activity, Ionics 21(7) (2015) 2069-2078.
[64] S. Xin, X. Li, Y. Zhu, T. Zhang, Z. Lei, W. Li, X. Zhou, H. Deng, Nanofibrous mats coated by homocharged biopolymer-layered silicate nanoparticles and their antitumor activity, Colloids and surfaces. B, Biointerfaces 105 (2013) 137-43.
[65] D. Kai, S.S. Liow, X.J. Loh, Biodegradable polymers for electrospinning: towards biomedical applications, Materials science & engineering. C, Materials for biological applications 45 (2014) 659-70.
[66] A. Anitha, S. Sowmya, P.T.S. Kumar, S. Deepthi, K.P. Chennazhi, H. Ehrlich, M. Tsurkan, R. Jayakumar, Chitin and chitosan in selected biomedical applications, Progress in Polymer Science 39(9) (2014) 1644-1667.
[67] B.S. de Farias, T.R. Sant’Anna Cadaval Junior, L.A. de Almeida Pinto, Chitosan-functionalized nanofibers: A comprehensive review on challenges and prospects for food applications, Int J Biol Macromol 123 (2019) 210-220.
[68] R. Jayakumar, M. Prabaharan, S.V. Nair, H. Tamura, Novel chitin and chitosan nanofibers in biomedical applications, Biotechnology advances 28(1) (2010) 142-50.
[69] K. Kalantari, A.M. Afifi, H. Jahangirian, T.J. Webster, Biomedical applications of chitosan electrospun nanofibers as a green polymer – Review, Carbohydr Polym 207 (2019) 588-600.
[70] H. Celebi, M. Gurbuz, S. Koparal, A. Dogan, Development of antibacterial electrospun chitosan/poly(vinyl alcohol) nanofibers containing silver ion-incorporated HAP nanoparticles, Composite Interfaces 20(9) (2013) 799-812.
[71] S. Habibi, K. Hajinasrollah, Electrospinning of Nanofibers Based on Chitosan/Gelatin Blend for Antibacterial Uses, Russian Journal of Applied Chemistry 91(5) (2018) 877-881.
[72] A.F. de Faria, F. Perreault, E. Shaulsky, L.H. Arias Chavez, M. Elimelech, Antimicrobial Electrospun Biopolymer Nanofiber Mats Functionalized with Graphene Oxide-Silver Nanocomposites, ACS Appl Mater Interfaces 7(23) (2015) 12751-9.
[73] B.S. Munteanu, Z. Aytac, G.M. Pricope, T. Uyar, C. Vasile, Polylactic acid (PLA)/Silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity, Journal of Nanoparticle Research 16(10) (2014) 2643-2655.
[74] A.M. Salaberria, S.C. Fernandes, R.H. Diaz, J. Labidi, Processing of alpha-chitin nanofibers by dynamic high pressure homogenization: characterization and antifungal activity against A. niger, Carbohydrate polymers 116 (2015) 286-91.
[75] T.T.T. Nguyen, O.H. Chung, J.S. Park, Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity, Carbohydrate polymers 86(4) (2011) 1799-1806.
[76] H. Deng, P. Lin, S. Xin, R. Huang, W. Li, Y. Du, X. Zhou, J. Yang, Quaternized chitosan-layered silicate intercalated composites based nanofibrous mats and their antibacterial activity, Carbohydrate polymers 89(2) (2012) 307-13.
[77] Y. Zhao, Y. Zhou, X. Wu, L. Wang, L. Xu, S. Wei, A facile method for electrospinning of Ag nanoparticles/poly (vinyl alcohol)/carboxymethyl-chitosan nanofibers, Applied Surface Science 258(22) (2012) 8867-8873.
[78] L. Deng, M. Taxipalati, A. Zhang, F. Que, H. Wei, F. Feng, H. Zhang, Electrospun Chitosan/Poly(ethylene oxide)/Lauric Arginate Nanofibrous Film with Enhanced Antimicrobial Activity, Journal of agricultural and food chemistry 66(24) (2018) 6219-6226.
[79] Y. Pan, X. Huang, X. Shi, Y. Zhan, G. Fan, S. Pan, J. Tian, H. Deng, Y. Du, Antimicrobial application of nanofibrous mats self-assembled with quaternized chitosan and soy protein isolate, Carbohydrate polymers 133 (2015) 229-35.
[80] T. Zhang, P. Zhou, Y. Zhan, X. Shi, J. Lin, Y. Du, X. Li, H. Deng, Pectin/lysozyme bilayers layer-by-layer deposited cellulose nanofibrous mats for antibacterial application, Carbohydrate polymers 117 (2015) 687-93.
[81] J. Tian, H. Tu, X. Shi, X. Wang, H. Deng, B. Li, Y. Du, Antimicrobial application of nanofibrous mats self-assembled with chitosan and epigallocatechin gallate, Colloids and surfaces. B, Biointerfaces 145 (2016) 643-652.
[82] W. Huang, H. Xu, Y. Xue, R. Huang, H. Deng, S. Pan, Layer-by-layer immobilization of lysozyme–chitosan–organic rectorite composites on electrospun nanofibrous mats for pork preservation, Food Research International 48(2) (2012) 784-791.
[83] F. Kayaci, O.C. Umu, T. Tekinay, T. Uyar, Antibacterial electrospun poly(lactic acid) (PLA) nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes, Journal of agricultural and food chemistry 61(16) (2013) 3901-8.
[84] M.C. Li, Q. Wu, K. Song, H.N. Cheng, S. Suzuki, T. Lei, Chitin Nanofibers as Reinforcing and Antimicrobial Agents in Carboxymethyl Cellulose Films: Influence of Partial Deacetylation, ACS Sustainable Chemisty & Engineering 4(8) (2016) 4385-4395.
[85] S.J. Lee, D.N. Heo, J.H. Moon, W.K. Ko, J.B. Lee, M.S. Bae, S.W. Park, J.E. Kim, D.H. Lee, E.C. Kim, C.H. Lee, I.K. Kwon, Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity, Carbohydrate polymers 111 (2014) 530-7.
[86] A.M. Abdelgawad, S.M. Hudson, O.J. Rojas, Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems, Carbohydrate polymers 100 (2014) 166-78.
[87] P. Uttayarat, S. Jetawattana, P. Suwanmala, J. Eamsiri, T. Tangthong, S. Pongpat, Antimicrobial electrospun silk fibroin mats with silver nanoparticles for wound dressing application, Fibers and Polymers 13(8) (2012) 999-1006.
[88] Rupesh Gajanan Nawalakhe, Samuel M. Hudson, A.-F.M. Seyam, Ahmed I. Waly, Nabil Y. Abou-Zeid, Hassan M. Ibrahim, Development of Electrospun Iminochitosan for Improved Wound Healing Application, Journal of Engineered Fibers and Fabrics, 7(2) (2012) 47-55.
[89] X. Liu, T. Lin, Y. Gao, Z. Xu, C. Huang, G. Yao, L. Jiang, Y. Tang, X. Wang, Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing, Journal of biomedical materials research. Part B, Applied biomaterials 100(6) (2012) 1556-65.
[90] D. Macocinschi, D. Filip, E. Paslaru, B.S. Munteanu, R.P. Dumitriu, G.M. Pricope, M. Aflori, M. Dobromir, V. Nica, C. Vasile, Polyurethane–extracellular matrix/silver bionanocomposites for urinary catheters, Journal of Bioactive and Compatible Polymers 30(1) (2014) 99-113.
[91] F. Kalhori, E. Arkan, F. Dabirian, G. Abdi, P. Moradipour, Controlled Preparation and Characterization of Nigella Sativa Electrospun Pad for Controlled Release, 11(2) Silicon (2018), 593-601.
[92] E. Yeniay, L. Öcal, E. Altun, B. Giray, F. Nuzhet Oktar, A. Talat Inan, N. Ekren, O. Kilic, O. Gunduz, Nanofibrous wound dressing material by electrospinning method, International Journal of Polymeric Materials and Polymeric Biomaterials (2018) 1-8.
[93] G. Avsar, D. Agirbasli, M.A. Agirbasli, O. Gunduz, E.T. Oner, Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications, Carbohydrate polymers 193 (2018) 316-325.
[94] T. Sultana, J. Amirian, C. Park, S.J. Lee, B.T. Lee, Preparation and characterization of polycaprolactone-polyethylene glycol methyl ether and polycaprolactone-chitosan electrospun mats potential for vascular tissue engineering, Journal of biomaterials applications 32(5) (2017) 648-662.
[95] J. Amirian, S.-Y. Lee, B.-T. Lee, Designing of Combined Nano and Microfiber Network by Immobilization of Oxidized Cellulose Nanofiber on Polycaprolactone Fibrous Scaffold, Journal of Biomedical Nanotechnology 12(10) (2016) 1864-1875.
[96] S. Agarwal, J.H. Wendorff, A. Greiner, Use of electrospinning technique for biomedical applications, Polymer 49(26) (2008) 5603-5621.
[97] F. Mohammadian, A. Eatemadi, Drug loading and delivery using nanofibers scaffolds, Artificial cells, nanomedicine, and biotechnology 45(5) (2017) 881-888.
[98] V. J, R. S, Applications of Polymer Nanofibers in Biomedicine and Biotechnology, Applied Biochemistry and Biotechnology 125 (2005) 147-157.
[99] H. Cao, T. Liu, S.Y. Chew, The application of nanofibrous scaffolds in neural tissue engineering, Advanced drug delivery reviews 61(12) (2009) 1055-64.
[100] F. Naghizadeh, A. Solouk, S.B. Khoulenjani, Osteochondral scaffolds based on electrospinning method: General review on new and emerging approaches, International Journal of Polymeric Materials and Polymeric Biomaterials 67(15) (2017) 913-924.
[101] V. Leszczak, L.W. Place, N. Franz, K.C. Popat, M.J. Kipper, Nanostructured biomaterials from electrospun demineralized bone matrix: a survey of processing and crosslinking strategies, ACS Appl Mater Interfaces 6(12) (2014) 9328-37.
[102] N. Panda, A. Bissoyi, K. Pramanik, A. Biswas, Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold, Journal of biomaterials science. Polymer edition 25(13) (2014) 1440-57.
[103] J.C. M, P.J. Reardon, R. Konwarh, J.C. Knowles, B.B. Mandal, Mimicking Hierarchical Complexity of the Osteochondral Interface Using Electrospun Silk-Bioactive Glass Composites, ACS Appl Mater Interfaces 9(9) (2017) 8000-8013.
[104] B.N. Singh, N.N. Panda, R. Mund, K. Pramanik, Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application, Carbohydrate polymers 151 (2016) 335-347.
[105] T. Chae, H. Yang, V. Leung, F. Ko, T. Troczynski, Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration, Journal of materials science. Materials in medicine 24(8) (2013) 1885-94.
[106] D.C. Aduba, S.-S. An, G.S. Selders, W.A. Yeudall, G.L. Bowlin, T. Kitten, H. Yang, Electrospun gelatin–arabinoxylan ferulate composite fibers for diabetic chronic wound dressing application, International Journal of Polymeric Materials and Polymeric Biomaterials (2018) 1-9.
[107] C.H. Woo, Y.C. Choi, J.S. Choi, H.Y. Lee, Y.W. Cho, A bilayer composite composed of TiO2-incorporated electrospun chitosan membrane and human extracellular matrix sheet as a wound dressing, Journal of biomaterials science. Polymer edition 26(13) (2015) 841-54.
[108] R. Zhao, X. Li, B. Sun, Y. Zhang, D. Zhang, Z. Tang, X. Chen, C. Wang, Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings, Int J Biol Macromol 68 (2014) 92-7.
[109] N. Mahmoudi, N. Eslahi, A. Mehdipour, M. Mohammadi, M. Akbari, A. Samadikuchaksaraei, A. Simchi, Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models, Journal of materials science. Materials in medicine 28(5) (2017) 73.
[110] H. Wang, Y. Feng, Z. Fang, R. Xiao, W. Yuan, M. Khan, Fabrication and characterization of electrospun gelatin-heparin nanofibers as vascular tissue engineering, Macromolecular Research 21(8) (2013) 860-869.
[111] S. Torres-Giner, J.V. Gimeno-Alcaniz, M.J. Ocio, J.M. Lagaron, Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods, ACS Appl Mater Interfaces 1(1) (2009) 218-23.
[112] E. Vatankhah, M.P. Prabhakaran, D. Semnani, S. Razavi, M. Zamani, S. Ramakrishna, Phenotypic modulation of smooth muscle cells by chemical and mechanical cues of electrospun tecophilic/gelatin nanofibers, ACS Appl Mater Interfaces 6(6) (2014) 4089-101.
[113] B.K. Gu, S.J. Park, C.H. Kim, Beneficial effect of aligned nanofiber scaffolds with electrical conductivity for the directional guide of cells, Journal of biomaterials science. Polymer edition 29(7-9) (2018) 1053-1065.
[114] Jiang Yuan, Zhi-Cai Xing, Suk-Woo Park, Jia Geng, I.-K. Kang, J. Yuan, J. Shen, W. Meng, K.-J. Shim, I.-S. Han, J.-C. Kim, Fabrication of PHBV/Keratin Composite Nanofibrous Mats for Biomedical Applications, Macromolecular Research 17(11) (2009) 850-855.
[115] Alvarez-Perez Marco Antonio , G. Vincenzo, C. Valentina, A. Luigi, Influence of Gelatin Cues in PCL Electrospun Membranes on Nerve Outgrowth, Biomacromolecules 11 (2010) 2238–2246.
[116] C. Dhand, V.A. Barathi, S.T. Ong, M. Venkatesh, S. Harini, N. Dwivedi, E.T. Goh, M. Nandhakumar, J.R. Venugopal, S.M. Diaz, M.H. Fazil, X.J. Loh, L.S. Ping, R.W. Beuerman, N.K. Verma, S. Ramakrishna, R. Lakshminarayanan, Latent Oxidative Polymerization of Catecholamines as Potential Cross-linkers for Biocompatible and Multifunctional Biopolymer Scaffolds, ACS Appl Mater Interfaces 8(47) (2016) 32266-32281.
[117] F. Peng, M.T. Shaw, J.R. Olson, M. Wei, Hydroxyapatite Needle-Shaped Particles/Poly(l-lactic acid) Electrospun Scaffolds with Perfect Particle-along-Nanofiber Orientation and Significantly Enhanced Mechanical Properties, The Journal of Physical Chemistry C 115(32) (2011) 15743-15751.
[118] P.K. Eun, K.H. Ki, L.S. Jin, M. Byung-Moo, P.W. Ho, Biomimetic Nanofibrous Scaffolds: Preparation and Characterization of PGA/Chitin Blend Nanofibers, Biomacromolecules 7 (2006) 635-643.
[119] X. Jing, M.R. Salick, T. Cordie, H.-Y. Mi, X.-F. Peng, L.-S. Turng, Electrospinning Homogeneous Nanofibrous Poly(propylene carbonate)/Gelatin Composite Scaffolds for Tissue Engineering, Industrial & Engineering Chemistry Research 53(22) (2014) 9391-9400.
[120] T.C. Lin, F.H. Lin, J.C. Lin, In vitro characterization of magnetic electrospun IDA-grafted chitosan nanofiber composite for hyperthermic tumor cell treatment, Journal of biomaterials science. Polymer edition 24(9) (2013) 1152-63.
[121] H.Y. Lin, W.C. Tsai, S.H. Chang, Collagen-PVA aligned nanofiber on collagen sponge as bi-layered scaffold for surface cartilage repair, Journal of biomaterials science. Polymer edition 28(7) (2017) 664-678.
[122] Y.F. Qian, K.H. Zhang, F. Chen, Q.F. Ke, X.M. Mo, Cross-linking of gelatin and chitosan complex nanofibers for tissue-engineering scaffolds, Journal of biomaterials science. Polymer edition 22(8) (2011) 1099-113.
[123] Y.Y. Huang, D.Y. Wang, L.L. Chang, Y.C. Yang, Fabricating microparticles/nanofibers composite and nanofiber scaffold with controllable pore size by rotating multichannel electrospinning, Journal of biomaterials science. Polymer edition 21(11) (2010) 1503-14.
[124] X. Gui, J. Hu, Y. Han, Random and aligned electrospun gelatin nanofiber mats for human mesenchymal stem cells, Materials Research Innovations (2018) 1-8.
[125] Z.C. Chen, A.K. Ekaputra, K. Gauthaman, P.G. Adaikan, H. Yu, D.W. Hutmacher, In vitro and in vivo analysis of co-electrospun scaffolds made of medical grade poly(epsilon-caprolactone) and porcine collagen, Journal of biomaterials science. Polymer edition 19(5) (2008) 693-707.
[126] R. Selvakumar, S.N. Mohaideen, S. Aravindh, C. Sabarinath, M. Ananthasubramanian, Effect of biotin and galactose functionalized gelatin nanofiber membrane on HEp-2 cell attachment and cytotoxicity, The Journal of membrane biology 247(1) (2014) 35-43.
[127] Y.-M. Lim, S.I. Jeong, Y.M. Shin, J.-S. Park, H.-J. Gwon, Y.-C. Nho, S.-J. An, J.-B. Choi, J.-O. Jeong, J.-W. Choi, Physicochemical characterization of gelatin-immobilized, acrylic acid-bacterial cellulose nanofibers as cell scaffolds using gamma-irradiation, Biotechnology and Bioprocess Engineering 20(5) (2015) 942-947.
[128] W. Li, X. Li, W. Li, T. Wang, X. Li, S. Pan, H. Deng, Nanofibrous mats layer-by-layer assembled via electrospun cellulose acetate and electrosprayed chitosan for cell culture, European Polymer Journal 48(11) (2012) 1846-1853.
[129] C. Jyh-Ping, C. Shih-Hsien, L. Guo-Jyun, Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture, Nanoscale Research Letters 7 (2012) 170-180.
[130] S.F. Chou, L.J. Luo, J.Y. Lai, D.H. Ma, Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials, Materials science & engineering. C, Materials for biological applications 71 (2017) 1145-1155.
[131] S. Hong, G. Kim, Fabrication of electrospun polycaprolactone biocomposites reinforced with chitosan for the proliferation of mesenchymal stem cells, Carbohydrate polymers 83(2) (2011) 940-946.
[132] M.K. Joshi, A.P. Tiwari, B. Maharjan, K.S. Won, H.J. Kim, C.H. Park, C.S. Kim, Cellulose reinforced nylon-6 nanofibrous membrane: Fabrication strategies, physicochemical characterizations, wicking properties and biomimetic mineralization, Carbohydrate polymers 147 (2016) 104-113.
[133] S. Xin, Y. Li, W. Li, J. Du, R. Huang, Y. Du, H. Deng, Carboxymethyl chitin/organic rectorite composites based nanofibrous mats and their cell compatibility, Carbohydrate polymers 90(2) (2012) 1069-74.
[134] G.J. Lai, K.T. Shalumon, S.H. Chen, J.P. Chen, Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells, Carbohydrate polymers 111 (2014) 288-97.
[135] S. Xin, X. Li, Z. Ma, Z. Lei, J. Zhao, S. Pan, X. Zhou, H. Deng, Cytotoxicity and antibacterial ability of scaffolds immobilized by polysaccharide/layered silicate composites, Carbohydrate polymers 92(2) (2013) 1880-6.
[136] B.K. Shrestha, H.M. Mousa, A.P. Tiwari, S.W. Ko, C.H. Park, C.S. Kim, Development of polyamide-6,6/chitosan electrospun hybrid nanofibrous scaffolds for tissue engineering application, Carbohydrate polymers 148 (2016) 107-14.
[137] A. Wali, Y. Zhang, P. Sengupta, Y. Higaki, A. Takahara, M.V. Badiger, Electrospinning of non-ionic cellulose ethers/polyvinyl alcohol nanofibers: Characterization and applications, Carbohydrate polymers 181 (2018) 175-182.
[138] A. Faralli, E. Shekarforoush, F. Ajalloueian, A.C. Mendes, I.S. Chronakis, In vitro permeability enhancement of curcumin across Caco-2 cells monolayers using electrospun xanthan-chitosan nanofibers, Carbohydrate polymers 206 (2019) 38-47.
[139] K. Wu, X. Zhang, W. Yang, X. Liu, Y. Jiao, C. Zhou, Influence of layer-by-layer assembled electrospun poly ( l -lactic acid) nanofiber mats on the bioactivity of endothelial cells, Applied Surface Science 390 (2016) 838-846.
[140] S. Baghersad, S. Hajir Bahrami, M.R. Mohammadi, M.R.M. Mojtahedi, P.B. Milan, Development of biodegradable electrospun gelatin/aloe-vera/poly(epsiloncaprolactone) hybrid nanofibrous scaffold for application as skin substitutes, Materials science & engineering. C, Materials for biological applications 93 (2018) 367-379.
[141] R.D. Velasco-Barraza, R. Vera-Graziano, E.A. López-Maldonado, M.T. Oropeza-Guzmán, S.G. Dastager, A. Álvarez-Andrade, A.L. Iglesias, L.J. Villarreal-Gómez, Study of nanofiber scaffolds of PAA, PAA/CS, and PAA/ALG for its potential use in biotechnological applications, International Journal of Polymeric Materials and Polymeric Biomaterials 67(13) (2017) 800-807.
[142] J. Xue, M. He, H. Liu, Y. Niu, A. Crawford, P.D. Coates, D. Chen, R. Shi, L. Zhang, Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes, Biomaterials 35(34) (2014) 9395-405.
[143] K.T. Shalumon, N.S. Binulal, N. Selvamurugan, S.V. Nair, D. Menon, T. Furuike, H. Tamura, R. Jayakumar, Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications, Carbohydrate polymers 77(4) (2009) 863-869.
[144] G. Ma, D. Fang, Y. Liu, X. Zhu, J. Nie, Electrospun sodium alginate/poly(ethylene oxide) core–shell nanofibers scaffolds potential for tissue engineering applications, Carbohydrate polymers 87(1) (2012) 737-743.
[145] P. Vashisth, K. Nikhil, P. Roy, P.A. Pruthi, R.P. Singh, V. Pruthi, A novel gellan-PVA nanofibrous scaffold for skin tissue regeneration: Fabrication and characterization, Carbohydrate polymers 136 (2016) 851-9.
[146] M. Agheb, M. Dinari, M. Rafienia, H. Salehi, Novel electrospun nanofibers of modified gelatin-tyrosine in cartilage tissue engineering, Materials science & engineering. C, Materials for biological applications 71 (2017) 240-251.
[147] I.J. Hall Barrientos, E. Paladino, P. Szabo, S. Brozio, P.J. Hall, C.I. Oseghale, M.K. Passarelli, S.J. Moug, R.A. Black, C.G. Wilson, R. Zelko, D.A. Lamprou, Electrospun collagen-based nanofibres: A sustainable material for improved antibiotic utilisation in tissue engineering applications, International journal of pharmaceutics 531(1) (2017) 67-79.
[148] P. Agrawal, K. Pramanik, Chitosan-poly(vinyl alcohol) nanofibers by free surface electrospinning for tissue engineering applications, Tissue engineering and regenerative medicine 13(5) (2016) 485-497.
[149] A. Elamparithi, A.M. Punnoose, S. Kuruvilla, Electrospun type 1 collagen matrices preserving native ultrastructure using benign binary solvent for cardiac tissue engineering, Artificial cells, nanomedicine, and biotechnology 44(5) (2016) 1318-25.
[150] S.P. Miguel, D. Simoes, A.F. Moreira, R.S. Sequeira, I.J. Correia, Production and characterization of electrospun silk fibroin based asymmetric membranes for wound dressing applications, Int J Biol Macromol 121 (2019) 524-535.
[151] J. Lin, C. Li, Y. Zhao, J. Hu, L.M. Zhang, Co-electrospun nanofibrous membranes of collagen and zein for wound healing, ACS Appl Mater Interfaces 4(2) (2012) 1050-7.
[152] X. Yang, J. Yang, L. Wang, B. Ran, Y. Jia, L. Zhang, G. Yang, H. Shao, X. Jiang, Pharmaceutical Intermediate-Modified Gold Nanoparticles: Against Multidrug-Resistant Bacteria and Wound-Healing Application via an Electrospun Scaffold, ACS nano 11(6) (2017) 5737-5745.
[153] A.C. Alavarse, F.W. de Oliveira Silva, J.T. Colque, V.M. da Silva, T. Prieto, E.C. Venancio, J.J. Bonvent, Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing, Materials science & engineering. C, Materials for biological applications 77 (2017) 271-281.
[154] P. Guha Ray, P. Pal, P.K. Srivas, P. Basak, S. Roy, S. Dhara, Surface Modification of Eggshell Membrane with Electrospun Chitosan/Polycaprolactone Nanofibers for Enhanced Dermal Wound Healing, ACS Applied Bio Materials 1(4) (2018) 985-998.
[155] S. Kandhasamy, S. Perumal, B. Madhan, N. Umamaheswari, J.A. Banday, P.T. Perumal, V.P. Santhanakrishnan, Synthesis and Fabrication of Collagen-Coated Ostholamide Electrospun Nanofiber Scaffold for Wound Healing, ACS Appl Mater Interfaces 9(10) (2017) 8556-8568.
[156] L. Wang, J. Yang, B. Ran, X. Yang, W. Zheng, Y. Long, X. Jiang, Small Molecular TGF-beta1-Inhibitor-Loaded Electrospun Fibrous Scaffolds for Preventing Hypertrophic Scars, ACS Appl Mater Interfaces 9(38) (2017) 32545-32553.
[157] A. Islam, T. Yasin, M.A. Rafiq, T.H. Shah, A. Sabir, S.M. Khan, T. Jamil, In-situ crosslinked nanofiber mats of chitosan/poly(vinyl alcohol) blend: Fabrication, characterization and MTT assay with cancerous bone cells, Fibers and Polymers 16(9) (2015) 1853-1860.
[158] J. Nourmohammadi, A. Ghaee, S.H. Liavali, Preparation and characterization of bioactive composite scaffolds from polycaprolactone nanofibers-chitosan-oxidized starch for bone regeneration, Carbohydrate polymers 138 (2016) 172-9.
[159] S. Nagarajan, H. Belaid, C. Pochat-Bohatier, C. Teyssier, I. Iatsunskyi, E. Coy, S. Balme, D. Cornu, P. Miele, N.S. Kalkura, V. Cavailles, M. Bechelany, Design of Boron Nitride/Gelatin Electrospun Nanofibers for Bone Tissue Engineering, ACS Appl Mater Interfaces 9(39) (2017) 33695-33706.
[160] N.S. Binulal, A. Natarajan, D. Menon, V.K. Bhaskaran, U. Mony, S.V. Nair, PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering, Journal of biomaterials science. Polymer edition 25(4) (2014) 325-40.
[161] L. Li, W. Zhang, M. Huang, J. Li, J. Chen, M. Zhou, J. He, Preparation of gelatin/genipin nanofibrous membrane for tympanic member repair, Journal of biomaterials science. Polymer edition 29(17) (2018) 2154-2167.