Green Inhibitors for Biocorrosion and Prevention


Green Inhibitors for Biocorrosion and Prevention

H.M. Saleh, A.I. Hassan

Material corrosion can be a limiting factor for various elements in many applications. Accordingly, corrosion operations must be avoided and restricted or diminish the associated damage. The corrosion rate is one of the most important characteristics of corrosion processes, that are difficult to measure in the non-aqueous environment. Indeed, the use of corrosion inhibitors is a known counterstrategy when it needs to prevent, control, or delay mineral corrosion. In this regard, green chemistry emphasizes the substantivized of maintaining the environment and human health safely and economically manner at the same time, which aims to avoid toxins and reduce waste. The field of mineral degradation, which is generally faced with the use of toxic compounds, has found fertile research in green chemistry. The field of mineral degradation, which generally faces the use of toxic compounds, has found fertile research in green chemistry. It is worth noting that green inhibitors are the best as they are environmentally biodegradable, and renewable. In this chapter, we will demonstrate the causes of corrosion and the required processes to restrain them, and the competence of corrosion inhibitors, which can promote reducing the damage provoked by corrosion. Besides, we will highlight the importance of unique innovations that act as corrosion inhibitors being an environmentally friendly natural inhibitor.

Biocorrosion, Green Inhibitors, Environmentally Friendly, Prevention

Published online 11/3/2020, 28 pages

Citation: H.M. Saleh, A.I. Hassan, Green Inhibitors for Biocorrosion and Prevention, Materials Research Foundations, Vol. 86, pp 63-90, 2021


Part of the book on Theory and Applications of Green Corrosion Inhibitors

[1] C.D. Taylor, Corrosion informatics: an integrated approach to modelling corrosion. Corros. Eng. Sci. Technol. 50(7) (2015) 490–508.
[2] S. Syed, Atmospheric corrosion of materials, Emirates J. Eng. Res. 11(1) (2006) 1–24.
[3] M.G. Fontana, Corrosion Engineering. Tata McGraw-Hill Education, 2005.
[4] B. Valdez, M. Schorr, R. Zlatev, M. Carrillo, M. Stoytcheva, L. Alvarez, Corrosion control in industry, Environ. Ind. Corros. Pract. Theor. Asp. 2012.
[5] P.A. Schweitzer, Fundamentals of Corrosion: Mechanisms, Causes, and Preventative Methods. CRC press, 2009.
[6] G.J. Jorgensen, K.M. Terwilliger, J.A. DelCueto, S.H. Glick, M.D. Kempe, J.W. Pankow, Moisture transport, adhesion, and corrosion protection of PV module packaging materials. Sol. Ener. Mater. Sol. Cells. 90(16) (2006) 2739–75.
[7] D. Landolt, Corrosion and Surface Chemistry of Metals. EPFL press, 2007.
[8] L. Tushinsky, I. Kovensky, A. Plokhov, V. Sindeyev, P. Reshedko, Coated Metal: Structure and Properties of Metal-Coating Compositions. Springer Science & Business Media, 2013.
[9] P.A. Schweitzer, Fundamentals of Metallic Corrosion: Atmospheric and Media Corrosion of Metals. CRC press, 2006.
[10] H.A.A. Al-Mazeedi, R.A. Cottis, A practical evaluation of electrochemical noise parameters as indicators of corrosion type. Electrochim. Acta. 49(17–18) (2004) 2787–93.
[11] E. McCafferty, Introduction to Corrosion Science. Springer Science & Business Media, 2010.
[12] G.B. Darband, M. Aliofkhazraei, S. Khorsand, S. Sokhanvar, A. Kaboli, Science and engineering of superhydrophobic surfaces: Review of corrosion resistance, chemical and mechanical stability, Arab J. Chem. 13(1) (2020) 1763–802.
[13] M.A. Malik, M.A. Hashim, F. Nabi, S.A. Al-Thabaiti, Z. Khan. Anti-corrosion ability of surfactants: A review. Int. J. Electrochem. Sci.6(6) (2011) 1927–48.
[14] C.A. Loto, Microbiological corrosion: mechanism, control and impact—A review. Int. J. Adv. Manuf. Technol. 92(9–12) (2017) 4241–52.
[15] R. Sydney, E. Esfandi, S. Surapaneni, Control concrete sewer corrosion via the crown spray process, Water Environ. Res. 68(3) (1996) 338–47.
[16] D.R. McIntyre, G.T. Burstein, A. Vossen, Effect of carbon monoxide on the electrooxidation of hydrogen by tungsten carbide, J. Power Sources. 107(1) (2002) 67–73.
[17] N. Perez, Electrochemistry and Corrosion Science. Vol. 412. Springer; 2004.
[18] B.E. Rani, B.B.J. Basu. Green inhibitors for corrosion protection of metals and alloys: An overview. Int. J. Corros. Article ID 380217 (2012).
[19] M. Pourbaix, Lectures on Electrochemical Corrosion. Springer Science & Business Media, 2012.
[20] M.C. Kennedy, Electrochemical study of the metal-chalcogenide glasses: fundamentals and applications in ion selective electrodes. 1985.
[21] M. Malinina, T. Sammi, M.M. Gasik, Corrosion resistance of homogeneous and FGM coatings, Mater. Sci. Forum, 492-493 (2005) 305–310.
[22] J. Rodriguez, L.M. Ortega, J. Casal, J.M. Diez, Corrosion of reinforcement and service life of concrete structures. Durab. Build. Mater. Components 7 (2018) 1-117.
[23] L.P. Huang, K.H. Chen, S. Li, M. Song, Influence of high-temperature pre-precipitation on local corrosion behaviors of Al–Zn–Mg alloy, Scr. Mater. 6(4) (2007) 305–8.
[24] G. Yang, L. Ying, L. Haichao, Experimental studies on the local corrosion of low alloy steels in 3.5% NaCl, Corros. Sci. 43(3) (2001) 397–411.
[25] G. Palumbo, K.T. Aust, Structure-dependence of intergranular corrosion in high purity nickel, Acta Metall. Mater. 38(11) (1990) 2343–52.
[26] K. Holmberg, A. Matthews, Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering, Elsevier, 2009.
[27] M. De Keersmaecker, M. Dowsett, M. Adriaens, How to preserve lead artifacts for future generations, in: Chemical Interactions Between Cultural Artefacts and Indoor Environment. ACCO, 2018, pp. 215–44.
[28] M. Matula, L. Hyspecka, M. Svoboda, V. Vodarek, C. Dagbert, J. Galland, Intergranular corrosion of AISI 316L steel, Mater. Charact. 46(2–3) (2001) 203–10.
[29] R.H. Jones, Stress-Corrosion Cracking, Materials Performance and Evaluation. ASM international, 2017.
[30] B. Davo, A. Conde, J.J. De Damborenea, Inhibition of stress corrosion cracking of alloy AA8090 T-8171 by addition of rare earth salts, Corros. Sci. 47(5) (2005) 1227–37.
[31] W. Rostoker, J.R. Dvorak, Interpretation of metallographic structures. Elsevier 2012.
[32] L.H. Hihara, R.M. Latanision, Galvanic corrosion of aluminum-matrix composites, Corros. 48(7) (1992) 546–52.
[33] X.G. Zhang, Galvanic corrosion, Uhlig’s Corrosion Handbook 51 (2011) 123.
[34] N.M. Taher, A.S. Al Jabab, Galvanic corrosion behavior of implant suprastructure dental alloys. Dent. Mater. 19(1) (2003) 54–9.
[35] W.-T. Tsai, J.-R. Chen, Galvanic corrosion between the constituent phases in duplex stainless steel, Corros. Sci. 49(9) (2007) 3659–68.
[36] M. Fripp, Z. Walton, Degradable metal for use in a fully dissolvable frac plug, Offshore Technology Conference, 2016.
[37] R.C. Barik, J.A. Wharton, R.J.K. Wood, K.R. Stokes, R.L. Jones, Corrosion, erosion and erosion–corrosion performance of plasma electrolytic oxidation (PEO) deposited Al2O3 coatings, Surf. Coatings Technol. 99(2–3) (2005) 158–67.
[38] R.J.K. Wood, Erosion–corrosion interactions and their effect on marine and offshore materials, Wear 261(9) (2006) 1012–23.
[39] R. Malka, S. Nešić, D.A. Gulino, Erosion–corrosion and synergistic effects in disturbed liquid-particle flow. Wear 262(7–8) (2007) 791–9.
[40] R.W. Bruce, Handbook of Lubrication and Tribology, v II: Theory and Design. CRC press, 2012.
[41] P. Pedeferri, Erosion-Corrosion and Fretting. In: Corrosion Science and Engineering. Springer, 2018. pp. 313–25.
[42] E. Huttunen-Saarivirta, F.H. Stott, V. Rohr, M. Schütze, Erosion–oxidation behaviour of pack-aluminized 9% chromium steel under fluidized-bed conditions at elevated temperature, Corros. Sci. 49(7) (2007) 2844–65.
[43] A.J. Sedriks, Corrosion of Stainless Steel, second ed., Wiley InterScience, 1996.
[44] A.K. Mishra, G.S. Frankel, Crevice corrosion repassivation of alloy 22 in aggressive environments, Corros. 64(11) (2008) 836–44.
[45] Q. Hu, G. Zhang, Y. Qiu, X. Guo, The crevice corrosion behaviour of stainless steel in sodium chloride solution, Corros. Sci. 53(12) (2011) 4065–72.
[46] J. Gray, B. Luan, Protective coatings on magnesium and its alloys—a critical review, J. Alloys Compd. 336(1–2) (2002) 88–113.
[47] L.T. Popoola, A.S. Grema, G.K. Latinwo, B. Gutti, A..S Balogun, Corrosion problems during oil and gas production and its mitigation, Int. J. Ind. Chem. 4(1) (2013) 35.
[48] A. Jahan, M.Y. Ismail, S.M. Sapuan, F. Mustapha, Material screening and choosing methods–a review, Mater. Des. 31(2) (2010) 696–705.
[49] L.Y. Ljungberg, Materials selection and design for development of sustainable products, Mater. Des. 28(2) (2007) 466–79.
[50] M. Keddam, C. Kuntz, H. Takenouti, D. Schustert, D. Zuili, Exfoliation corrosion of aluminium alloys examined by electrode impedance, Electrochim. Acta. 42(1) (1997) 87–97.
[51] Z. Yang, M. Rui-Lin, N. Wang-Dong, W. Hui, Selective leaching of base metals from copper smelter slag. Hydrometallurgy 103(1–4) (2010) 25–9.
[52] D.L. Galloway, Nonmetallic corrosion-resistant enclosure for electrical apparatus, Google Patents, US3599134A, 1971.
[53] D.-Y. Oh, T. Noguchi, R. Kitagaki, W.-J. Park, CO2 emission reduction by reuse of building material waste in the Japanese cement industry. Renew. Sustain. Energy Rev. 38 (2014) 796–810.
[54] H.R. Rezaie, L. Bakhtiari, A. Öchsner, Biomaterials and their Applications. Springer, 2015.
[55] M. Kliškić, J. Radošević, S. Gudić, V. Katalinić, Aqueous extract of Rosmarinus officinalis L. as inhibitor of Al–Mg alloy corrosion in chloride solution, J. Appl. Electrochem. 30(7) (2000) 823–30.
[56] Wotton RS.
[57] S.H. Abdel-Aziem, H.A.M. Abd El-Kader, F.M. Ibrahim, H.A. Sharaf, El A.I. makawy, Evaluation of the alleviative role of Chlorella vulgaris and Spirulina platensis extract against ovarian dysfunctions induced by monosodium glutamate in mice, J. Genet. Eng. Biotechnol. 16(2) (2018) 653–60.
[58] P. Libby, M. Nahrendorf, F.K. Swirski, Monocyte heterogeneity in cardiovascular disease, Semin. Immunopathol. 35(5) (2013) 553–62.
[59] J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations, Beilstein J. Nanotechnol. 9(1) (2018) 1050–74.
[60] S. Marzorati, L. Verotta, S.P. Trasatti, Green corrosion inhibitors from natural sources and biomass wastes, Molecules. 24(1) (2019) 48.
[61] S. Perumal, S. Muthumanickam, A. Elangovan, R. Karthik, K.K. Mothilal, Bauhinia tomentosa leaves extract as green corrosion inhibitor for mild steel in 1M HCl medium, J. Bio.-and Tribo.-Corros. 3(2) (2017) 13.
[62] H.A.R. Suleria, C. Barrow, Bioactive Compounds from Plant Origin: Extraction, Applications, and Potential Health Benefits, CRC Press, 2019.
[63] L.L. Shreir, Localised Corrosion, in: Corrosion, L.L. Shrier, R.A. Jarman, G.T. Burstein, v 1. Oxford, Butterworth-Heinemann; UK, 1994.
[64] R.W. Bosch, J. Hubrecht, W.F. Bogaerts, B.C. Syrett, Electrochemical frequency modulation: a new electrochemical technique for online corrosion monitoring. Corros. 57(1) (2001) 60–70.
[65] A. Edreva, V. Velikova, T. Tsonev, S. Dagnon, A. Gürel, L. Aktaş, Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Gen. Appl. Plant Physiol. 34(1–2) (2008) 67–78.
[66] H.U. Blaser, H.-J. Federsel, Asymmetric catalysis on industrial scale: challenges, approaches and solutions, John Wiley & Sons, 2011.
[67] L. Vrsalovic, D. Sardelic, S. Gudic, M. Kliskic, Influence of green tea extract on corrosion of different metals in 0.5 mol dm-3 NaCl solution, J. Adv. Chem. 10(10) (2014).
[68] X.C. Ma, X. Xue, A. González-Mejía, J. Garland, J. Cashdollar, Sustainable water systems for the city of tomorrow—A conceptual framework, Sustainability 7(9) (2015) 12071–12105.
[69] M.G. Lobo, E. Dorta,Utilization and Management of Horticultural Waste, in: Postharvest Technology of Perishable Horticultural Commodities. Elsevier, 2019. pp. 639–666.
[70] A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes, Renew. Sustain. Energy Rev. 24 (2013) 43–56.
[71] M.I.A Sagiroun, Concentration of some radionuclides in some popular sudanese medicinal plants, Theses, 2012.
[72] L. Siauciunaite-Gaubard, Exploration de nouvelles approches pour les études de RCPG au niveau moléculaire: application aux récepteurs de chimiokines, 2012.
[73] N. El Hamdani, R. Fdil, M. Tourabi, C. Jama, F. Bentiss, Alkaloids extract of Retama monosperma (L.) Boiss. seeds used as novel eco-friendly inhibitor for carbon steel corrosion in 1 M HCl solution, Electrochem. Surf. Studies. Appl. Surf. Sci. 357 (2015) 1294–305.