Bioresorbable Metals for Cardiovascular and Fracture Repair Implants


Bioresorbable Metals for Cardiovascular and Fracture Repair Implants

S.C. Cifuentes, V. San-Miguel, Y. Wang, A. García-Peñas

The potential of bioresorbable metals to revolutionize current and future medical devices fascinates researchers. Magnesium, iron, and zinc have been thoroughly studied for the treatment of cardiovascular diseases or to repair fractures. Iron was the first type of metal being researched and introduced in biomedical applications. Magnesium is the most studied one, it has been tested by clinical trials and commercially available products have been already developed. The interest in zinc has recently emerged and is continuously growing. This chapter offers an overview of the role that Mg, Fe, and Zn are playing advancing the evolution of bioresorbable implants.

Biodegradable Metals, Cardiovascular Implants, Medical Devices for Fracture Repair, Magnesium, Iron, Zinc

Published online 11/20/2020, 22 pages

Citation: S.C. Cifuentes, V. San-Miguel, Y. Wang, A. García-Peñas, Bioresorbable Metals for Cardiovascular and Fracture Repair Implants, Materials Research Foundations, Vol. 87, pp 134-155, 2021


Part of the book on Nanohybrids

[1] E. Wilkins, L. Wilson, K. Wickramasinghe, P. Bhatnagar, J. Leal, R. Luengo-Fernandez, R. Burns, M. Rayner, N. Townsend, European cardiovascular disease statistics (2017). European Heart Network, Brussels
[2] Trauma Devices Market Analysis, Size, Trends – Global-2019-2025 MedSuite (2017) 1-187.
[3] A. Colombo, E. Karvouni, Biodegradable Stents: “Fulfilling the Mission and Stepping Away”, in, Am Heart Assoc, 102 (2000) 371-373.
[4] S.H. Duda, J. Wiskirchen, G. Tepe, M. Bitzer, T.W. Kaulich, D. Stoeckel, C.D. Claussen, Physical properties of endovascular stents: an experimental comparison, Journal of Vascular and Interventional Radiology, 11 (2000) 645-654.
[5] M. Moravej, D. Mantovani, Biodegradable metals for cardiovascular stent application: interests and new opportunities, International journal of molecular sciences, 12 (2011) 4250-4270.
[6] T. Kimura, H. Yokoi, Y. Nakagawa, T. Tamura, S. Kaburagi, Y. Sawada, Y. Sato, H. Yokoi, N. Hamasaki, H. Nosaka, Three-year follow-up after implantation of metallic coronary-artery stents, New England Journal of Medicine, 334 (1996) 561-567.
[7] D.Y. Kwon, J.I. Kim, H.J. Kang, B. Lee, K.W. Lee, M.S. Kim, Biodegradable stent,5 (2012) 208-216.
[8] K. Pawelec, J.A. Planell, Bone Repair Biomaterials: Regeneration and Clinical Applications, Woodhead Publishing, 12 (2018) 35-39.
[9] J. Nagels, M. Stokdijk, P.M. Rozing, Stress shielding and bone resorption in shoulder arthroplasty, Journal of shoulder and elbow surgery, 12 (2003) 35-39.
[10] I. Matthew, J. Frame, Policy of consultant oral and maxillofacial surgeons towards removal of miniplate components after jaw fracture fixation: pilot study, British Journal of Oral and Maxillofacial Surgery, 37 (1999) 110-112.
[11] M.L. Busam, R.J. Esther, W.T. Obremskey, Hardware removal: indications and expectations, JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 14 (2006) 113-120.
[12] Y. Yun, Z. Dong, N. Lee, Y. Liu, D. Xue, X. Guo, J. Kuhlmann, A. Doepke, H.B. Halsall, W. Heineman, Revolutionizing biodegradable metals, Materials Today, 12 (2009) 22-32.
[13] C. Shuai, S. Li, S. Peng, P. Feng, Y. Lai, C. Gao, Biodegradable metallic bone implants, Materials Chemistry Frontiers, 3 (2019) 544-562.
[14] D. Zindani, K. Kumar, J.P. Davim, Metallic biomaterials—A review, in: Mechanical Behaviour of Biomaterials, Elsevier, (2019) 83-99.
[15] D. Paramitha, M. Ulum, A. Purnama, D. Wicaksono, D. Noviana, H. Hermawan, Monitoring degradation products and metal ions in vivo, in: Monitoring and Evaluation of Biomaterials and their Performance In Vivo, Elsevier, (2017) 19-44.
[16] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials, 27 (2006) 1728-1734.
[17] E. Underwood, Trace elements in human and animal nutrition, Academic Press, INC. (1977). New York.
[18] P.A. Revell, E. Damien, X. Zhang, P. Evans, C.R. Howlett, The effect of magnesium ions on bone bonding to hydroxyapatite coating on titanium alloy implants, in: Key Engineering Materials, Trans Tech Publ, (2004) 447-450.
[19] C. Janning, E. Willbold, C. Vogt, J. Nellesen, A. Meyer-Lindenberg, H. Windhagen, F. Thorey, F. Witte, Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling, Acta biomaterialia, 6 (2010) 1861-1868.
[20] D.A. Robinson, R.W. Griffith, D. Shechtman, R.B. Evans, M.G. Conzemius, In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, Acta biomaterialia, 6 (2010) 1869-1877.
[21] P. Delva, Magnesium and coronary heart disease, Molecular aspects of medicine, 24 (2003) 63-78.
[22] A. Lambotte, L’utilisation du magnesium comme materiel perdu dans l’osteosynthèse, Bull Mem Soc Nat Chir, 28 (1932) 1325-1334.
[23] D. Dziuba, A. Meyer-Lindenberg, J.M. Seitz, H. Waizy, N. Angrisani, J. Reifenrath, Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant, Acta biomaterialia, 9 (2013) 8548-8560.
[24] M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, P. Beggs, Magnesium alloy applications in automotive structures, Jom, 60 (2008) 57-62.
[25] F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, N. Hort, Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines, Acta biomaterialia, 6 (2010) 1834-1842.
[26] S.S.A. El-Rahman, Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment), Pharmacological Research, 47 (2003) 189-194.
[27] S. González, E. Pellicer, J. Fornell, A. Blanquer, L. Barrios, E. Ibánez, P. Solsona, S. Surinach, M. Baró, C. Nogués, Improved mechanical performance and delayed corrosion phenomena in biodegradable Mg–Zn–Ca alloys through Pd-alloying, Journal of the mechanical behavior of biomedical materials, 6 (2012) 53-62.
[28] E. Pellicer, S. Gonzalez, A. Blanquer, S. Suriñach, M.D. Baró, L. Barrios, E. Ibáñez, C. Nogués, J. Sort, On the biodegradability, mechanical behaviour and cytocompatibility of amorphous Mg72Zn23Ca5 and crystalline Mg70Zn23Ca5Pd2 alloys as temporary implant materials, Journal of Biomedical Materials Research, 101A (2013) 502 – 517.
[29] J. Li, P. Cao, X. Zhang, S. Zhang, Y. He, In vitro degradation and cell attachment of a PLGA coated biodegradable Mg–6Zn based alloy, Journal of materials science, 45 (2010) 6038-6045.
[30] H. Hornberger, S. Virtanen, A. Boccaccini, Biomedical coatings on magnesium alloys–a review, Acta biomaterialia, 8 (2012) 2442-2455.
[31] S.C. Cifuentes, E. Frutos, J.L. González-Carrasco, M. Muñoz, M. Multigner, J. Chao, R. Benavente, M. Lieblich, Novel PLLA/magnesium composite for orthopedic applications: A proof of concept, Materials Letters, 74 (2012) 239-242.
[32] L. Tian, Y. Sheng, L. Huang, D.H.-K. Chow, W.H. Chau, N. Tang, T. Ngai, C. Wu, J. Lu, L. Qin, An innovative Mg/Ti hybrid fixation system developed for fracture fixation and healing enhancement at load-bearing skeletal site, Biomaterials, 180 (2018) 173-183.
[33] N.G. Grün, P. Holweg, S. Tangl, J. Eichler, L. Berger, J.J. Van den Beucken, J.F. Löffler, T. Klestil, A.M. Weinberg, Comparison of a resorbable magnesium implant in small and large growing-animal models, Acta biomaterialia, 78 (2018) 378-386.
[34] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, Meyer-Lindenberg, a., Wirth, CJ, & Windhagen, H.(2005), vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 26 (2004) 3557-3563.
[35] J. Lee, M. Xue, J.S. Wzorek, T. Wu, M. Grabowicz, L.S. Gronenberg, H.A. Sutterlin, R.M. Davis, N. Ruiz, T.J. Silhavy, Characterization of a stalled complex on the β-barrel assembly machine, Proceedings of the National Academy of Sciences, 113 (2016) 8717-8722.
[36] W.J. Van der Giessen, A.M. Lincoff, R.S. Schwartz, H.M. Van Beusekom, P.W. Serruys, D.R. Holmes, S.G. Ellis, E.J. Topol, Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries, Circulation, 94 (1996) 1690-1697.
[37] H. Tamai, K. Igaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori, T. Tsuji, S. Motohara, H. Uehata, Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans, Circulation, 102 (2000) 399-404.
[38] C. Di Mario, H. Griffiths, O. Goktekin, N. Peeters, J. Verbist, M. Bosiers, K. Deloose, B. Heublein, R. Rohde, V. Kasese, Drug‐eluting bioabsorbable magnesium stent, Journal of interventional cardiology, 17 (2004) 391-395.
[39] B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, A. Haverich, Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?, Heart, 89 (2003) 651-656.
[40] M. Bosiers, A.I. Investigators, AMS INSIGHT—absorbable metal stent implantation for treatment of below-the-knee critical limb ischemia: 6-month analysis, Cardiovascular and interventional radiology, 32 (2009) 424-435.
[41] A. Srivastava, R. Ahuja, P. Bhati, S. Singh, P. Chauhan, P. Vashisth, A. Kumar, N. Bhatnagar, Fabrication and Characterization of PLLA/Mg Composite Tube as the potential Bioresorbable/biodegradable stent (BRS), Materialia, (2020) 1-12.
[42] R. Waksman, P. Zumstein, M. Pritsch, E. Wittchow, M. Haude, C. Lapointe-Corriveau, G. Leclerc, M. Joner, Second-generation magnesium scaffold Magmaris: device design and preclinical evaluation in a porcine coronary artery model, EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, 13 (2017) 440-449.
[43] C. Rapetto, M. Leoncini, Magmaris: a new generation metallic sirolimus-eluting fully bioresorbable scaffold: present status and future perspectives, Journal of thoracic disease, 9 (2017) 903-913.
[44] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. Wirth, H. Windhagen, In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, 26 (2005) 3557-3563.
[45] J.-W. Lee, H.-S. Han, K.-J. Han, J. Park, H. Jeon, M.-R. Ok, H.-K. Seok, J.-P. Ahn, K.E. Lee, D.-H. Lee, Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy, Proceedings of the National Academy of Sciences, 113 (2016) 716-721.
[46] M. Fontecave, J. Pierre, Iron: metabolism, toxicity and therapy, Biochimie, 75 (1993) 767-773.
[47] G. Poologasundarampillai, A. Nommeots-Nomm, Materials for 3D printing in medicine: Metals, polymers, ceramics, hydrogels, in: 3D Printing in Medicine, Elsevier, 2017, pp. 43-71.
[48] T. Kraus, F. Moszner, S. Fischerauer, M. Fiedler, E. Martinelli, J. Eichler, F. Witte, E. Willbold, M. Schinhammer, M. Meischel, Biodegradable Fe-based alloys for use in osteosynthesis: Outcome of an in vivo study after 52 weeks, Acta biomaterialia, 10 (2014) 3346-3353.
[49] R. Waksman, R. Pakala, R. Baffour, R. Seabron, D. Hellinga, F.O. Tio, Short‐term effects of biocorrodible iron stents in porcine coronary arteries, Journal of interventional cardiology, 21 (2008) 15-20.
[50] M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, C. von Schnakenburg, Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta, Biomaterials, 27 (2006) 4955-4962.
[51] B. Liu, Y. Zheng, Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron, Acta biomaterialia, 7 (2011) 1407-1420.
[52] S. Zhu, N. Huang, L. Xu, Y. Zhang, H. Liu, Y. Lei, H. Sun, Y. Yao, Biocompatibility of Fe–O films synthesized by plasma immersion ion implantation and deposition, Surface and Coatings Technology, 203 (2009) 1523-1529.
[53] M. Moravej, F. Prima, M. Fiset, D. Mantovani, Electroformed iron as new biomaterial for degradable stents: Development process and structure–properties relationship, Acta biomaterialia, 6 (2010) 1726-1735.
[54] H. Hermawan, D. Dubé, D. Mantovani, Development of degradable Fe-35Mn alloy for biomedical application, in: Advanced Materials Research, Trans Tech Publ, (2007) 107-112.
[55] H. Hermawan, D. Dubé, D. Mantovani, Degradable metallic biomaterials: design and development of Fe–Mn alloys for stents, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 93 (2010) 1-11.
[56] H. Hermawan, A. Purnama, D. Dube, J. Couet, D. Mantovani, Fe–Mn alloys for metallic biodegradable stents: degradation and cell viability studies, Acta biomaterialia, 6 (2010) 1852-1860.
[57] M. Schinhammer, A.C. Hänzi, J.F. Löffler, P.J. Uggowitzer, Design strategy for biodegradable Fe-based alloys for medical applications, Acta biomaterialia, 6 (2010) 1705-1713.
[58] M. Moravej, S. Amira, F. Prima, A. Rahem, M. Fiset, D. Mantovani, Effect of electrodeposition current density on the microstructure and the degradation of electroformed iron for degradable stents, Materials Science and Engineering: B, 176 (2011) 1812-1822.
[59] J.E. Coleman, Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins, Annual review of biochemistry, 61 (1992) 897-946.
[60] G.J. Fosmire, Zinc toxicity, The American journal of clinical nutrition, 51 (1990) 225-227.
[61] D. Vojtěch, J. Kubásek, J. Šerák, P. Novák, Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation, Acta Biomaterialia, 7 (2011) 3515-3522.
[62] J. Venezuela, M. Dargusch, The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review, Acta biomaterialia, 87 (2019) 1-40.
[63] G. Katarivas Levy, J. Goldman, E. Aghion, The prospects of zinc as a structural material for biodegradable implants—a review paper, Metals, 7 (2017) 402-420.
[64] E. Mostaed, M. Sikora-Jasinska, A. Mostaed, S. Loffredo, A. Demir, B. Previtali, D. Mantovani, R. Beanland, M. Vedani, Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation, Journal of the mechanical behavior of biomedical materials, 60 (2016) 581-602.
[65] G.K. Levy, A. Leon, A. Kafri, Y. Ventura, J.W. Drelich, J. Goldman, R. Vago, E. Aghion, Evaluation of biodegradable Zn-1% Mg and Zn-1% Mg-0.5% Ca alloys for biomedical applications, Journal of Materials Science: Materials in Medicine, 28 (2017) 174-185.
[66] H. Li, X. Xie, Y. Zheng, Y. Cong, F. Zhou, K. Qiu, X. Wang, S. Chen, L. Huang, L. Tian, Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr, Scientific reports, 5 (2015) 1-13.
[67] H. Bakhsheshi-Rad, E. Hamzah, H. Low, M. Kasiri-Asgarani, S. Farahany, E. Akbari, M. Cho, Fabrication of biodegradable Zn-Al-Mg alloy: mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities, Materials Science and Engineering: C, 73 (2017) 215-219.
[68] H. Bakhsheshi-Rad, E. Hamzah, H. Low, M. Cho, M. Kasiri-Asgarani, S. Farahany, A. Mostafa, M. Medraj, Thermal characteristics, mechanical properties, in vitro degradation and cytotoxicity of novel biodegradable Zn–Al–Mg and Zn–Al–Mg–xBi alloys, Acta Metallurgica Sinica (English Letters), 30 (2017) 201-211.
[69] Z. Tang, J. Niu, H. Huang, H. Zhang, J. Pei, J. Ou, G. Yuan, Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications, Journal of the mechanical behavior of biomedical materials, 72 (2017) 182-191.
[70] M. Sikora-Jasinska, E. Mostaed, A. Mostaed, R. Beanland, D. Mantovani, M. Vedani, Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications, Materials Science and Engineering: C, 77 (2017) 1170-1181.
[71] S. Zhao, C.T. McNamara, P.K. Bowen, N. Verhun, J.P. Braykovich, J. Goldman, J.W. Drelich, Structural characteristics and in vitro biodegradation of a novel Zn-Li alloy prepared by induction melting and hot rolling, Metallurgical and Materials Transactions A, 48 (2017) 1204-1215.
[72] X. Liu, J. Sun, K. Qiu, Y. Yang, Z. Pu, L. Li, Y. Zheng, Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and in vitro corrosion behavior of biodegradable Zn–1.5 Mg alloy, Journal of Alloys and Compounds, 664 (2016) 444-452.
[73] X. Liu, J. Sun, F. Zhou, Y. Yang, R. Chang, K. Qiu, Z. Pu, L. Li, Y. Zheng, Micro-alloying with Mn in Zn–Mg alloy for future biodegradable metals application, Materials & Design, 94 (2016) 95-104.
[74] H. Li, H. Yang, Y. Zheng, F. Zhou, K. Qiu, X. Wang, Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr, Materials & Design, 83 (2015) 95-102.
[75] Z. Tang, H. Huang, J. Niu, L. Zhang, H. Zhang, J. Pei, J. Tan, G. Yuan, Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants, Materials & Design, 117 (2017) 84-94.
[76] N.R. Calhoun, J.C. Smith Jr, K.L. Becker, The role of zinc in bone metabolism, Clinical Orthopaedics and Related Research, 103 (1974) 212-234.
[77] Y. Qiao, W. Zhang, P. Tian, F. Meng, H. Zhu, X. Jiang, X. Liu, P.K. Chu, Stimulation of bone growth following zinc incorporation into biomaterials, Biomaterials, 35 (2014) 6882-6897.
[78] T. Prosek, A. Nazarov, U. Bexell, D. Thierry, J. Serak, Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions, Corrosion Science, 50 (2008) 2216-2231.
[79] N. Murni, M. Dambatta, S. Yeap, G. Froemming, H. Hermawan, Cytotoxicity evaluation of biodegradable Zn–3Mg alloy toward normal human osteoblast cells, Materials Science and Engineering: C, 49 (2015) 560-566.
[80] J. Ma, N. Zhao, D. Zhu, Endothelial cellular responses to biodegradable metal zinc, ACS biomaterials science & engineering, 1 (2015) 1174-1182.
[81] J. Ma, N. Zhao, D. Zhu, Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells, Scientific reports, 6 (2016) 1-10.
[82] P.K. Bowen, J. Drelich, J. Goldman, Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents, Advanced materials, 25 (2013) 2577-2582.
[83] P.K. Bowen, R.J. Guillory II, E.R. Shearier, J.-M. Seitz, J. Drelich, M. Bocks, F. Zhao, J. Goldman, Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents, Materials Science and Engineering: C, 56 (2015) 467-472.
[84] B. Hennig, M. Toborek, C.J. McClain, Antiatherogenic properties of zinc: implications in endothelial cell metabolism, Nutrition, 12 (1996) 711-717.
[85] M. Berger, E. Rubinraut, I. Barshack, A. Roth, G. Keren, J. George, Zinc reduces intimal hyperplasia in the rat carotid injury model, Atherosclerosis, 175 (2004) 229-234.