Hybrid Magneto-Plasmonic Nanoparticles in Biomedicine: Fundamentals, Synthesis and Applications

$30.00

Hybrid Magneto-Plasmonic Nanoparticles in Biomedicine: Fundamentals, Synthesis and Applications

J.G. Ovejero, P. Herrasti

Magneto-plasmonic nanoparticles have attracted increasing attention from the scientific community due to their promising properties and high applicability. Thanks to the development of new synthesis routes, it has been possible to use this kind of nanostructures in different biomedical applications such as dual imaging, combined treatments or biodetection. However, there is still a lack of biocompatible materials with suitable magneto-plasmonic features to translate all these advances to clinical studies.

Keywords
Magneto-Plasmonic Nanoparticles, Au/Fe3O4, Biosensing, Therapy, Theragnosis, Bioimaging

Published online 11/20/2020, 54 pages

Citation: J.G. Ovejero, P. Herrasti, Hybrid Magneto-Plasmonic Nanoparticles in Biomedicine: Fundamentals, Synthesis and Applications, Materials Research Foundations, Vol. 87, pp 1-54, 2021

DOI: https://doi.org/10.21741/9781644901076-1

Part of the book on Nanohybrids

References
[1] C. Binns, Nanomagnetism: Fundamentals and Applications, in: Frontiers of Nanoscience, Elsevier, Oxford, 2014, pp 1-29. https://doi.org/10.1016/B978-0-08-098353-0.00001-4
[2] W.T. Coffey, D.S.F. Crothers, J.L. Dormann, Y.P. Kalmykov, E.C. Kennedy, W. Wernsdorfer, Thermally Activated Relaxation Time of a Single Domain Ferromagnetic Particle Subjected to a Uniform Field at an Oblique Angle to the Easy Axis: Comparison with Experimental Observations, Phys. Rev. Lett. 80 (1998) 5655–5658. https://doi.org/10.1103/PhysRevLett.80.5655
[3] Y.P. Kalmykov, The relaxation time of the magnetization of uniaxial single-domain ferromagnetic particles in the presence of a uniform magnetic field, J. Appl. Phys. 96 (2004) 1138–1145. https://doi.org/10.1063/1.1760839
[4] G. Kandasamy, D. Maity, Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics, Int. J. Pharm. 496 (2015) 191–218. https://doi.org/10.1016/j.ijpharm.2015.10.058
[5] M.-H. Phan, J. Alonso, H. Khurshid, P. Lampen-Kelley, S. Chandra, K. Stojak Repa, Z. Nemati, R. Das, Ó. Iglesias, H. Srikanth, Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems, Nanomaterials 6 (2016) 221. https://doi.org/10.3390/nano6110221
[6] R. Marty, G. Baffou, A. Arbouet, C. Girard, R. Quidant, Charge distribution induced inside complex plasmonic nanoparticles, Opt. Express 18 (2010) 3035. https://doi.org/10.1364/OE.18.003035
[7] E. Hao, G.C. Schatz, J.T. Hupp, Synthesis and optical properties of anisotropic metal nanoparticles, J. Fluoresc. 14 (2004) 331–341. https://doi.org/10.1023/B:JOFL.0000031815.71450.74
[8] J.A. Lloyd, S.H. Ng, A.C.Y. Liu, Y. Zhu, W. Chao, T. Coenen, J. Etheridge, D.E. Gómez, U. Bach, Plasmonic Nanolenses: Electrostatic Self-Assembly of Hierarchical Nanoparticle Trimers and Their Response to Optical and Electron Beam Stimuli, ACS Nano 11 (2017) 1604–1612. https://doi.org/10.1021/acsnano.6b07336
[9] R.A. Pala, J. White, E. Barnard, J. Liu, M.L. Brongersma, Design of plasmonic thin-film solar cells with broadband absorption enhancements, Adv. Mater. 21 (2009) 3504–3509. https://doi.org/10.1002/adma.200900331
[10] H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9 (2010) 865–865. https://doi.org/10.1038/nmat2866
[11] J. Butet, T. V Raziman, K.-Y. Yang, G.D. Bernasconi, O.J.F. Martin, Controlling the nonlinear optical properties of plasmonic nanoparticles with the phase of their linear response, Opt. Express 24 (2016) 17138–48. https://doi.org/10.1364/OE.24.017138
[12] J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors, Nat. Mater. 7 (2008) 442–453. https://doi.org/10.1038/nmat2162
[13] T. Sannomiya, J. Vörös, Single plasmonic nanoparticles for biosensing, Trends Biotechnol. 29 (2011) 343–351. https://doi.org/10.1016/j.tibtech.2011.03.003
[14] G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys. 330 (1908) 377–445. https://doi.org/10.1002/andp.19083300302
[15] V. Amendola, R. Pilot, M. Frasconi, O.M. Maragò, M.A. Iatì, Surface plasmon resonance in gold nanoparticles: a review, J. Phys. Condens. Matter 29 (2017) 203002. https://doi.org/10.1088/1361-648X/aa60f3
[16] M.A. Garcia, Surface plasmons in metallic nanoparticles: fundamentals and applications, J. Phys. D 44 (2011) 283001. https://doi.org/10.1088/0022-3727/44/28/283001
[17] R. Gans, Über die Form ultramikroskopischer Goldteilchen, R. Ann. Phys. 342 (1912) 881. https://doi.org/10.1002/andp.19123420503
[18] H. Chen, L. Shao, Q. Li, J. Wang, Gold nanorods and their plasmonic properties, Chem. Soc. Rev. 42 (2013) 2679–2724. https://doi.org/10.1039/C2CS35367A
[19] V. Grazú, J.M. De La Fuente, Nanobiotechnology – Inorganic Nanoparticles vs Organic Nanoparticles, in: Front. Nanosci. 4 Elsevier, Oxford ,2012, pp 443–485.
[20] M. Grzelczak, J. Perez-Juste, P. Mulvaney, L.M. Liz-Marzan, Shape control in gold nanoparticle synthesis, Chem Soc Rev 37 (2008) 1783–1791. https://doi.org/10.1039/b711490g
[21] N. Khlebtsov, V. Bogatyrev, L. Dykman, B. Khlebtsov, S. Staroverov, A. Shirokov, L. Matora, V. Khanadeev, T. Pylaev, N. Tsyganova, G. Ter-entyuk, Analytical and Theranostic Applications of Gold Na- noparticles and Multifunctional Nanocomposites, Theranostics 3 (2013) 167–180. https://doi.org/10.7150/thno.5716
[22] J. a Webb, R. Bardhan, Emerging advances in nanomedicine with engineered gold nanostructures, Nanoscale (2014) 2502–2530. https://doi.org/10.1039/c3nr05112a
[23] Y. Davletshin, Modeling the optical properties of a single gold nanorod for use in biomedical applications, Theses and dissertations, Ryeson University, 2010, pp 1035.
[24] L.D. Landau, L. P. Pitaevskii, E.M. Lifshitz, Scattering of electromagnetic waves, in: Electrodynamics of Continuous Media, Pergamon Press, Oxford, 1960,pp 299-310
[25] F. Shafiei, F. Monticone, K.Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, X. Li, A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance, Nat. Nanotechnol. 8 (2013) 95–99. https://doi.org/10.1038/nnano.2012.249
[26] A.K. Sarychev, G. Shvets, V.M. Shalaev, Magnetic plasmon resonance, Phys. Rev. E 73 (2006) 036609. https://doi.org/10.1103/PhysRevE.73.036609
[27] N.J. Greybush, V. Pacheco-Peña, N. Engheta, C.B. Murray, C.R. Kagan, Plasmonic Optical and Chiroptical Response of Self-Assembled Au Nanorod Equilateral Trimers, ACS Nano (2019). https://doi.org/10.1021/acsnano.8b07619
[28] S.N. Sheikholeslami, A. García-Etxarri, J.A. Dionne, Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances, Nano Lett. 11 (2011) 3927–3934. https://doi.org/10.1021/nl202143j
[29] H. Liu, D.A. Genov, D.M. Wu, Y.M. Liu, Z.W. Liu, C. Sun, S.N. Zhu, X. Zhang, Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures, Phys. Rev. B 76 (2007) 073101. https://doi.org/10.1103/PhysRevB.76.073101
[30] A. Hernando, A. Ayuela, P. Crespo, P.M. Echenique, Giant diamagnetism of gold nanorods, New J. Phys. 16 (2014) 073043. https://doi.org/10.1088/1367-2630/16/7/073043
[31] F. Pineider, G. Campo, V. Bonanni, C.D.J. Fernández, G. Mattei, A. Caneschi, D. Gatteschi, C. Sangregorio, Circular magnetoplasmonic modes in gold nanoparticles, Nano Lett. 13 (2013) 4785–4789. https://doi.org/10.1021/nl402394p
[32] P. Varytis, N. Stefanou, A. Christofi, N. Papanikolaou, Strong circular dichroism of core-shell magnetoplasmonic nanoparticles, J. Opt. Soc. Am. B 32 (2015) 1063. https://doi.org/10.1364/JOSAB.32.001063
[33] M.B. Cortie, A.M. Mcdonagh, Synthesis and Optical Properties of Hybrid and Alloy Plasmonic Nanoparticles, Chem. Rev. 111 (2011) 3713–3735. https://doi.org/10.1021/cr1002529
[34] H. Zeng, S. Sun, Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles, Adv. Funct. Mater. 18 (2008) 391–400. https://doi.org/10.1002/adfm.200701211
[35] K. Korobchevskaya, C. George, A. Diaspro, L. Manna, R. Cingolani, A. Comin, Ultrafast carrier dynamics in gold/iron-oxide nanocrystal heterodimers, Appl. Phys. Lett. 99 (2011) 011907. https://doi.org/10.1063/1.3609324
[36] V. Velasco, L. Muñoz, E. Mazarío, N. Menéndez, P. Herrasti, A. Hernando, P. Crespo, Chemically synthesized Au–Fe 3 O 4 nanostructures with controlled optical and magnetic properties, J. Phys. D. Appl. Phys. 48 (2015) 035502. https://doi.org/10.1088/0022-3727/48/3/035502
[37] E.A. Chaffin, S. Bhana, R.T. O’Connor, X. Huang, Y. Wang, Impact of Core Dielectric Properties on the Localized Surface Plasmonic Spectra of Gold-Coated Magnetic Core–Shell Nanoparticles, J. Phys. Chem. B 118 (2014) 14076–14084. https://doi.org/10.1021/jp505202k
[38] E.A. Kwizera, E. Chaffin, X. Shen, J. Chen, Q. Zou, Z. Wu, Z. Gai, S. Bhana, R. Oconnor, L. Wang, H. Adhikari, S.R. Mishra, Y. Wang, X. Huang, Size- and Shape-Controlled Synthesis and Properties of Magnetic-Plasmonic Core-Shell Nanoparticles, J. Phys. Chem. C 120 (2016) 10530–10546. https://doi.org/10.1021/acs.jpcc.6b00875
[39] M.C. Daniel, D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology, Chem. Rev. 104 (2004) 293–346. https://doi.org/10.1021/cr030698+
[40] W. Shi, H. Zeng, Y. Sahoo, T.Y. Ohulchanskyy, Y. Ding, Z.L. Wang, M. Swihart, P.N. Prasad, A general approach to binary and ternary hybrid nanocrystals, Nano Lett. 6 (2006) 875–881. https://doi.org/10.1021/nl0600833
[41] T. Mokari, E. Rothenberg, I. Popov, R. Costi, U. Banin, Selective Growth of Metal Tips onto Semiconductor Quantum Rods and Tetrapods, Science (80-. ). 304 (2004) 1787–1790. https://doi.org/10.1126/science.1097830
[42] H. Yu, M. Chen, P.M. Rice, S.X. Wang, R.L. White, S. Sun, Dumbbell-like Bifunctional Au−Fe3O4 Nanoparticles, Nano Lett. 5 (2005) 379–382. https://doi.org/10.1021/nl047955q
[43] Y. Lee, M.A. Garcia, N.A. Frey Huls, S. Sun, Synthetic Tuning of the Catalytic Properties of Au-Fe3O4 Nanoparticles, Angew. Chemie Int. Ed. 49 (2010) 1271–1274. https://doi.org/10.1002/anie.200906130
[44] F. Pineider, C. De Julián Fernández, V. Videtta, E. Carlino, A. Al Hourani, F. Wilhelm, A. Rogalev, P.D. Cozzoli, P. Ghigna, C. Sangregorio, Spin-polarization transfer in colloidal magnetic-plasmonic au/iron oxide hetero-nanocrystals, ACS Nano 7 (2013) 857–866. https://doi.org/10.1021/nn305459m
[45] A. Comin, K. Korobchevskaya, C. George, A. Diaspro, L. Manna, Plasmon bleaching dynamics in colloidal gold-iron oxide nanocrystal heterodimers, Nano Lett. 12 (2012) 921–926. https://doi.org/10.1021/nl2039875
[46] C. George, A. Genovese, F. Qiao, K. Korobchevskaya, A. Comin, A. Falqui, S. Marras, A. Roig, Y. Zhang, R. Krahne, L. Manna, Optical and electrical properties of colloidal (spherical Au)-(spinel ferrite nanorod) heterostructures, Nanoscale 3 (2011) 4647. https://doi.org/10.1039/c1nr10768b
[47] L. Wang, H.-Y. Park, S.I.-I. Lim, M.J. Schadt, D. Mott, J. Luo, X. Wang, C.-J. Zhong, Core@shell nanomaterials: gold-coated magnetic oxide nanoparticles, J. Mater. Chem. 18 (2008) 2629. https://doi.org/10.1039/b719096d
[48] I.C. Chiang, D.H. Chen, Synthesis of monodisperse FeAu nanoparticles with tunable magnetic and optical properties, Adv. Funct. Mater. 17 (2007) 1311–1316. https://doi.org/10.1002/adfm.200600525
[49] S. Chandra, N.A. Frey Huls, M.H. Phan, S. Srinath, M.A. Garcia, Y. Lee, C. Wang, S. Sun, O. Iglesias, H. Srikanth, Exchange bias effect in Au-Fe 3 O 4 nanocomposites, Nanotechnology 25 (2014) 055702. https://doi.org/10.1088/0957-4484/25/5/055702
[50] J.P. Pierce, M.A. Torija, Z. Gai, J. Shi, T.C. Schulthess, G.A. Farnan, J.F. Wendelken, E.W. Plummer, J. Shen, Ferromagnetic stability in Fe nanodot assemblies on cu(111) induced by indirect coupling through the substrate, Phys. Rev. Lett. 92 (2004) 237201–1. https://doi.org/10.1103/PhysRevLett.92.237201
[51] M. Feygenson, J.C. Bauer, Z. Gai, C. Marques, M.C. Aronson, X. Teng, D. Su, V. Stanic, V.S. Urban, K.A. Beyer, S. Dai, Exchange bias effect in Au-Fe3O4 dumbbell nanoparticles induced by the charge transfer from gold, Phys. Rev. B 92 (2015) 054416. https://doi.org/10.1103/PhysRevB.92.054416
[52] G. Cheng, A.R. Hight Walker, Synthesis and characterization of cobalt/gold bimetallic nanoparticles, J. Magn. Magn. Mater. 311 (2007) 31–35. https://doi.org/10.1016/j.jmmm.2006.11.164
[53] N.A. Frey, S. Srinath, H. Srikanth, C. Wang, S. Sun, Static and Dynamic Magnetic Properties of Composite Au-Fe3O4 Nanoparticles, IEEE Trans. Magn. 43 (2007) 3094–3096. https://doi.org/10.1109/TMAG.2007.893846
[54] N. a. Frey, M.H. Phan, H. Srikanth, S. Srinath, C. Wang, S. Sun, Interparticle interactions in coupled Au–Fe3O4 nanoparticles, J. Appl. Phys. 105 (2009) 07B502. https://doi.org/10.1063/1.3056582
[55] M.G. Blaber, M.D. Arnold, M.J. Ford, A review of the optical properties of alloys and intermetallics for plasmonics, J. Phys. Condens. Matter 22 (2010) 143201. https://doi.org/10.1088/0953-8984/22/14/143201
[56] K. Nouneh, M. Oyama, R. Diaz, M. Abd-Lefdil, I.V. Kityk, M. Bousmina, Nanoscale synthesis and optical features of metallic nickel nanoparticles by wet chemical approaches, J. Alloys Compd. 509 (2011) 5882–5886. https://doi.org/10.1016/j.jallcom.2011.02.164
[57] H. Amekura, Y. Takeda, N. Kishimoto, Criteria for surface plasmon resonance energy of metal nanoparticles in silica glass, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 222 (2004) 96–104. https://doi.org/10.1016/j.nimb.2004.01.003
[58] J. Zhang, C.Q. Lan, Nickel and cobalt nanoparticles produced by laser ablation of solids in organic solution, Mater. Lett. 62 (2008) 1521–1524. https://doi.org/10.1016/j.matlet.2007.09.038
[59] K. Lodewijks, N. Maccaferri, T. Pakizeh, R.K. Dumas, I. Zubritskaya, J. Åkerman, P. Vavassori, A. Dmitriev, Magnetoplasmonic design rules for active magneto-optics, Nano Lett. 14 (2014) 7207–7214. https://doi.org/10.1021/nl504166n
[60] V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, A. Dmitriev, Designer magnetoplasmonics with nickel nanoferromagnets, Nano Lett. 11 (2011) 5333–8. https://doi.org/10.1021/nl2028443
[61] J. Perez, M.F. Contreras, E. Vilanova, T. Ravasi, J. Kosel, Cytotoxicity and Effects on Cell Viability of Nickel Nanowires, 2013 Int. Conf. Biol. Med. Chem. Eng. (2013) 178–184.
[62] R. Karmhag, G.A. Niklasson, M. Nygren, Oxidation kinetics of nickel nanoparticles, J. Appl. Phys. 89 (2001) 3012–3017. https://doi.org/10.1063/1.1325002
[63] V. Amendola, R. Saija, O.M. Maragò, M.A. Iatì, Superior plasmon absorption in iron-doped gold nanoparticles †, Nanoscale 7 (2015) 8782. https://doi.org/10.1039/C5NR00823A
[64] V. Amendola, S. Scaramuzza, S. Agnoli, S. Polizzi, M. Meneghetti, Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au–Fe nanoalloys, Nanoscale 6 (2014) 1423–1433. https://doi.org/10.1039/C3NR04995G
[65] P. Mohan, M. Takahashi, K. Higashimine, D. Mott, S. Maenosono, AuFePt Ternary Homogeneous Alloy Nanoparticles with Magnetic and Plasmonic Properties, Langmuir 33 (2017) 1687–1694. https://doi.org/10.1021/acs.langmuir.6b04363
[66] S. Scaramuzza, F. Carraro, E. Cattaruzza, Formation of alloy nanoparticles by laser ablation of Au/Fe multilayer films in liquid environment, J. Colloid Interface Sci. 489 (2017) 18–27. https://doi.org/10.1016/j.jcis.2016.10.023
[67] V. Amendola, M. Meneghetti, O.M. Bakr, P. Riello, S. Polizzi, D.H. Anjum, S. Fiameni, P. Arosio, T. Orlando, C. De Julian Fernandez, F. Pineider, C. Sangregorio, A. Lascialfari, Coexistence of plasmonic and magnetic properties in Au89Fe 11 nanoalloys, Nanoscale 5 (2013) 5611–5619. https://doi.org/10.1039/c3nr01119d
[68] S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science (80-. ). 287 (2000) 1989–1992. https://doi.org/10.1126/science.287.5460.1989
[69] Y. Ding, S. Yamamuro, D. Farrell, S.A. Majetich, Phase transformation and magnetic moment in FePt nanoparticles, J. Appl. Phys. 93 (2003) 7411. https://doi.org/10.1063/1.1544495
[70] V. Velasco, D. Pohl, A. Surrey, A. Bonatto-Minella, A. Hernando, P. Crespo, B. Rellinghaus, On the stability of AuFe alloy nanoparticles, Nanotechnology 25 (2014) 215703. https://doi.org/10.1088/0957-4484/25/21/215703
[71] M. Cui, H. Lu, H. Jiang, Z. Cao, X. Meng, Phase Diagram of Continuous Binary Nanoalloys: Size, Shape and Segregation Effects, Sci. Rep. 7 (2017) 41990. https://doi.org/10.1038/srep41990
[72] A.G. Roca, R. Costo, A.F. Rebolledo, S. Veintemillas-Verdaguer, P. Tartaj, T. González-Carreño, M.P. Morales, C.J. Serna, Progress in the preparation of magnetic nanoparticles for applications in biomedicine, J. Phys. D. Appl. Phys. 42 (2009) 224002. https://doi.org/10.1088/0022-3727/42/22/224002
[73] Y.F. Li, C. Chen, Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications, Small 7 (2011) 2965–2980. https://doi.org/10.1002/smll.201101059
[74] N. Khlebtsov, L. Dykman, Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies, Chem. Soc. Rev 40 (2011) 1647–1671. https://doi.org/10.1039/C0CS00018C
[75] M. Zhu, G. Nie, H. Meng, T. Xia, A. Nel, Y. Zhao, Physicochemical properties determine nanomaterial cellular uptake, transport, and fate, Acc. Chem. Res. 46 (2013) 622–31. https://doi.org/10.1021/ar300031y
[76] C.E. Hoyle, C.N. Bowman, Thiol-ene click chemistry, Angew. Chemie – Int. Ed. 49 (2010) 1540–1573. https://doi.org/10.1002/anie.200903924
[77] S. Kuan Yen, P. Padmanabhan, S. Tamil Selvan, Multifunctional Iron Oxide Nanoparticles for Diagnostics, Therapy and Macromolecule Delivery, Theranostics 3 (2013) 986–1003. https://doi.org/10.7150/thno.4827
[78] N. Lee, D. Yoo, D. Ling, M.H. Cho, T. Hyeon, J. Cheon, Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy, Chem. Rev. 115 (2015) 10637–10689. https://doi.org/10.1021/acs.chemrev.5b00112
[79] R.A. Revia, M. Zhang, Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: Recent advances, Mater. Today 19 (2015) 157–168. https://doi.org/10.1016/j.mattod.2015.08.022
[80] P. Tartaj, M.P. Morales, T. Gonzalez-Carreño, S. Veintemillas-Verdaguer, C.J. Serna, The iron oxides strike back: From biomedical applications to energy storage devices and photoelectrochemical water splitting, Adv. Mater. 23 (2011) 5243–5249. https://doi.org/10.1002/adma.201101368
[81] A.P. Khandhar, R.M. Ferguson, J.A. Simon, K.M. Krishnan, Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia, J. Biomed. Mater. Res. Part A 100A (2012) 728–737. https://doi.org/10.1002/jbm.a.34011
[82] R. Ghosh, L. Pradhan, Y.P. Devi, S.S. Meena, R. Tewari, A. Kumar, S. Sharma, N.S. Gajbhiye, R.K. Vatsa, B.N. Pandey, R.S. Ningthoujam, Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia, J. Mater. Chem. 21 (2011) 13388. https://doi.org/10.1039/c1jm10092k
[83] R.P. Araújo-Neto, E.L. Silva-Freitas, J.F. Carvalho, T.R.F. Pontes, K.L. Silva, I.H.M. Damasceno, E.S.T. Egito, A.L. Dantas, M.A. Morales, A.S. Carriço, Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications, J. Magn. Magn. Mater. 364 (2014) 72–79. https://doi.org/10.1016/j.jmmm.2014.04.001
[84] E.M. Múzquiz-Ramos, V. Guerrero-Chávez, B.I. Macías-Martínez, C.M. López-Badillo, L.A. García-Cerda, Synthesis and characterization of maghemite nanoparticles for hyperthermia applications, Ceram. Int. 41 (2015) 397–402. https://doi.org/10.1016/j.ceramint.2014.08.083
[85] Nagender Reddy Panyala, Eladia María Peña-Méndez, Josef Havel, Gold and nano-gold in medicine: overview, toxicology and perspectives, J Appl Biomed 7 (2009) 75–91. https://doi.org/10.32725/jab.2009.008
[86] J. Liu, M. Yu, C. Zhou, J. Zheng, Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology, Mater. Today 16 (2013) 477–486. https://doi.org/10.1016/j.mattod.2013.11.003
[87] S. Rosa, C. Connolly, G. Schettino, K.T. Butterworth, K.M. Prise, Biological mechanisms of gold nanoparticle radiosensitization, Cancer Nanotechnol. 8 (2017) 2. https://doi.org/10.1186/s12645-017-0026-0
[88] J. Liu, C. Detrembleur, M.-C.C. De Pauw-Gillet, S.S. Mornet, C. Jérôme, E. Duguet, C. Jérôme, E. Duguet, C. Jerome, E. Duguet, Gold Nanorods Coated with Mesoporous Silica Shell as Drug Delivery System for Remote Near Infrared Light-Activated Release and Potential Phototherapy, Small 11 (2015) 2323–2332. https://doi.org/10.1002/smll.201402145
[89] B. Sahoo, K.S.P. Devi, S. Dutta, T.K. Maiti, P. Pramanik, D. Dhara, Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications, J. Colloid Interface Sci. 431 (2014) 31–41. https://doi.org/10.1016/j.jcis.2014.06.003
[90] J. Lu, M. Liong, Z. Li, J.I. Zink, F. Tamanoi, Biocompatibility, Biodistribution, and Drug-Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals, Small 6 (2010) 1794–1805. https://doi.org/10.1002/smll.201000538
[91] P.K. Jain, Y. Xiao, R. Walsworth, A.E. Cohen, Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals, Nano Lett. 9 (2009) 1644–1650. https://doi.org/10.1021/nl900007k
[92] M. Mikhaylova, D. Kyung Kim, N. Bobrysheva, M. Osmolowsky, V. Semenov, T. Tsakalakos, M. Muhammed, Superparamagnetism of Magnetite Nanoparticles: Dependence on Surface Modification, Lagmuir 20 (2004) 2472–2477. https://doi.org/10.1021/la035648e
[93] J.L. Lyon, D.A. Fleming, M.B. Stone, P. Schiffer, M.E. Williams, Synthesis of Fe oxide Core/Au shell nanoparticles by iterative hydroxylamine seeding, Nano Lett. 4 (2004) 719–723. https://doi.org/10.1021/nl035253f
[94] M. Spasova, V. Salgueiriño-Maceira, A. Schlachter, M. Hilgendorff, M. Giersig, L.M. Liz-Marzán, M. Farle, Magnetic and optical tunable microspheres with a magnetite/gold nanoparticle shell, J. Mater. Chem. 15 (2005) 2095. https://doi.org/10.1039/b502065d
[95] W.R. Lee, M.G. Kim, J.R. Choi, J. Il Park, S.J. Ko, S.J. Oh, J. Cheon, Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles, J. Am. Chem. Soc. 127 (2005) 16090–16097. https://doi.org/10.1021/ja053659j
[96] J. Zhang, M. Post, T. Veres, Z.J. Jakubek, J. Guan, D. Wang, F. Normandin, Y. Deslandes, B. Simard, Laser-assisted synthesis of superparamagnetic Fe@Au core-shell nanoparticles, J. Phys. Chem. B 110 (2006) 7122–7128. https://doi.org/10.1021/jp0560967
[97] K. Kawaguchi, J. Jaworski, Y. Ishikawa, T. Sasaki, N. Koshizaki, Preparation of gold/iron-oxide composite nanoparticles by a unique laser process in water, J. Magn. Magn. Mater. 310 (2007) 2369–2371. https://doi.org/10.1016/j.jmmm.2006.11.109
[98] S.-J. Cho, B.R. Jarrett, A.Y. Louie, S.M. Kauzlarich, Gold-coated iron nanoparticles: a novel magnetic resonance agent for T 1 and T 2 weighted imaging, Nanotechnology 17 (2006) 640–644. https://doi.org/10.1088/0957-4484/17/3/004
[99] W. Wu, Q. He, H. Chen, J. Tang, L. Nie, Sonochemical synthesis, structure and magnetic properties of air-stable Fe 3 O 4 / Au nanoparticles, Nanotechnology 18 (2007) 145609. https://doi.org/10.1088/0957-4484/18/14/145609
[100] E.A. Kwizera, E. Chaffin, Y. Wang, X. Huang, Synthesis and properties of magnetic-optical core-shell nanoparticles, RSC Adv. 7 (2017) 17137–17153. https://doi.org/10.1039/C7RA01224A
[101] S. Sabale, P. Kandesar, V. Jadhav, R. Komorek, R.K. Motkuri, X.Y. Yu, Recent developments in the synthesis, properties, and biomedical applications of core/shell superparamagnetic iron oxide nanoparticles with gold, Biomater. Sci. 24 (2017) 2212–2225. https://doi.org/10.1039/C7BM00723J
[102] H. Sun, J. He, J. Wang, S.Y. Zhang, C. Liu, T. Sritharan, S. Mhaisalkar, M.Y. Han, D. Wang, H. Chen, Investigating the multiple roles of polyvinylpyrrolidone for a general methodology of oxide encapsulation, J. Am. Chem. Soc. 135 (2013) 9099–9110. https://doi.org/10.1021/ja4035335
[103] D. Caruntu, B.L. Cushing, G. Caruntu, C.J. Connor, Attachment of gold nanograins onto colloidal magnetite nanocrystals, Chem. Mater. 17 (2005) 3398–3402. https://doi.org/10.1021/cm050280n
[104] A. Gole, J.W. Stone, W.R. Gemmill, H.-C. zur Loye, C.J. Murphy, Iron oxide coated gold nanorods: synthesis, characterization, and magnetic manipulation, Langmuir 24 (2008) 6232–6237. https://doi.org/10.1021/la703975y
[105] L. Li, Y.M. Du, K.Y. Mak, C.W. Leung, P.W.T. Pong, Novel hybrid Au/Fe3O4 magnetic octahedron-like nanoparticles with tunable size, IEEE Trans. Magn. 50 (2014) 23–27. https://doi.org/10.1109/TMAG.2014.2299393
[106] L.L. Ma, M.D. Feldman, J.M. Tam, A.S. Paranjape, K.K. Cheruku, T.A. Larson, J.O. Tam, D.R. Ingram, V. Paramita, J.W. Villard, J.T. Jenkins, T. Wang, G.D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T.E. Milner, K.P. Johnston, Small multifunctional nanoclusters (Nanoroses) for targeted cellular imaging and therapy, ACS Nano 3 (2009) 2686–2696. https://doi.org/10.1021/nn900440e
[107] H. Wang, D.W. Brandl, F. Le, P. Nordlander, N.J. Halas, Nanorice: A hybrid plasmonic nanostructure, Nano Lett. 6 (2006) 827–832. https://doi.org/10.1021/nl060209w
[108] M. Abdulla-Al-Mamun, Y. Kusumoto, T. Zannat, Y. Horie, H. Manaka, Au-ultrathin functionalized core–shell (Fe3O4@Au) monodispersed nanocubes for a combination of magnetic/plasmonic photothermal cancer cell killing, RSC Adv. 3 (2013) 7816. https://doi.org/10.1039/c3ra21479f
[109] H.M. Song, Q. Wei, Q.K. Ong, A. Wei, Plasmon-resonant nanoparticles and nanostars with magnetic cores: Synthesis and magnetomotive imaging, ACS Nano 4 (2010) 5163–5173. https://doi.org/10.1021/nn101202h
[110] Z. Yang, X. Ding, J. Jiang, Facile synthesis of magnetic–plasmonic nanocomposites as T1 MRI contrast enhancing and photothermal therapeutic agents, Nano Res. 9 (2016) 787–799. https://doi.org/10.1007/s12274-015-0958-9
[111] S. Yu, J.A. Hachtel, M.F. Chisholm, S.T. Pantelides, A. Laromaine, A. Roig, Magnetic gold nanotriangles by microwave-assisted polyol synthesis, Nanoscale 7 (2015) 14039–46. https://doi.org/10.1039/C5NR03113C
[112] M. Abbas, S. RamuluTorati, C. Kim, Multifunctional Fe 3 O 4 /Au core/satellite nanocubes: an efficient chemical synthesis, characterization and functionalization of streptavidin protein, Dalt. Trans. 46 (2017) 2303–2309. https://doi.org/10.1039/C6DT04486G
[113] E.N. Esenturk, A.R. Hight Walker, Gold nanostar @ iron oxide core-shell nanostructures: Synthesis, characterization, and demonstrated surface-enhanced Raman scattering properties, J. Nanoparticle Res. 15 (2013) 1364. https://doi.org/10.1007/s11051-012-1364-9
[114] R.L. Truby, S.Y. Emelianov, K.A. Homan, Ligand-mediated self-assembly of hybrid plasmonic and superparamagnetic nanostructures, Langmuir 29 (2013) 2465–2470. https://doi.org/10.1021/la3037549
[115] F. Bertorelle, M. Ceccarello, M. Pinto, G. Fracasso, D. Badocco, V. Amendola, P. Pastore, M. Colombatti, M. Meneghetti, Efficient AuFeOx nanoclusters of laser-ablated nanoparticles in water for cells guiding and surface-enhanced resonance Raman scattering imaging, J. Phys. Chem. C 118 (2014) 14534–14541. https://doi.org/10.1021/jp503725w
[116] U. Tamer, I.H. BoyacI, E. Temur, A. Zengin, I. Dincer, Y. Elerman, Fabrication of magnetic gold nanorod particles for immunomagnetic separation and SERS application, J. Nanoparticle Res. 13 (2011) 3167–3176. https://doi.org/10.1007/s11051-010-0213-y
[117] D. Yang, X. Pang, Y. He, Y. Wang, G. Chen, W. Wang, Z. Lin, Precisely Size-Tunable Magnetic/Plasmonic Core/Shell Nanoparticles with Controlled Optical Properties, Angew. Chemie 127 (2015) 12259–12264. https://doi.org/10.1002/ange.201504676
[118] E.D. Smolensky, M.C. Neary, Y. Zhou, T.S. Berquo, V.C. Pierre, Fe3O4@organic@Au: Core-shell nanocomposites with high saturation magnetisation as magnetoplasmonic MRI contrast agents, Chem. Commun. 47 (2011) 2149–2151. https://doi.org/10.1039/C0CC03746J
[119] C.-W. Chen, W.-J. Syu, T.-C. Huang, Y.-C. Lee, J.-K. Hsiao, K.-Y. Huang, H.-P. Yu, M.-Y. Liao, P.-S. Lai, Encapsulation of Au/Fe 3 O 4 nanoparticles into a polymer nanoarchitecture with combined near infrared-triggered chemo-photothermal therapy based on intracellular secondary protein understanding, J. Mater. Chem. B 5 (2017) 5774–5782. https://doi.org/10.1039/C7TB00944E
[120] S. V. Salihov, Y.A. Ivanenkov, S.P. Krechetov, M.S. Veselov, N. V. Sviridenkova, A.G. Savchenko, N.L. Klyachko, Y.I. Golovin, N. V. Chufarova, E.K. Beloglazkina, A.G. Majouga, Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles, J. Magn. Magn. Mater. 394 (2015) 173–178. https://doi.org/10.1016/j.jmmm.2015.06.012
[121] X.F. Zhang, L. Clime, H.Q. Ly, M. Trudeau, T. Veres, Multifunctional Fe 3 O 4 −Au/Porous Silica@Fluorescein Core/Shell Nanoparticles with Enhanced Fluorescence Quantum Yield, J. Phys. Chem. C 114 (2010) 18313–18317. https://doi.org/10.1021/jp1051112
[122] B. Wu, S. Tang, M. Chen, N. Zheng, Amphiphilic modification and asymmetric silica encapsulation of hydrophobic Au–Fe 3 O 4 dumbbell nanoparticles, Chem. Commun. 50 (2014) 174–176. https://doi.org/10.1039/C3CC47634K
[123] S.N.A. Keivani, M. Naderi, G. Amoabediny, Superparamagnetic plasmonic nanocomposites: Synthesis and characterization studies, Chem. Eng. J. 264 (2015) 66–76. https://doi.org/10.1016/j.cej.2014.11.059
[124] V. Salgueiriño-Maceira, M.A. Correa-Duarte, F. Michael, A. López-Quintela, K. Sieradzki, R. Diaz, Bifunctional gold-coated magnetic silica spheres, Chem. Mater. 18 (2006) 2701–2706. https://doi.org/10.1021/cm0603001
[125] X. He, L. Tan, D. Chen, X. Wu, X. Ren, Y. Zhang, X. Meng, F. Tang, Fe3O4–Au@mesoporous SiO2 microspheres: an ideal artificial enzymatic cascade system, Chem. Commun. 49 (2013) 4643. https://doi.org/10.1039/c3cc40622a
[126] Y. Hu, Y. Sun, Stable magnetic hot spots for simultaneous concentration and ultrasensitive surface-enhanced Raman scattering detection of solution analytes, J. Phys. Chem. C 116 (2012) 13329–13335. https://doi.org/10.1021/jp303775m
[127] J. Ge, Q. Zhang, T. Zhang, Y. Yin, Core-Satellite Nanocomposite Catalysts Protected by a Porous Silica Shell: Controllable Reactivity, High Stability, and Magnetic Recyclability, Angew. Chemie Int. Ed. 47 (2008) 8924–8928. https://doi.org/10.1002/anie.200803968
[128] S.I. Stoeva, F. Huo, J.S. Lee, C.A. Mirkin, Three-layer composite magnetic nanoparticle probes for DNA, J. Am. Chem. Soc. 127 (2005) 15362–15363. https://doi.org/10.1021/ja055056d
[129] R. Bardhan, W. Chen, C. Perez-Torres, M. Bartels, R.M. Huschka, L.L. Zhao, E. Morosan, R.G. Pautler, A. Joshi, N.J. Halas, Nanoshells with Targeted Simultaneous Enhancement of Magnetic and Optical Imaging and Photothermal Therapeutic Response, Adv. Funct. Mater. 19 (2009) 3901–3909. https://doi.org/10.1002/adfm.200901235
[130] X. Wang, H. Liu, D. Chen, X. Meng, T. Liu, C. Fu, N. Hao, Y. Zhang, X. Wu, J. Ren, F. Tang, Multifunctional Fe 3 O 4 @P(St/MAA)@Chitosan@Au Core/Shell Nanoparticles for Dual Imaging and Photothermal Therapy, ACS Appl. Mater. Interfaces 5 (2013) 4966–4971. https://doi.org/10.1021/am400721s
[131] F. Chen, Q. Chen, S. Fang, Y. Sun, Z. Chen, G. Xie, Y. Du, Multifunctional nanocomposites constructed from Fe3O4–Au nanoparticle cores and a porous silica shell in the solution phase, Dalt. Trans. 40 (2011) 10857. https://doi.org/10.1039/c1dt10374a
[132] X. Xu, M.B. Cortie, Precious metal core-shell spindles, J. Phys. Chem. C 111 (2007) 18135–18142. https://doi.org/10.1021/jp076425q
[133] Z. Chen, Y. Liang, J. Hao, Z.-M. Cui, Noncontact Synergistic Effect between Au Nanoparticles and the Fe2O3 Spindle Inside a Mesoporous Silica Shell as Studied by the Fenton-like Reaction, Langmuir 32 (2016) 12774–12780. https://doi.org/10.1021/acs.langmuir.6b03235
[134] M. Ma, H. Chen, Y. Chen, X. Wang, F. Chen, X. Cui, J. Shi, Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging, Biomaterials 33 (2012) 989–998. https://doi.org/10.1016/j.biomaterials.2011.10.017
[135] J.G. Ovejero, I. Morales, P. de la Presa, N. Mille, J. Carrey, M.A. Garcia, A. Hernando, P. Herrasti, Hybrid nanoparticles for magnetic and plasmonic hyperthermia, Phys. Chem. Chem. Phys. 20 (2018) 24065–24073. https://doi.org/10.1039/C8CP02513D
[136] L. Huang, L. Ao, D. Hu, W. Wang, Z. Sheng, W. Su, Magneto-Plasmonic Nanocapsules for Multimodal-Imaging and Magnetically Guided Combination Cancer Therapy, Chem. Mater. 28 (2016) 5896–5904. https://doi.org/10.1021/acs.chemmater.6b02413
[137] S. Xuan, F. Wang, X. Gong, S.-K. Kong, J.C. Yu, K.C.-F. Leung, Hierarchical core/shell Fe3O4@SiO2@γ-AlOOH@Au micro/nanoflowers for protein immobilization, Chem. Commun. 47 (2011) 2514. https://doi.org/10.1039/c0cc05390b
[138] W.P. Li, P.Y. Liao, C.H. Su, C.S. Yeh, Formation of oligonucleotide-gated silica shell-coated Fe3O4-Au core-shell nanotrisoctahedra for magnetically targeted and near-infrared light-responsive theranostic platform, J. Am. Chem. Soc. 136 (2014) 10062–10075. https://doi.org/10.1021/ja504118q
[139] D.-W. Wang, X.-M. Zhu, S.-F. Lee, H.-M. Chan, H.-W. Li, S.K. Kong, J.C. Yu, C.H.K. Cheng, Y.-X.J. Wang, K.C.-F. Leung, Folate-conjugated Fe3O4@SiO2@gold nanorods@mesoporous SiO2 hybrid nanomaterial: a theranostic agent for magnetic resonance imaging and photothermal therapy, J. Mater. Chem. B 1 (2013) 2934. https://doi.org/10.1039/c3tb20090f
[140] P. Pallavicini, E. Cabrini, A. Casu, G. Dacarro, Y. Antonio Diaz-Fernandez, A. Falqui, C. Milanese, F. Vita, P. Lecante, A. Mosset, J. Osuna, T.O. Ely, C. Amiens, B. Chaudret, Silane-coated magnetic nanoparticles with surface thiol functions for conjugation with gold nanostars, Dalt. Trans. 44 (2015) 21088–21098. https://doi.org/10.1039/C5DT02812D
[141] C.-L. Fang, K. Qian, J. Zhu, S. Wang, X. Lv, S.-H. Yu, Monodisperse α-Fe(2)O(3)@SiO(2)@Au core/shell nanocomposite spheres: synthesis, characterization and properties, Nanotechnology 19 (2008) 125601. https://doi.org/10.1088/0957-4484/19/12/125601
[142] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications, Chem. Rev. 108 (2008) 2064–2110. https://doi.org/10.1021/cr068445e
[143] Pankhurst, Connolly, Jones, Dobson, Applications of magnetic nanoparticles in biomedicine, J. Physics-London-D Appl. Phys. 36 (2003) 167–181. https://doi.org/10.1088/0022-3727/36/13/201
[144] D. Xi, S. Dong, X. Meng, Q. Lu, L. Meng, J. Ye, Gold nanoparticles as computerized tomography (CT) contrast agents, RSC Adv. 2 (2012) 12515. https://doi.org/10.1039/c2ra21263c
[145] A. Espinosa, R. Di Corato, J. Kolosnjaj-Tabi, P. Flaud, T. Pellegrino, C. Wilhelm, Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment, ACS Nano 10 (2016) 2436–2446. https://doi.org/10.1021/acsnano.5b07249
[146] B.R. Smith, S.S. Gambhir, Nanomaterials for in Vivo Imaging, Chem. Rev. 117 (2017) 901–986. https://doi.org/10.1021/acs.chemrev.6b00073
[147] L. Martí-Bonmatí, R. Sopena, P. Bartumeus, P. Sopena, Multimodality imaging techniques, Contrast Media Mol. Imaging 5 (2010) 180–189. https://doi.org/10.1002/cmmi.393
[148] J. Zhu, Y. Lu, Y. Li, J. Jiang, L. Cheng, Z. Liu, L. Guo, Y. Pan, H. Gu, Synthesis of Au-Fe3O4 heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging, Nanoscale 6 (2014) 199–202. https://doi.org/10.1039/C3NR04730J
[149] J. Kim, S. Park, J.E. Lee, S.M. Jin, J.H. Lee, I.S. Lee, I. Yang, J.S. Kim, S.K. Kim, M.H. Cho, T. Hyeon, Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy, Angew. Chemie – Int. Ed. 45 (2006) 7754–7758. https://doi.org/10.1002/anie.200602471
[150] V. Amendola, S. Scaramuzza, L. Litti, M. Meneghetti, G. Zuccolotto, A. Rosato, E. Nicolato, P. Marzola, G. Fracasso, C. Anselmi, M. Pinto, M. Colombatti, Magneto-plasmonic Au-Fe alloy nanoparticles designed for multimodal SERS-MRI-CT imaging, Small 10 (2014) 2476–2486. https://doi.org/10.1002/smll.201303372
[151] X. Ji, R. Shao, A.M. Elliott, R.J. Stafford, E. Esparza-Coss, J.A. Bankson, G. Liang, Z.-P. Luo, K. Park, J.T. Markert, C. Li, Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide−Silica Core Suitable for Both MR Imaging and Photothermal Therapy, J. Phys. Chem. C 111 (2007) 6245–6251. https://doi.org/10.1021/jp0702245
[152] Y. Huang, T. Wei, J. Yu, Y. Hou, K. Cai, X.J. Liang, Multifunctional metal rattle-type nanocarriers for MRI-guided photothermal cancer therapy, Mol. Pharm. 11 (2014) 3386–3394. https://doi.org/10.1021/mp500006z
[153] A. Tomitaka, H. Arami, Z. Huang, A. Raymond, E. Rodriguez, Y. Cai, M. Febo, Y. Takemura, M. Nair, Hybrid magneto-plasmonic liposomes for multimodal image-guided and brain-targeted HIV treatment, Nanoscale 10 (2017) 184. https://doi.org/10.1039/C7NR07255D
[154] J. Li, B. Arnal, C.W. Wei, J. Shang, T.M. Nguyen, M. O’Donnell, X. Gao, Magneto-optical nanoparticles for cyclic magnetomotive photoacoustic imaging, ACS Nano 9 (2015) 1964–1976. https://doi.org/10.1021/nn5069258
[155] C. Wei, J. Xia, I. Pelivanov, C. Jia, S. Huang, X. Hu, X. Gao, M.O. Donnell, Magnetomotive photoacoustic imaging : in vitro studies of magnetic trapping with simultaneous photoacoustic detection of rare circulating tumor cells, 522 (2013) 513–522. https://doi.org/10.1002/jbio.201200221
[156] Q. Wei, H.M. Song, A.P. Leonov, J. a Hale, D. Oh, Q.K. Ong, K. Ritchie, A. Wei, Gyromagnetic imaging: Dynamic optical contrast using gold nanostars with magnetic cores, J. Am. Chem. Soc. 131 (2009) 9728–9734. https://doi.org/10.1021/ja901562j
[157] J. Oh, M.D. Feldman, J. Kim, C. Condit, S. Emelianov, T.E. Milner, Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound, Nanotechnology 17 (2006) 4183–4190. https://doi.org/10.1088/0957-4484/17/16/031
[158] M. Mehrmohammadi, J. Oh, L. Ma, E. Yantsen, T. Larson, S. Mallidi, S. Park, K.P. Johnston, K. Sokolov, T. Milner, S. Emelianov, Imaging of iron oxide nanoparticles using magneto-motive ultrasound, in: Proc. – IEEE Ultrason. Symp., 2007: pp. 652–655. https://doi.org/10.1109/ULTSYM.2007.169
[159] L.-C. Chen, C.-W. Wei, J.S. Souris, S.-H. Cheng, C.-T. Chen, C.-S. Yang, P.-C. Li, L.-W. Lo, Y.-S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, S. Emelianov, Enhanced photoacoustic stability of gold nanorods by silica matrix confinement, J. Biomed. Opt. 18 (2012) 8867. https://doi.org/10.1364/OE.18.008867
[160] M. Qu, M. Mehrmohammadi, R. Truby, I. Graf, K. Homan, S. Emelianov, Contrast-enhanced magneto-photo-acoustic imaging in vivo using dual-contrast nanoparticles, Photoacoustics 2 (2014) 55–62. https://doi.org/10.1016/j.pacs.2013.12.003
[161] H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review, J. Control. Release 65 (2000) 271–284. https://doi.org/10.1016/S0168-3659(99)00248-5
[162] H. Yin, L. Liao, J. Fang, Enhanced Permeability and Retention ( EPR ) Effect Based Tumor Targeting : The Concept , Application and Prospect, JSM Clin Oncol Res 2 (2014) 1–5.
[163] A. Wicki, D. Witzigmann, V. Balasubramanian, J. Huwyler, Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications, J. Control. Release 200 (2015) 138–157. https://doi.org/10.1016/j.jconrel.2014.12.030
[164] I.H. El-Sayed, X.H. Huang, M.A. El-Sayed, Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer, Nano Lett. 5 (2005) 829–834. https://doi.org/10.1021/nl050074e
[165] A. Kumar, H. Ma, X. Zhang, K. Huang, S. Jin, J. Liu, T. Wei, W. Cao, G. Zou, X.-J. Liang, Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment, Biomaterials 33 (2012) 1180–1189. https://doi.org/10.1016/j.biomaterials.2011.10.058
[166] R. a Sperling, W.J. Parak, Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles, Philos. Trans. A. Math. Phys. Eng. Sci. 368 (2010) 1333–1383. https://doi.org/10.1098/rsta.2009.0273
[167] A.J. Cole, V.C. Yang, A.E. David, Cancer theranostics: the rise of targeted magnetic nanoparticles, Trends Biotechnol. 29 (2011) 323–332. https://doi.org/10.1016/j.tibtech.2011.03.001
[168] R.R. Wildeboer, P. Southern, Q.A. Pankhurst, On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials, J. Phys. D. Appl. Phys. 47 (2014) 495003. https://doi.org/10.1088/0022-3727/47/49/495003
[169] R.K. Gilchrist, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrott, C.B. Taylor, Selective Inductive Heating of Lymph Nodes *, Ann. Surg. 146 (1957) 596–606. https://doi.org/10.1097/00000658-195710000-00007
[170] I. Obaidat, B. Issa, Y. Haik, Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia, Nanomaterials 5 (2015) 63–89. https://doi.org/10.3390/nano5010063
[171] E.A. Périgo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola, F.J. Teran, Fundamentals and advances in magnetic hyperthermia, Appl. Phys. Rev. 2 (2015) 041302. https://doi.org/10.1063/1.4935688
[172] L. Gutiérrez, R. Costo, C. Grüttner, F. Westphal, N. Gehrke, D. Heinke, A. Fornara, Q. a Pankhurst, C. Johansson, M.P. Morales, Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications, Dalt. Trans. (2015) 2943–2952. https://doi.org/10.1039/C4DT03013C
[173] I. Andreu, E. Natividad, L. Solozábal, O. Roubeau, Nano-objects for addressing the control of nanoparticle arrangement and performance in magnetic hyperthermia, ACS Nano 9 (2015) 1408–1419. https://doi.org/10.1021/nn505781f
[174] K. Maier-Hauff, F. Ulrich, D. Nestler, H. Niehoff, P. Wust, B. Thiesen, H. Orawa, V. Budach, A. Jordan, Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme, J. Neurooncol. 103 (2011) 317–324. https://doi.org/10.1007/s11060-010-0389-0
[175] S. Link, M.A. El-sayed, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals, Int. Rev. Phys. Chem. 19 (2000) 409–453. https://doi.org/10.1080/01442350050034180
[176] S. Link, C. Burda, B. Nikoobakht, M.A. El-Sayed, Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses, J. Phys. Chem. B 104 (2000) 6152–6163. https://doi.org/10.1021/jp000679t
[177] S.C. Nguyen, Q. Zhang, K. Manthiram, X. Ye, J.P. Lomont, C.B. Harris, H. Weller, A.P. Alivisatos, Study of Heat Transfer Dynamics from Gold Nanorods to the Environment via Time-Resolved Infrared Spectroscopy, ACS Nano 10 (2016) 2144–2151. https://doi.org/10.1021/acsnano.5b06623
[178] P. Pedrosa, R. Vinhas, A. Fernandes, P. Baptista, Gold Nanotheranostics: Proof-of-Concept or Clinical Tool?, Nanomaterials 5 (2015) 1853–1879. https://doi.org/10.3390/nano5041853
[179] R.S. Riley, E.S. Day, Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment, Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 9 (2017) e1449. https://doi.org/10.1002/wnan.1449
[180] J.L. Markman, A. Rekechenetskiy, E. Holler, J.Y. Ljubimova, Nanomedicine therapeutic approaches to overcome cancer drug resistance, Adv. Drug Deliv. Rev. 65 (2013) 1866–1879. https://doi.org/10.1016/j.addr.2013.09.019
[181] R. Di Corato, G. Béalle, J. Kolosnjaj-Tabi, A. Espinosa, O. Clément, A.K.A. Silva, C. Ménager, C. Wilhelm, Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes, ACS Nano 9 (2015) 2904–2916. https://doi.org/10.1021/nn506949t
[182] A. Espinosa, M. Bugnet, G. Radtke, S. Neveu, G.A. Botton, C. Wilhelm, A. Abou-Hassan, V. Budach, A. Jordan, P. Wust, R. Bazzi, E. Pereira, Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia?, Nanoscale 7 (2015) 18872–18877. https://doi.org/10.1039/C5NR06168G
[183] S. Jain, D.G. Hirst, J.M. O’Sullivan, Gold nanoparticles as novel agents for cancer therapy, Br. J. Radiol. 85 (2012) 101–13. https://doi.org/10.1259/bjr/59448833
[184] S. Bhana, G. Lin, L. Wang, H. Starring, S.R. Mishra, G. Liu, X. Huang, Near-infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy, ACS Appl. Mater. Interfaces 7 (2015) 11637–11647. https://doi.org/10.1021/acsami.5b02741
[185] D.-H. Kim, E.A. Rozhkova, I. V Ulasov, S.D. Bader, T. Rajh, M.S. Lesniak, V. Novosad, Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction, Nat. Mater. 9 (2010) 165–71. https://doi.org/10.1038/nmat2591
[186] E. Zhang, M.F. Kircher, M. Koch, L. Eliasson, S.N. Goldberg, E. Renström, Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation, ACS Nano 8 (2014) 3192–3201. https://doi.org/10.1021/nn406302j
[187] M. Domenech, I. Marrero-Berrios, M. Torres-Lugo, C. Rinaldi, Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields, ACS Nano 7 (2013) 5091–5101. https://doi.org/10.1021/nn4007048
[188] A. Vegerhof, E. Barnoy, M. Motiei, D. Malka, Y. Danan, Z. Zalevsky, R. Popovtzer, Targeted Magnetic Nanoparticles for Mechanical Lysis of Tumor Cells by Low-Amplitude Alternating Magnetic Field, Materials (Basel). 9 (2016) 943. https://doi.org/10.3390/ma9110943
[189] J.R. Lepock, H.E. Frey, A.M. Rodahl, J. Kruuv, Thermal analysis of CHL V79 cells using differential scanning calorimetry: Implications for hyperthermic cell killing and the heat shock response, J. Cell. Physiol. 137 (1988) 14–24. https://doi.org/10.1002/jcp.1041370103
[190] N. Iovino, A.C. Bohorquez, C. Rinaldi, Magnetic nanoparticle targeting of lysosomes: a viable method of overcoming tumor resistance?, Nanomedicine 9 (2014) 937–939. https://doi.org/10.2217/nnm.14.52
[191] J. Su, Z. Zhou, H. Li, S. Liu, Quantitative detection of human chorionic gonadotropin antigen via immunogold chromatographic test strips, Anal. Methods 6 (2014) 450–455. https://doi.org/10.1039/C3AY41708E
[192] H. Aldewachi, T. Chalati, M.N. Woodroofe, N. Bricklebank, B. Sharrack, P. Gardiner, Gold nanoparticle-based colorimetric biosensors, Nanoscale Rev. Cite This Nanoscale 10 (2018) 18. https://doi.org/10.1039/C7NR06367A
[193] V. Hegde, M. Wang, W.A. Deutsch, Characterization of human ribosomal protein S3 binding to 7,8-dihydro-8-oxoguanine and abasic sites by surface plasmon resonance, DNA Repair (Amst). 3 (2004) 121–126. https://doi.org/10.1016/j.dnarep.2003.10.004
[194] S.F. Chou, W.L. Hsu, J.M. Hwang, C.Y. Chen, Development of an immunosensor for human ferritin, a nonspecific tumor marker, based on surface plasmon resonance, Biosens. Bioelectron. 19 (2004) 999–1005. https://doi.org/10.1016/j.bios.2003.09.004
[195] L. Lu, A. Eychmüller, Ordered macroporous bimetallic nanostructures: Design, characterization, and applications, Acc. Chem. Res. 41 (2008) 244–253. https://doi.org/10.1021/ar700143w
[196] M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 26 (1974) 163–166. https://doi.org/10.1016/0009-2614(74)85388-1
[197] D.L. Jeanmaire, R.P. Van Duyne, Surface raman spectroelectrochemistry Part I Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem. 84 (1977) 1–20. https://doi.org/10.1016/S0022-0728(77)80224-6
[198] L. Zhang, J. Xu, L. Mi, H. Gong, S. Jiang, Q. Yu, Multifunctional magnetic-plasmonic nanoparticles for fast concentration and sensitive detection of bacteria using SERS, Biosens. Bioelectron. 31 (2012) 130–136. https://doi.org/10.1016/j.bios.2011.10.006
[199] C. Wang, J. Irudayaraj, Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens, Small 6 (2010) 283–289. https://doi.org/10.1002/smll.200901596
[200] B. Pelaz, C. Alexiou, R.A. Alvarez-Puebla, F. Alves, A.M. Andrews, S. Ashraf, L.P. Balogh, L. Ballerini, A. Bestetti, C. Brendel, S. Bosi, M. Carril, W.C.W. Chan, C. Chen, X. Chen, X. Chen, Z. Cheng, D. Cui, J. Du, C. Dullin, et al., Diverse Applications of Nanomedicine, ACS Nano 11 (2017) 2313–2381. https://doi.org/10.1021/acsnano.6b06040
[201] X. Nan, X. Zhang, Y. Liu, M. Zhou, X. Chen, X. Zhang, Dual-Targeted Multifunctional Nanoparticles for Magnetic Resonance Imaging Guided Cancer Diagnosis and Therapy, ACS Appl. Mater. Interfaces 9 (2017) 9986–9995. https://doi.org/10.1021/acsami.6b16486
[202] R.X. Zhang, T. Ahmed, L.Y. Li, J. Li, A.Z. Abbasi, X.Y. Wu, Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks, Nanoscale 9 (2017) 1334–1355. https://doi.org/10.1039/C6NR08486A
[203] L. Li, S. Fu, C. Chen, X. Wang, C. Fu, S. Wang, W. Guo, X. Yu, X. Zhang, Z. Liu, J. Qiu, H. Liu, Microenvironment-Driven Bioelimination of Magnetoplasmonic Nanoassemblies and Their Multimodal Imaging-Guided Tumor Photothermal Therapy, ACS Nano 10 (2016) 7094–7105. https://doi.org/10.1021/acsnano.6b03238
[204] H. Wang, G. Cao, Z. Gai, K. Hong, P. Banerjee, S. Zhou, Magnetic/NIR-responsive drug carrier, multicolor cell imaging, and enhanced photothermal therapy of gold capped magnetite-fluorescent carbon hybrid nanoparticles, Nanoscale 7 (2015) 7885–7895. https://doi.org/10.1039/C4NR07335E
[205] B. Sanavio, F. Stellacci, Recent Advances in the Synthesis and Applications of Multimodal Gold-Iron Nanoparticles, Curr. Med. Chem. 24 (2017) 497–511. https://doi.org/10.2174/0929867323666160829111531
[206] D.A. Giljohann, D.S. Seferos, W.L. Daniel, M.D. Massich, P.C. Patel, C.A. Mirkin, Gold nanoparticles for biology and medicine, Angew. Chemie – Int. Ed. 49 (2010) 3280–3294. https://doi.org/10.1002/anie.200904359
[207] R.R. Qiao, C.H. Yang, M.Y. Gao, Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications, J. Mater. Chem. 19 (2009) 6274–6293. https://doi.org/10.1039/b902394a
[208] M. V. Efremova, V.A. Naumenko, M. Spasova, A.S. Garanina, M.A. Abakumov, A.D. Blokhina, P.A. Melnikov, A.O. Prelovskaya, M. Heidelmann, Z.A. Li, Z. Ma, I. V. Shchetinin, Y.I. Golovin, I.I. Kireev, A.G. Savchenko, V.P. Chekhonin, N.L. Klyachko, M. Farle, A.G. Majouga, U. Wiedwald, Magnetite-Gold nanohybrids as ideal all-in-one platforms for theranostics, Sci. Rep. 8 (2018) 11295. https://doi.org/10.1038/s41598-018-29618-w
[209] G.A. Sotiriou, A.M. Hirt, P.Y. Lozach, A. Teleki, F. Krumeich, S.E. Pratsinis, Hybrid, silica-coated, Janus-like plasmonic-magnetic nanoparticles, Chem. Mater. 23 (2011) 1985–1992. https://doi.org/10.1021/cm200399t
[210] G. a. Sotiriou, F. Starsich, A. Dasargyri, M.C. Wurnig, F. Krumeich, A. Boss, J.C. Leroux, S.E. Pratsinis, Photothermal killing of cancer cells by the controlled plasmonic coupling of silica-coated Au/Fe2O3 nanoaggregates, Adv. Funct. Mater. 24 (2014) 2818–2827. https://doi.org/10.1002/adfm.201303416
[211] L.T. Zhuravlev, The surface chemistry of amorphous silica Zhuravlev model, Colloids Surfaces A Physicochem. Eng. Asp. 173 (2000) 1–38. https://doi.org/10.1016/S0927-7757(00)00556-2
[212] R. Bardhan, S. Lal, A. Joshi, N.J. Halas, Theranostic Nanoshells: From Probe Design to Imaging and Treatment of Cancer, Acc Chem Res. 44 (2011) 936–946. https://doi.org/10.1021/ar200023x
[213] R. Bardhan, N.K. Grady, J.R. Cole, A. Joshi, N.J. Halas, Fluorescence Enhancement by Au Nanostructures:Nanoshells and Nanorods, ACS Nano 3 (2009) 744–752. https://doi.org/10.1021/nn900001q
[214] B. Sahoo, K.S.P. Devi, S. Dutta, T.K. Maiti, P. Pramanik, D. Dhara, Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications, J. Colloid Interface Sci. 431 (2014) 31–41. https://doi.org/10.1016/j.jcis.2014.06.003
[215] Y. Bayazitoglu, S. Kheradmand, T.K. Tullius, An overview of nanoparticle assisted laser therapy, Int. J. Heat Mass Transf. 67 (2013) 469–486. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.018
[216] T. a Larson, J. Bankson, J. Aaron, K. Sokolov, Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells, Nanotechnology 18 (2007) 325101. https://doi.org/10.1088/0957-4484/18/32/325101
[217] X. Ji, R. Shao, A.M. Elliott, R.J. Stafford, E. Esparza-Coss, J.A. Bankson, G. Liang, Z.-P. Luo, K. Park, J.T. Markert, C. Li, Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide−Silica Core Suitable for Both MR Imaging and Photothermal Therapy, J. Phys. Chem. C 111 (2007) 6245–6251. https://doi.org/10.1021/jp0702245
[218] Y.M. Zhou, H.B. Wang, M. Gong, Z.Y. Sun, K. Cheng, X. kai Kong, Z. Guo, Q.W. Chen, M. Zhang, M.H. Cho, T. Hyeon, Yolk-type Au@Fe3O4@C nanospheres for drug delivery, MRI and two-photon fluorescence imaging, Dalt. Trans. 42 (2013) 9906. https://doi.org/10.1039/c3dt50789k