Electrochemical Studies of Green Corrosion Inhibitors


Electrochemical Studies of Green Corrosion Inhibitors

S.K. Ujjain, P. Ahuja, R. Kanojia

Corrosion of macro to micro-structures has been one of the major causes of structural failure in modern era. Their early detection could assist in limiting their repairs and reducing the associated cost as well. This chapter focusses on the state-of-the-art and development made with green corrosion inhibitors for preventing corrosion. It mainly includes the most recent progress in electrochemical corrosion monitoring techniques for various green inhibitors namely polarization technique, electrochemical impedance spectroscopy, electrochemical noise measurement and electrochemical quartz crystal microbalance techniques. Finally, we conclude with the current progress, limitations and remedies in the recent trends and advancement of green corrosion inhibitors for corrosion prevention.

Electrochemical Techniques, Corrosion, Green Corrosion Inhibitor, Polarization Technique, Electrochemical Impedance Spectroscopy, Electrochemical Noise, Electrochemical Quartz Crystal Microbalance

Published online 11/3/2020, 36 pages

Citation: S.K. Ujjain, P. Ahuja, R. Kanojia, Electrochemical Studies of Green Corrosion Inhibitors, Materials Research Foundations, Vol. 86, pp 91-126, 2021

DOI: https://doi.org/10.21741/9781644901052-4

Part of the book on Theory and Applications of Green Corrosion Inhibitors

[1] A.S.H. Makhlouf, Intelligent stannate-based coatings of self-healing functionality for magnesium alloys, in: A. Tiwari, J. Rawlins, L.H. Hihara (Eds.), Intelligent Coatings for Corrosion Control. Oxford, Butterworth Heinemann, 2015. pp. 537-555. https://doi.org/10.1016/B978-0-12-411467-8.00015-5
[2] P. Zarras, J.D. Stenger-Smith, Smart inorganic and organic pretreatment coatings for the inhibition of corrosion on metals/alloys, in: A. Tiwari, J. Rawlins, L.H. Hihara (Eds.), Intelligent Coatings for Corrosion Control. Oxford, Butterworth Heinemann, 2015. pp. 59-91. https://doi.org/10.1016/B978-0-12-411467-8.00003-9
[3] K. Y. Choi, S.S. Kim, Morphological analysis and classification of types of surface corrosion damage by digital image processing, Corros. Sci. 47 (2005) 1-15. https://doi.org/10.1016/j.corsci.2004.05.007
[4] U.R. Evans, Stress corrosion: Its relation to other types of corrosion, Corrosion 7 (1951) 238-244. https://doi.org/10.5006/0010-9312-7.7.238
[5] R.C. Ewing, Long-term storage of spent nuclear fuel, Nat. Mater. 14 (2015)252–257. https://doi.org/10.1038/nmat4226
[6] W.J. Weber, RC. Ewing, C.R.A. Catlow, T.D. de la Rubia, L.W. Hobbs, C. Kinoshita, Hj. Matzke, A.T. Motta, M. Nastasi, E.K.H. Salje, E.R. Vance, S.J. Zinkle, Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium, J. Mater. Res. 13 (1998) 1434-1484. https://doi.org/10.1557/JMR.1998.0205
[7] H.H. Uhlig, The cost of corrosion to the United States, Corros. 6 (1950) 29-33. https://doi.org/10.5006/0010-9312-6.1.29
[8] T.P. Hoar, Review lecture: Corrosion of metals: Its cost and control, Proc. R. Soc. Lond. A 348 (1976) 1-18. https://doi.org/10.1098/rspa.1976.0020
[9] L.H. Bennett, J. Kruger, R.L. Parker, E. Passaglia, C. Reimann, A.W. Ruff, H. Yakowitz, E.B. Berman, Economic Effects of Metallic Corrosion in the United States: A Report to the Congress by the National Bureau of Standards; 1978. https://doi.org/10.6028/NBS.SP.511-1
[10] M. V. Biezma, J.R. San Cristóbal, Methodology to study cost of corrosion, Corros. Eng. Sci. Techn., 40 (2005) 344–352. https://doi.org/10.1179/174327805X75821
[11] B. Hou, X. Li, X. Ma, C. Du, D. Zhang, M. Zheng, M.W. Xu, D. Lu, F. Ma, The cost of corrosion in China, Mater. Degrad. 1 (2017) 1-10. https://doi.org/10.1038/s41529-017-0001-6
[12] T.R. Witcher, From disaster to prevention: The silver bridge, Civ. Eng. 87 (2017) 44-47. https://doi.org/10.1061/ciegag.0001250
[13] A.A. El-Meligi, Corrosion preventive strategies as a crucial need for decreasing environmental pollution and saving economics, Recent Pat. on Corros. Sci. 2 (2010) 22-33. https://doi.org/10.2174/1877610801002010022
[14] P.P. Deshpande, N.G. Jadhav, V.J. Gelling, D. Sazou, Conducting polymers for corrosion protection: A review, J. Coat. Technol. Res., 11 (2014) 473–494. https://doi.org/10.1007/s11998-014-9586-7
[15] S.A. Umoren, M.M. Solomon, Recent developments on the use of polymers as corrosion inhibitors: A review, Open Mater. Sci. J. 8 (2014) 39-54. https://doi.org/10.2174/1874088X01408010039
[16] M. Taghavikish, N.K. Dutta, N.R. Choudhury, Emerging corrosion inhibitors for interfacial coating, Coatings 7 (2017) 217-245. https://doi.org/10.3390/coatings7120217
[17] S.A. Umoren, U.F. Ekanem, Inhibition of mild steel corrosion in H2SO4 using exudate gum from pachylobus edulis and synergistic potassium halide additives, Chem. Eng. Comm. 197 (2010) 1339-1356. https://doi.org/10.1080/00986441003626086
[18] C.G. Dariva, A.F. Galio, Corrosion inhibitors—principles, mechanisms and applications, in: M. Aliofkhazraei (Eds.), Developments in Corrosion Protection, Rijeka: InTech, 2014. pp. 365-380. https://doi.org/10.5772/57255
[19] M.N. Rahuma, B. Kannan, Corrosion in oil and gas industry: A perspective on corrosion inhibitors, J. Mater. Sci. Eng. 3 (2014) 110. https://doi.org/10.4172/2169-0022.1000e110
[20] N.O. Eddy, E.E. Ebenso, U.J. Ibok, Adsorption, synergistic inhibitive effect and quantum chemical studies of ampicillin (AMP) and halides for the corrosion of mild steel in H2SO4, J. Appl. Electrochem. 40 (2010) 445–456. https://doi.org/10.1007/s10800-009-0015-z
[21] A.S. Yaro, A.A. Khadom, R.K. Wael, Apricot juice as green corrosion inhibitor of mild steel in phosphoric acid, Alex. Eng. J. 52 (2013) 129-135. https://doi.org/10.1016/j.aej.2012.11.001
[22] R.M. Palou, O. Olivares-Xomelt, N.V. Likhanova, Environmentally friendly corrosion inhibitors, in: V.S. Sastri (1st Eds) Green Corrosion Inhibitors: Theory and Practice, Wiley, New Jersey, 2011, pp. 257-303. https://doi.org/10.1002/9781118015438.ch7
[23] I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, E.E. Ebenso, Synergistic and antagonistic effects of anions and ipomoea invulcrata as green corrosion inhibitor for aluminium dissolution in acidic medium, Int. J. Electrochem. Sci. 5 (2010) 994-1007.
[24] O. Gharbi, S. Thomas, C. Smith, N. Birbilis, Chromate replacement: What does the future hold?, Mater. Degrad. 2 (2018) 1-8. https://doi.org/10.1038/s41529-018-0034-5
[25] A.A.F. Sabirneeza, R. Geethanjali, S. Subhashini, Polymeric corrosion inhibitors for iron and its alloys: A review, Chem. Eng. Comm. 202 (2015) 232-244. https://doi.org/10.1080/00986445.2014.934448
[26] S.F. Hansen, L. Carlsen, J.A. Tickner, Chemicals regulation and precaution: Does REACH really incorporate the precautionary principle, Environ. Sci. Policy 10 (2007) 395-404. https://doi.org/10.1016/j.envsci.2007.01.001
[27] R.A.L. Sathiyanathan, S. Maruthamuthu, M. Selvanayagam, S. Mohanan, N. Palaniswamy, Corrosion inhibition of mild steel by ethanolic extracts of Ricinus communis leaves, Indian J. Chem. Technol. 12 (2005) 356-360.
[28] R.A.L. Sathiyanathan, M.M. Essa, S. Maruthamuthu, M. Selvanayagam, N. Palaniswamy, Inhibitory effect of Ricinus communis (castor-oil plant) leaf extract on corrosion of mild steel in low chloride medium, Indian J. Chem. Technol. 82 (2005) 357-359.
[29] N. Poongothai, P. Rajendran, M. Natesan, N. Palaniswamy, Wood bark oils as vapour phase corrosion inhibitors for metals in NaCl and SO2 environments, Indian J. Chem. Technol. 12 (2005) 641-647.
[30] A.M. Abdel-Gaber, B.A. Abd-EL-Nabey, I.M. Sidahmed, A.M. El-Zayaday, M. Saadawy, Inhibitive action of some plant extracts on the corrosion of steel in acidic media, Corros. Sci. 48 (2006) 2765-2779. https://doi.org/10.1016/j.corsci.2005.09.017
[31] M. Kliskic, J. Radosevic, S. Gudic, V. Katalinic, Aqueous extract of Rosmarinus-o-cinalis L. as inhibitor of Al-Mg alloy corrosion in chloride solution, J. Appl. Electrochem. 30 (2006) 823-830. https://doi.org/10.1023/A:1004041530105
[32] A.N. Grassino, Z. Grabaric, A. Pezzani, G. Fasanaro, A. Lo Voi, Influence of essential onion oil on tin and chromium dissolution from tin-plate, Food Chem. Toxicol. 47 (2009) 1556-1561. https://doi.org/10.1016/j.fct.2009.04.003
[33] J. Halambek, K. Berkovic, J. Vorkapic-Furac, The influence of Lavandula angustifolia L. oil on corrosion of Al-3Mg alloy, Corros. Sci. 52 (2010) 3978-3983. https://doi.org/10.1016/j.corsci.2010.08.012
[34] P.C. Okafor, M.E. Ikpi, I.E. Uwah, E.E. Ebenso, U.J. Ekpe, S.A. Umoren, Inhibitory action of Phyllanthus amarus extracts on the corrosion of mild steel in acidic media, Corros. Sci. 50 (2008) 2310-2317. https://doi.org/10.1016/j.corsci.2008.05.009
[35] N.O. Eddy, Inhibitive and adsorption properties of ethanol extract of Colocasia esculenta leaves for the corrosion of mild steel in H2SO4, Int. J. Phys. Sci. 4 (2009)165-171. https://doi.org/10.1108/03699421011085849
[36] B. Hammouti, S. Kertit, M. Melhaoui, Electrochemical behaviour of bgugaine as a corrosion inhibitor of iron in 1 M HCl, Bull. Electrochem. 13 (1997) 97-98.
[37] A. Chetouani, B. Hammouti, M. Benkaddour, Corrosion inhibition of iron in hydrochloric acid solution by jojoba oil, Pigm. Resin Technol. 33 (2004) 26-31. https://doi.org/10.1108/03699420410512077
[38] E.L. Chaieb, A. Boyanzer, B. Hammouti, M. Benkaddour, M. Berrabah, Corrosion inhibition of steel in hydrpchloric acid solution by rosemary oil, Trans. SAEST 39 (2004) 58-60.
[39] E.L. Chaieb, A. Bouyanzer, B. Hammouti, M. Benkaddour, Inhibition of the corrosion of steel in 1 M HCl by eugenol derivatives, Appl. Surf. Sci. 246 (2005) 199-206. https://doi.org/10.1016/j.apsusc.2004.11.011
[40] O.S.I. Fayomi, P.A.L. Anawe, A. Daniyan, The impact of drugs as corrosion inhibitors on aluminum alloy in coastal-acidified medium, in: M. Aliofkhazraei (Eds.), Corrosion Inhibitors, Principles and Recent Applications, Rijeka, InTech Open, 2018. pp. 79-94. https://doi.org/10.5772/intechopen.72942
[41] A.H. Ali, Electrochemical study of candesartan drug as corrosion inhibitor for carbon steel in acid medium, J. Adv. Electrochem. 4 (2018) 152-157. https://doi.org/10.30799/jaec.050.18040101
[42] P.B. Matad, P.B. Mokshanatha, N. Hebbar, V.T. Venkatesha, H.C. Tandon, Ketosulfone drug as a green corrosion inhibitor for mild steel in acidic medium, Ind. Eng. Chem. Res. 53 (2014) 8436-8444. https://doi.org/10.1021/ie500232g
[43] P. Singh, D.S. Chauhan, K. Srivastava, V. Srivastava, M.A. Quraishi, Expired atorvastatin drug as corrosion inhibitor for mild steel in hydrochloric acid solution, Int. J. Ind. Chem. 8 (2017) 363-372. https://doi.org/10.1007/s40090-017-0120-5
[44] B. El Ibrahimi, A. Jmiai, L. Bazzi, S. El Issami, Amino acids and their derivatives as corrosion inhibitors for metals and alloys, Arab. J. Chem. 13 (2020) 740-771. https://doi.org/10.1016/j.arabjc.2017.07.013
[45] D.Q. Zhang, B. Xie, L.X. Gao, Q.R. Cai, H.G. Joo, K.Y. Lee, Intramolecular synergistic effect of glutamic acid, cysteine and glycine against copper corrosion in hydrochloric acid solution, Thin Solid Films 520 (2011) 356-361. https://doi.org/10.1016/j.tsf.2011.07.009
[46] N.H. El-Sayed, Corrosion inhibition of carbon steel in chloride solutions by some amino acids, Eur. J. Chem. 7 (2016) 14-18. https://doi.org/10.5155/eurjchem.7.1.14-18.1331
[47] M. Mobin, S. Zehra, M. Parveen, L-Cysteine as corrosion inhibitor for mild steel in 1 M HCl and synergistic effect of anionic, cationic and nonionic surfactants, J. Mol. Liq. 216 (2016) 598-607. https://doi.org/10.1016/j.molliq.2016.01.087
[48] B.R.W. Hinton, N.E. Ryan, D.R. Arnott, P.N. Trathen, L. Wilson, B.E. Williams, The inhibition of aluminium alloy corrosion by rare earth metal cations, Corros. Austral. 10 (1985) 12.
[49] B.R.W. Hinton, D.R. Arnott, N.E. Ryan, Cerium conversion coatings for the corrosion protection of aluminum, Mater. Forum 9 (1986) 162.
[50] B.R.W. Hinton, D.R. Arnott, N.E. Ryan, The inhibition of aluminum alloy corrosion by cerous cations, Metals Forum 7 (1984) 11.
[51] M. Bethencourt, F.J. Botana, J.J. Calvino, M. Marcos, M.A. RodrÍguez-Chacón, Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys: A review, Corros. Sci. 40 (1998) 1803-1819. https://doi.org/10.1016/S0010-938X(98)00077-8
[52] A.K. Bhattamishra, M.K. Banerjee, Corrosion behavior of Al-Zn-Mg alloys in NaCl solution in presence of cerium salts, Zeitschrift fur metallkunde, 84 (1993) 734-736.
[53] B.R.W. Hinton, Corrosion inhibition with rare earth metal salts, J. Alloys Compd. 180 (1992) 15-25. https://doi.org/10.1016/0925-8388(92)90359-H
[54] T. Zhang, D.Y.Li, The effect of YCl3 and LaCl3 additives on wear of 1045 and 304 steels in a dilute chloride solution, Mater. Sci. Eng.: A 345 (2003) 179-189. https://doi.org/10.1016/S0921-5093(02)00469-0
[55] O. Lopez-Garrity, G.S. Frankel, Corrosion Inhibition of Aluminum Alloy 2024-T3 by Praseodymium Chloride, Corros. 70 (2014) 928-941. https://doi.org/10.5006/1244
[56] M.J. Bennett, B.A. Bellamy, G. Dearnaley, M.R. Houlton, The influence of Eu, La, Sc, Yb, ion-implantation upon the oxidation behaviour of a 20Cr25NiNb stabilized stainless steel in carbon dioxide at 825° C, Proc. Int. Cong. Metal Corros. 2 (1984) 416-423.
[57] M. Bethencourt, F.J. Botana, J.J. Calvino, M. Marcos, M. A. Rodrigues-Chacon, Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys: a review, Corros. Sci. 40 (1998) 1803-1819. https://doi.org/10.1016/S0010-938X(98)00077-8
[58] L. Guo, S. Zhu, S. Zhang, Experimental and theoretical studies of benzalkonium chloride as an inhibitor for carbon steel corrosion in sulfuric acid, J. Ind. Eng. Chem. 24 (2015) 174-180. https://doi.org/10.1016/j.jiec.2014.09.026
[59] M.A. Hegazy, A.Y. El-Etre, M. El-Shafaie, K.M. Berry, Novel cationic surfactants for corrosion inhibition of carbon steel pipelines in oil and gas wells applications, J. Mol. Liq. 214 (2016) 347–356. https://doi.org/10.1016/j.molliq.2015.11.047
[60] Y. Zhu, M.L. Free, J.H. Cho, Integrated evaluation of mixed surfactant distribution in water-oil-steel pipe environments and associated corrosion inhibition efficiency, Corros. Sci. 110 (2016) 213–227. https://doi.org/10.1016/j.corsci.2016.04.043
[61] F.E.T. Heakal, A.Y. Elkholy, Gemini surfactants as corrosion inhibitors for carbon steel, J. Mol. Liq. 230 (2017) 395–407. https://doi.org/10.1016/j.molliq.2017.01.047
[62] S.M. Shaban, R.M. El-Sherif, M.A. Fahim, Studying the surface behavior of some prepared free hydroxyl cationic amphipathic compounds in aqueous solution and their biological activity, J. Mol. Liq. 252 (2018) 40–51. https://doi.org/10.1016/j.molliq.2017.12.105
[63] S.M. Shaban, A.A. Abd-Elaal, S.M. Tawfik, Gravimetric and electrochemical evaluation of three nonionic dithiol surfactants as corrosion inhibitors for mild steel in 1 M HCl solution, J. Mol. Liq. 216 (2016) 392–400. https://doi.org/10.1016/j.molliq.2016.01.048
[64] Z. Zhang, N. Tian, X. Li, L. Zhang, L. Wu, Y. Huang, Synergistic inhibition behavior between indigo carmine and cetyl trimethyl ammonium bromide on carbon steel corroded in a 0.5 M HCl solution, Appl. Surf. Sci. 357 (2015) 845–855. https://doi.org/10.1016/j.apsusc.2015.09.092
[65] M. Mobin, R. Aslam, S. Zehra, M. Ahmad, Bio-/Environment-Friendly Cationic Gemini Surfactant as Novel Corrosion Inhibitor for Mild Steel in 1 M HCl Solution, J. Surfactants Deterg. 20 (2017) 57–74. https://doi.org/10.1007/s11743-016-1904-x
[66] X. Chen, X. Li, A. Hu, F. Wang, Advances in chiral ionic liquids derived from natural amino acids, Tetrahedron: Asymmetry 19 (2008) 1-14. https://doi.org/10.1016/j.tetasy.2007.11.009
[67] M. Hasib-ur-Rahman, M. Siaj, F. Larachi, Ionic liquids for CO2 capture—development and progress, Chem. Eng. Process. 49 (2010) 313-322. https://doi.org/10.1016/j.cep.2010.03.008
[68] M.E. Mashuga, L.O. Olasunkanmi, A.S. Adekunle, S. Yesudass, M.M. Kabanda, E.E. Ebenso, Adsorption, thermodynamic and quantum chemical studies of 1-hexyl-3-methylimidazolium based ionic liquids as corrosion inhibitors for mild steel in HCl, Mater. 8 (2015) 3607-3632. https://doi.org/10.3390/ma8063607
[69] M.C. Bubalo, K. Radošević, I.R. Redovniković, J. Halambek, V.G. Srček, A brief overview of the potential environmental hazards of ionic liquids, Ecotoxicol. Environ. Saf. 99 (2014) 1-12. https://doi.org/10.1016/j.ecoenv.2013.10.019
[70] M.P. Singh, R.K. Singh, S. Chandra, Ionic liquids confined in porous matrices: physicochemical properties and applications, Prog. Mater. Sci. 64 (2014) 73-120. https://doi.org/10.1016/j.pmatsci.2014.03.001
[71] S.M. Tawfik, Ionic liquids based gemini cationic surfactants as corrosion inhibitors for carbon steel in hydrochloric acid solution, J. Mol. Liq. 216 (2016) 624-635. https://doi.org/10.1016/j.molliq.2016.01.066
[72] R.K. Blundell, P. Licence, Quaternary ammonium and phosphonium based ionic liquids: a comparison of common anions, Phys. Chem. Chem. Phys. 16 (2014) 15278-15288. https://doi.org/10.1039/C4CP01901F
[73] S.M. Tawfik, Ionic liquids based Gemini cationic surfactants as corrosion inhibitors for carbon steel in hydrochloric acid solution, J. Mol. Liq. 216 (2016) 624-635. https://doi.org/10.1016/j.molliq.2016.01.066
[74] H.H. Elsentriecy, H. Luo, H.M. Meyer, L.L. Grado, J. Qu, Effects of pretreatment and process temperature of a conversion coating produced by an aprotic ammonium-phosphate ionic liquid on magnesium corrosion protection, Electrochim. Acta 123 (2014) 58-65. https://doi.org/10.1016/j.electacta.2013.12.167
[75] R.G. Kelly, Electrochemical Thermodynamics and Kinetics of Relevance to Corrosion, in: R.G. Kelly, J.R. Scully, D.W. Shoesmith, R.G. Buchheit, Electrochemical Techniques in Corrosion Science and Engineering, Marcel Dekker Inc., 2002, pp. 9-54. https://doi.org/10.1201/9780203909133
[76] C.N. Chang, H.B. Cheng, A.C. Chao, Applying the Nernst Equation to simulate redox potential variations for biological nitrification and denitrification processes, Environ. Sci. Technol. 38 (2004) 1807-1812. https://doi.org/10.1021/es021088e
[77] K.B. Oldham, F. Mansfeld, On the so-called linear polarization method for measurement of corrosion rates, Corros. 27 (1971) 434-435. https://doi.org/10.5006/0010-9312-27.10.434
[78] A. Goyal, H.S. Pouya, E. Ganjian, A.O. Olubanwo, M. Khorami, Predicting the corrosion rate of steel in cathodically protected concrete using potential shift, Constr. Build Mater. 194 (2019) 344-349. https://doi.org/10.1016/j.conbuildmat.2018.10.153
[79] S.W. Dean, Corrosion monitoring for industrial processes, in: DS Cramer, BS Covino (Eds.), Corrosion: Fundamentals, Testing and Protection, Metals Park, OH, ASM International, 2003, pp. 533–541. https://doi.org/10.31399/asm.hb.v13a.a0003659
[80] S. Papavinasam, R.W. Revie, M. Attard, A. Demoz, K. Michaelian, Comparison of techniques for monitoring corrosion inhibitors in oil and gas pipelines, Corrosion 59 (2003) 1096-1111. https://doi.org/10.5006/1.3277529
[81] F. Suedile, F. Robert, C. Roos, M. Lebrini, Corrosion inhibition of zinc by Mansoa alliacea plant extract in sodium chloride media: Extraction, Characterization and Electrochemical Studies, Electrochim. Acta 133 (2014) 631-638. https://doi.org/10.1016/j.electacta.2013.12.070
[82] (a) J. Tafel, On the polarization during cathodic hydrogen evolution, Z. Phys. Chem 50 (1905) 641. (b) X.L. Zhang, Z.H. Jiang, Z.P. Yao, Y. Song, Z.D. Wu, Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density, Corros. Sci. 51 (2009) 581-587. https://doi.org/10.1016/j.corsci.2008.12.005
[83] R. Kanojia, G. Singh, An interesting and efficient organic corrosion inhibitor for mild steel in acidic medium, Surf. Eng. 21 (2005) 180-186. https://doi.org/10.1179/174329405X49985
[84] O. E. Herrera, D.P. Wilkinson, W. Merida, Anode and cathode overpotentials and temperature profiles in a PEMFC, J. Power Sources 198 (2012) 132-142. https://doi.org/10.1016/j.jpowsour.2011.09.042
[85] E. McCafferty, Validation of corrosion rates measured by the Tafel extrapolation method, Corros. Sci. 47 (2005) 3202-3215. https://doi.org/10.1016/j.corsci.2005.05.046
[87] H. Liu, Y.X. Leng, G. Wan, N. Huang, Corrosion susceptibility investigation of Ti–O film modified cobalt-chromium alloy (L-605) vascular stents by cyclic potentiodynamic polarization measurement, Surf. Coat. Tech. 206 (2011) 893-896. https://doi.org/10.1016/j.surfcoat.2011.04.048
[88] S. Esmailzadeh, M. Aliofkhazraei, H. Sarlak, Interpretation of cyclic Potentiodynamic polarization test results for study of corrosion behavior of metals: A review, Prot. Met. Phys. Chem. 54 (2018) 976–989. https://doi.org/10.1134/S207020511805026X
[89] M.A. Deyab, Corrosion inhibition of aluminum in biodiesel by ethanol extracts of Rosemary leaves, J. Taiwan Inst. Chem. E. 58 (2016) 536-541. https://doi.org/10.1016/j.jtice.2015.06.021
[90] M. Kliskic, J. Radoservic, S. Gudic, V. Katalinic, Aqueous extract of Rosmarinus officinalis L. as inhibitor of AlMg alloy corrosion in chloride solution, J. Appl. Electrochem. 30 (2000) 823–830. https://doi.org/10.1023/A:1004041530105
[91] A. Singh, I. Ahamad, M.A. Quraishi, Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution, Arab. J. Chem. 9 (2016) S1584-S1589. https://doi.org/10.1016/j.arabjc.2012.04.029
[92] Z. Tao, S. Zhang, W. Li, B. Hou, Adsorption and inhibitory mechanism of 1H-1,2,4-triazol-l-yl-methyl-2-(4-chlorophenoxy) acetate on corrosion of mild steel in acidic solution, Ind. Eng. Chem. Res. 50 (2011) 6082-6088. https://doi.org/10.1021/ie101793b
[93] A. Michel, B.J. Pease, M.R. Geiker, H. Stang, J.F. Olesen, Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurements, Cement Concrete Res. 41 (2011) 1085-1094. https://doi.org/10.1016/j.cemconres.2011.06.006
[94] R. Barker, B. Pickles, N. Kapur, T. Hughes, E. Barmatov, A. Neville, Flow cell apparatus for quantitative evaluation of carbon steel corrosion during transitions in fluid composition: Application to transition from inhibited hydrochloric acid to sodium chloride brine, Corros. Sci., 2018, 138, 116-129. https://doi.org/10.1016/j.corsci.2018.04.012
[95] W. Ding, M. Li, M. Wang, R. Chen, Y. Wang, L. Chen, Experimental study on corrosion of anchored rock mass for half-through intermittent joints, Adv. Civ. Eng. 12 (2019) 6018678. https://doi.org/10.1155/2019/6018678
[96] S. Gao, B. Brown, D. Young, M. Singer, Formation of iron oxide and iron sulfide at high temperature and their effects on corrosion, Corros. Sci. 135 (2018) 167-176. https://doi.org/10.1016/j.corsci.2018.02.045
[97] D.V. Ribeiro, J.C.C. Abrantes, Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach, Constr. Build. Mater. 111 (2016) 98-104. https://doi.org/10.1016/j.conbuildmat.2016.02.047
[98] P. Ahuja, S.K. Ujjain, R. Kanojia, MnOx/C nanocomposite: An insight on high-performance supercapacitor and non-enzymatic hydrogen peroxide detection, Appl. Surf. Sci. 404 (2017) 197-205. https://doi.org/10.1016/j.apsusc.2017.01.300
[99] P. Ahuja, S.K. Ujjain, R. Kanojia, Electrochemical behaviour of manganese & ruthenium mixed oxide@ reduced graphene oxide nanoribbon composite in symmetric and asymmetric supercapacitor, Appl. Surf. Sci. 427 (2018) 102-111. https://doi.org/10.1016/j.apsusc.2017.08.028
[100] S.K. Ujjain, P. Ahuja, R. Bhatia, P. Attri, Printable multi-walled carbon nanotubes thin film for high performance all solid state flexible supercapacitors, Mater. Res. Bull. 83 (2016) 167-171. https://doi.org/10.1016/j.materresbull.2016.06.006
[101] S. M. Hoseinieh, A.M. Homborg, T. Shahrabi, J.M.C. Mol, B. Ramezanzadeh, A Novel Approach for the evaluation of under deposit corrosion in marine environments using combined analysis by electrochemical impedance spectroscopy and electrochemical noise, Electrochim. Acta 217 (2016) 226-241. https://doi.org/10.1016/j.electacta.2016.08.146
[102] M.F. Montemor, A.M.P. Simoes, M.G.S. Ferreira, Chloride-induced corrosion on reinforcing steel: from the fundamentals to monitoring techniques, Cement Concr. Compos. 25 (2003) 491-502. https://doi.org/10.1016/S0958-9465(02)00089-6
[103] P. Langford, J. Broomfield, Monitoring the corrosion of reinforcing steel, Constr. Repair 1 (1987) 32-36.
[104] A. Aguilar, A. Sagüés, R. Powers, Corrosion measurements of reinforcing steel in partially submerged concrete slabs, in: N. Berke, V. Chaker, D. Whiting (Eds.) Corrosion Rates of Steel in Concrete, West Conshohocken, PA: ASTM International, 1990, pp. 66-85. https://doi.org/10.1520/STP25016S
[105] M. Lebrini, F. Suedile, C. Roos, Corrosion inhibitory action of ethanol extract from Bagassa guianensis on the corrosion of zinc in ASTM medium, J. Mater. Environ. Sci. 9 (2018) 414-423.
[106] R. Fdil, M. Tourabi, S. Derhali, A. Mouzdahir, K. Sraidi, C. Jama, A. Zarrouk, F. Bentiss, Evaluation of alkaloids extract of Retama monosperma (L.) Boiss. stems as a green corrosion inhibitor for carbon steel in pickling acidic medium by means of gravimetric, AC impedance and surface studies, J. Mater. Environ. Sci. 9 (1) (2018) 358-369. https://doi.org/10.26872/jmes.2018.9.1.39
[107] H. Grengi, H.I. Sahin, Schinopsis Lorentzii extract as a green corrosion inhibitor for low carbon steel in 1 M HCl solution, Ind. Eng. Chem. Res. 51 (2012) 780–787. https://doi.org/10.1021/ie201776q
[108] A.M. Abdel-Gaber, B.A. Abd-El-Nabey, I.M. Sidahmed, A.M. El-Zayaday, M. Saadawy, Inhibitive action of some plant extracts on the corrosion of steel in acidic media, Corros. Sci. 48 (2006) 2765–2779. https://doi.org/10.1016/j.corsci.2005.09.017
[109] L.R. Chauhan, G. Gunasekaran, Corrosion inhibition of mild steel by plant extract in dilute HCl medium, Corros. Sci. 49 (2007) 1143-1161. https://doi.org/10.1016/j.corsci.2006.08.012
[110] M. Lebrini, F. Robert, A. Lecante, C. Roos, Corrosion inhibition of C38 steel in 1 M hydrochloric acid medium by alkaloids extract from Oxandra asbeckii plant, Corros. Sci. 53 (2011) 687-695. https://doi.org/10.1016/j.corsci.2010.10.006
[111] D.G. John, P.C. Searson, J.L. Dawson, Use of AC Impedance technique in studies on steel in concrete in immersed conditions, Br. Corros. J. 16 (1981) 102-106. https://doi.org/10.1179/000705981798275002
[112] L. Dhouibi-Hachani, E. Triki, J. Grandet, A. Raharinaivo, Comparing the steel-concrete interface state and its electrochemical impedance, Chem. Concr. Res. 26 (1996) 253-266. https://doi.org/10.1016/0008-8846(95)00214-6
[113] A.A. Sagues, S.C. Kranc, E.L. Moreno, The time domain response of corroding systemwith constant phase angle interfacial component: application to steel in concrete, Corros. Sci. 37 (1995) 1097-1113. https://doi.org/10.1016/0010-938X(95)00017-E
[114] V. Feliu, J.A. González, C. Andrade, S. Feliu, Equivalent circuit for modelling the steel-concrete interface I: Experimental evidence and theoretical predictions, Corros. Sci. 40 (1998) 975-993. https://doi.org/10.1016/S0010-938X(98)00036-5
[115] S.K. Ujjain, P. Ahuja, R.K. Sharma, Graphene nanoribbon wrapped cobalt manganite nanocubes for high performance all-solid-state flexible supercapacitors, J. Mater. Chem. A 3 (2015) 9925-9931. https://doi.org/10.1039/C5TA00653H
[116] S.K. Ujjain, R. Bhatia, P. Ahuja, P. Attri, Highly conductive aromatic functionalized multi-walled carbon nanotube for inkjet printable high performance supercapacitor electrodes, Plos One 10 (2015) e0131475. https://doi.org/10.1371/journal.pone.0131475
[117] B.J. Christensen, T. Coverdale, R.A. Olson, S.J. Ford, E.J. Garboczi, H.M. Jennings, T.O. Mason, Impedance Spectroscopy of hydrating cement-based materials: measurement, interpretation and application, J. Am. Ceram. Soc. 77 (1994) 2789-2804. https://doi.org/10.1111/j.1151-2916.1994.tb04507.x
[118] B.J. Christensen, T.O. Mason, H.M. Jennings, Influence of silica fume on early hydration of Portland cements using impedance spectroscopy, J. Am. Ceram. Soc. 75 (1992) 939-945. https://doi.org/10.1111/j.1151-2916.1992.tb04163.x
[119] A. Legat, V. Doleček, Corrosion monitoring system based on measurement and analysis of electrochemical noise, Corros. 51 (1995) 295-300. https://doi.org/10.5006/1.3293594
[120] J. Dawson, Electrochemical noise measurement: The definitive in-situ technique for corrosion applications, in: J. Kearns, J. Scully, P. Roberge, D. Reichert, J. Dawson (Eds.) Electrochemical Noise Measurement for Corrosion Applications, West Conshohocken, PA, ASTM International, 1996, pp. 3-35.
[121] R. A. Cottis, Interpretation of electrochemical noise data, Corros. 57 (2001) 265-285. https://doi.org/10.5006/1.3290350
[122] (a) U. Bertocci, Separation between deterministic response and random fluctuations by means of the cross‐power spectrum in the study of electrochemical noise, J. Electrochem. Soc. 128 (1981) 520-523. (b) A.M.P. Simoes, M.G. S. Ferreira, Crevice corrosion studies on stainless steel using electrochemical noise measurements, Brit. Corros. J. 22 (1987) 21-25. https://doi.org/10.1179/000705987798271802
[123] P.C. Searson, J.L. Dawson, Analysis of electrochemical noise generated by corroding electrodes under open‐circuit conditions, J. Electrochem. Soc. 135 (1988) 1908-1915. https://doi.org/10.1149/1.2096177
[124] K. Hladky, J.L. Dawson, The measurement of localized corrosion using electrochemical noise, Corros. Sci. 21 (1981) 317-322. https://doi.org/10.1016/0010-938X(81)90006-8
[125] A. Ehsani, M.G. Mahjani, M. Hosseini, R. Safari, R. Moshrefi, H.M. Shiri, Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory, J. Colloid Interface Sci. 490 (2017) 444–451. https://doi.org/10.1016/j.jcis.2016.11.048
[126] M. Mehdipour, B. Ramezanzadeh, S.Y. Arman, Electrochemical noise investigation of Aloe plant extract as green inhibitor on the corrosion of stainless steel in 1 M H2SO4, J. Ind. Eng. Chem. 21 (2015) 318–327. https://doi.org/10.1016/j.jiec.2014.02.041
[127] I.A. Hermoso-Diaz, M.A. Velázquez-González, M.A. Lucio-Garcia, J.G. Gonzalez-Rodriguez, A study of Salvia hispanica as green corrosion inhibitor for carbon steel in sulfuric acid, Chem. Sci. Rev. Lett. 3 (2014) 685-697.
[128] M. Shahidi, E. Sasaei, M. Ganjehkaviri, M.R. Gholamhosseinzadeh, Investigation of the effect of vanillin as a green corrosion inhibitor for stainless steel using electrochemical techniques, J. Phys. Theor. Chem. IAU Iran 9 (2012) 149-161.
[129] A.M. Nagiub, Electrochemical noise analysis of different herbal compounds for copper exposed to chloride media, Int. J. Electrochem. Sci., 11 (2016) 7861 – 7874. https://doi.org/10.20964/2016.09.19
[130] B. Ramezanzadeh, S.Y. Arman, M. Mehdipour, B.P. Markhali, Analysis of electrochemical noise (ECN) data in time and frequency domain for comparison corrosion inhibition of some azole compounds on Cu in 1.0 M H2SO4 solution, Appl. Surf. Sci. 289 (2014) 129-140. https://doi.org/10.1016/j.apsusc.2013.10.119
[131] S.P. Sharma, Reaction of Copper and Copper Oxide with H2S, J. Electrochem. Soc., 127 (1980) 21-26. https://doi.org/10.1149/1.2129622
[132] M. Itagaki, H. Nakazawa, K. Watanabe, K. Noda, Study of dissolution mechanisms of nickel in sulfuric acid solution by electrochemical quartz crystal microbalance, Corros. Sci. 39 (1997) 901-911. https://doi.org/10.1016/S0010-938X(97)81157-2
[133] M. Fonsati, F. Zucchi, G. Trabanelli, Study of corrosion inhibition of copper in 0.1 M NaCl using the EQCM technique, Electrochim. Acta 44 (1998) 311-322. https://doi.org/10.1016/S0013-4686(98)00170-4
[134] P. Curie, J. Curie, Electric field induced contractions and expansions in hemihedral crystals with inclined faces, CR Acad. Sci. Paris 91 (1880) 294-297.
[135] V.S. Muralidharan, Critical review on electrochemical quartz crystal micro balance-principles and applications to corrosion research, Bull. Electrochem. 17 (2001) 183-192.
[136] A. Ispas, E. Wolff, A. Bund, An electrochemical quartz crystal microbalance study on electrodeposition of aluminum and aluminum-manganese alloys, J. Electrochem. Soc, 164 (2017) 5263-5270. https://doi.org/10.1149/2.0381708jes
[137] E.M. Moustafa, S. Zein El Abedin, A. Shkurankov, E. Zschippang, A.Y. Saad, A. Bund, F. Endres, Electrodeposition of Al in 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide and 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide Ionic Liquids:  In Situ STM and EQCM Studies, J. Phys. Chem. B 111 (2007) 4693-4704. https://doi.org/10.1021/jp0670687
[138] V.T. Gruia, A. Ispas, M. Wilke, I. Efimov, A. Bund, Application of acoustic impedance method to monitoring of sensors: Metal deposition on viscoelastic polymer substrate, Electrochim. Acta 118 (2014) 88-91. https://doi.org/10.1016/j.electacta.2013.12.010
[139] S. Ivanov, C. Vlaic, A. Bund, Igor Efimov, In situ analysis of surface morphology and viscoelastic effects during deposition of thin silicon layers from 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, Electrochim. Acta 219 (2016) 251-257. https://doi.org/10.1016/j.electacta.2016.09.156
[140] C.O.A. Olsson, D. Landolt, Electrochemical quartz crystal microbalance, in: P. Marcus, F. Mansfeld, (Eds.) Analytical Methods in Corrosion Science and Engineering. CRC Press, Taylor and Francis Group, Boca Raton, Florida, 2006, pp. 733-751. https://doi.org/10.1201/9781420028331.ch19
[141] P. Kern, D. Landolt, Adsorption of organic corrosion inhibitors on iron in the active and passive state. A replacement reaction between inhibitor and water studied with the rotating quartz crystal microbalance, Electrochim. Acta 47 (2001) 589–598. https://doi.org/10.1016/S0013-4686(01)00781-2
[142] H. Akrout, L. Bousselmi, E. Triki, S. Maximovitch, F. Dalard, Adsorption mechanism of non-toxic organic inhibitors on steel in solutions at pH 8 determined by electrochemical quartz crystal microbalance measurements, Mater. Corros. 56 (2005) 185-191. https://doi.org/10.1002/maco.200403828
[143] M. Scendo, Inhibitive action of the purine and adenine for copper corrosion in sulphate solutions, Corros. Sci. 49 (2007) 2985–3000. https://doi.org/10.1016/j.corsci.2007.01.002
[144] M. Scendo, The effect of purine on the corrosion of copper in chloride solutions, Corros. Sci. 49 (2007) 373–390. https://doi.org/10.1016/j.corsci.2006.06.022