Applying a Traditional Casting Defect Classification to Categorize Casting Defects in Metal Matrix Composites with Saturated Reinforcement

Applying a Traditional Casting Defect Classification to Categorize Casting Defects in Metal Matrix Composites with Saturated Reinforcement

GAWDZIŃSKA Katarzyna, BRYLL Katarzyna, KOSTECKA Ewelina and STOCHŁA Dorota

download PDF

Abstract. Traditional casting defects in metal-matrix composites with saturated reinforcement. This classification forms a casting defect group called “structure defects,” while the remaining defect groups (shape defects and raw surface defects) under this new classification method include groups present in casting defects in traditionally cast materials. This group (structure defects) contains 5 subgroups, including both structural defects in traditionally cast materials, which correspond to structural defects in saturated composite castings, as well as defects specific to these castings. The proposed classification is still being refined.

Metal Matrix Composites, Saturated Composite, Casting Defects, Classification

Published online , 8 pages
Copyright © 2020 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: GAWDZIŃSKA Katarzyna, BRYLL Katarzyna, KOSTECKA Ewelina and STOCHŁA Dorota, Applying a Traditional Casting Defect Classification to Categorize Casting Defects in Metal Matrix Composites with Saturated Reinforcement, Materials Research Proceedings, Vol. 17, pp 57-64, 2020


The article was published as article 9 of the book Terotechnology XI

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] T.W.Clune, P.J. Withers, An Introduction of Metal-Matrix Composites, Cambridge University Press 1993.
[2] J. Sobczak , Metalowe materiały kompozytowe, Instytut Odlewnictwa 1996.
[3] Z. Ignaszak, P.Popielarski, Sensitivity Tests of Simulation Models Used in Chosen Calculation Codes on Uncertainty of Thermo-Mechanical Parameters during Virtual Mechanical Stress Estimation for Ferrous Alloy Castings, Defect and Diffusion Forum 312-315 (2011) 758-763.
[4] B. Anasori, E. Caspi, and M. Barsoum, Fabrication and Mechanical Properties of Pressureless Melt Infiltrated Magnesium Alloy Composites Reinforced with TiC and Ti2AlC Particles, Mater. Sci. Eng. 618 (2014) 511-522.
[5] K. Gawdzińska, D. Nagolska, P. Szymański, Determination of duration and sequence of vacuum pressure saturation in infiltrated MMC castings, Arch. Foundry Eng. 18 (2018) 23-28
[6] M. Wiciak, T. Chwalczuk, A. Felusiak, Experimental investigation and performance analysis of ceramic inserts in laser assisted turning of Waspaloy, MATEC Web of Conf. 237 (2018) art. 01003.
[7] T. Chwalczuk, M. Wiciak, A. Felusiak, P. Kieruj, An Investigation of Tool Performance in Interrupted Turning of Inconel 718, MATEC Web of Conf. 237 (2018) art. 02008.
[8] Hajkowski J., Popielarski P., Sika R. (2018) Prediction of HPDC casting roperties made of AlSi9Cu3 alloy. In: Hamrol A., Ciszak O., Legutko S., Jurczyk M. (eds) Advances in Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Cham.
[9] D. Przestacki, T. Chwalczuk, The analysis of surface topography during turning of Waspaloy with the application of response surface method, MATEC Web of Conf. 136 (2017) art. 02006.
[10] K. Gawdzińska, L.Chybowski, W. Przetakiewicz, Study of Thermal Properties of Cast Metal-Ceramic Composite Foams. Arch. Foundry Eng. 17 (2017) 47-50.
[11] A. Felusiak, T. Chwalczuk, M. Wiciak, Surface Roughness Characterization of Inconel 718 after Laser Assisted Turning, MATEC Web of Conf. 237 (2018) art. 01004.
[12] Z. Ignaszak, P. Popielarski, J. Hajkowski, Sensitivity of Models Applied in Selected Simulation Systems with Respect to Database Quality for Resolving of Casting Problems, Defect and Diffusion Forum 336 (2013) 135-146.
[13] P. Twardowski, M. Wiciak-Pikuła, Prediction of Tool Wear Using Artificial Neural Networks during Turning of Hardened Steel, Materials 12 (2019), art. 3091.
[14] P.Szymański, M. Borowiak, Evaluation of castings surface quality made in 3D printed sand moulds using 3DP technology, Lecture Notes in Mechanical Engineering, Advances in Manufacturing II, Vol. 4 – Mechanical Engineering, pp 201-212.
[15] A. Alagarsamy. Defect Analysis Procedure and Case History. Ductile Iron News 2004.
[16] American Foundry Society.(2015). Analysis of Casting Defects. American Foundry Society, pp. 117-120.
[17] S. Kluska-Nawarecka, Metody komputerowe wspomagania diagnostyki wad odlewów, Instytut Odlewnictwa, Kraków 1999.
[18] Z. Falęcki, Analiza wad odlewów, Wyd. AGH, Kraków 1997.
[19] Polska norma PN-85/H-83105. Odlewy. Podział i terminologia wad.
[20] International Atlas of Casting Perfect, Internat. Comit. of Found Tech. Associat. American Foundrymen’s Society 1986.
[21] International atlas of foundry defects. International Committee of Foundry Technical Associations. Committee of Metallurgy and Foundry Properties. English Edition 1974.
[22] T. Chwalczuk, D. Przestacki, P. Szablewski, A. Felusiak, Microstructure characterisation of Inconel 718 after laser assisted turning, MATEC Web of Conf. 188 (2018) art. 02004.
[23] S. Wojciechowski, P. Twardowski, T. Chwalczuk, Surface roughness analysis after machining of direct laser deposited tungsten carbide, Journal of Physics: Conference Series 483 (2014) art. 012018.
[24] M. Kawalec, D. Przestacki, K. Bartkowiak, Jankowiak, M., Laser assisted machining of aluminium composite reinforced by SiC particle. ICALEO 2008 27th Int. Congress on Applications of Lasers and Electro-Optics (2008) 895-900.
[25] S. Wojciechowski, D. Przestacki, T. Chwalczuk, The evaluation of surface integrity during machining of inconel 718 with various laser assistance strategies, MATEC Web of Conf. 136 (2017) art. 01006.
[26] A. Bartkowska, A. Pertek, M. Popławski, D. Przestacki, A. Miklaszewski, Effect of laser modification of B-Ni complex layer on wear resistance and microhardness Optics and Laser Tech. 72 (2015) 116-124.
[27] M. Kukliński, A. Bartkowska, D. Przestacki, Investigation of laser heat treated Monel 400, MATEC Web of Conf. 219 (2018) art. 02005.
[28] K. Gawdzińska, Quality features of metal matrix composite castings, Arch. Metall. Mater. 58 (2013) 659-662.
[29] Gawdzińska K., Bryll K., Nagolska D., Influence of heat treatment on abrasive wear resistance of silumin matrix composite castings, Arch. Metall. Mater. 61 (2016) 177-182.
[30] L. Mosinska, K. Fabisiak, K. Paprocki, M. Kowalska, P. Popielarski, M. Szybowicz, A. Stasiak, Diamond as a transducer material for the production of biosensors. Przem. Chem. 92 (2013) 919-923.
[31] P. Krawiec, A. Marlewski, Profile design of noncircular belt pulleys. J. Theor. Appl. Mech. 54 (2016) 561-570.
[32] P. Krawiec, G. Domek, L. Wargula, K. Walus, J. Adamiec, The application of the optical system atos ii for rapid prototyping methods of non-classical models of cogbelt pulleys. MATEC Web of Conf. 157 (2018) art. 01010.
[33] P. Krawiec, M. Grzelka, J. Kroczak, G. Domek, A. Kolodziej, A proposal of measurement methodology and assessment of manufacturing methods of nontypical cog belt pulleys. Measurement 132 (2019) 182-190.
[34] A. Bartkowska, M. Kuklinski, P. Kieruj, The influence of laser heat treatment on the geometric structure of the surface and condition of the surface layer and selected properties of Waspaloy. MATEC Web of Conf. 121 (2017) art. UNSP 03006.
[35] P. Kieruj, M. Kuklinski, Tool life of diamond inserts after laser assisted turning of cemented carbides. MATEC Web of Conf. 121 (2017) art. UNSP 03011.