Verification of Correlations for Pool Boiling Heat Transfer on Horizontal Meshed Heaters

Verification of Correlations for Pool Boiling Heat Transfer on Horizontal Meshed Heaters

RADEK Norbert , ORMAN Łukasz J., PIETRASZEK Jacek and BRONČEK Jozef

download PDF

Abstract. The paper considers the problem of the accuracy of enhanced boiling heat transfer correlations. The experimental results of boiling of distilled water and ethyl alcohol have been compared with models available in literature regarding heat flux values in the nucleate boiling mode. Based on the obtained data it can be stated that the correlations are generally inaccurate in the whole range of superheats. Only a modified correlation by Xin and Chao provided comparable results to the experimental data.

Boiling, Correlations, Heat Exchangers

Published online , 6 pages
Copyright © 2020 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: RADEK Norbert , ORMAN Łukasz J., PIETRASZEK Jacek and BRONČEK Jozef, Verification of Correlations for Pool Boiling Heat Transfer on Horizontal Meshed Heaters, Materials Research Proceedings, Vol. 17, pp 185-190, 2020


The article was published as article 28 of the book Terotechnology XI

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] G.F. Smirnov, A.L. Coba, B.A. Afanasiev, The heat transfer by boiling in splits, capilaries, wick structures, AIAA Paper (1978) 78-461.
[2] A. Franco, E.M. Latrofa, V.V. Yagov, Heat transfer enhancement in pool boiling of a refrigerant fluid with wire nets structures, Exp. Therm. Fluid Sci. 30 (2006) 263-275.
[3] C. Li, G.P. Peterson, Y. Wang, Evaporation/boiling in thin capillary wicks (I) – wick thickness effects, J. Heat Transfer 128 (2006) 1312-1319.
[4] K. Nishikawa, T. Ito, K. Tanaka, Enhanced heat transfer by nucleate boiling on a sintered metal layer, Heat transfer – Japanese Research 8 (1979) 65-81.
[5] M.-D. Xin, Y.-D. Chao, Analysis and experiment of boiling heat transfer on T-shaped finned surfaces, Chem. Eng, Comm. 50 (1987) 185-199.
[6] M. Domagala, H. Momein, J. Domagala-Fabis, G. Filo, D. Kwiatkowski, Simulation of cavitation erosion in a hydraulic valve. Materials Research Proceedings 5 (2018) 1-6.
[7] J. Krawczyk, A. Sobczyk, J. Stryczek, P. Walczak, Tests of new methods of manufacturing elements for water hydraulics. Materials Research Proceedings 5 (2018) 200-205.
[8] T. Lipinski, D. Karpisz, Corrosion rate of 1.4152 stainless steel in a hot nitrate acid. METAL 2019: 28th Int. Conf. on Metallurgy and Materials, Ostrava, TANGER, 2019, 1086-1091.
[9] M.S. Kozien, J. Wiciak, Passive structural acoustic control of the smart plate – FEM simulation. Acta Phys. Pol. A 118 (2010) 1186-1188.
[10] R. Ulewicz, P. Szataniak, F. Novy, Fatigue properties of wear resistant martensitic steel. METAL 2014: 23rd Int. Conf. on Metallurgy and Materials. Ostrava, TANGER (2014) 784-789.
[11] M. Hebda, S. Gadek, J. Kazior, Influence of the mechanical alloying process on the sintering behaviour of Astaloy CrM powder mixture with silicon carbide addition. Arch. Metall. Mater. 57 (2012) 733-743.
[12] D. Przestacki, M. Kuklinski, A. Bartkowska, Influence of laser heat treatment on microstructure and properties of surface layer of Waspaloy aimed for laser-assisted machining. Int. J. Adv. Manuf. Technol. 93 (2017) 3111-3123.
[13] J. Nowakowska-Grunt, M. Mazur, Safety management in logistic processes of the metallurgical industry. METAL 2015: 24th Int. Conf. on Metallurgy and Materials, Ostrava, TANGER, 2015, 2020-2025.
[14] J. Nowakowska-Grunt, M. Mazur, Effectiveness of logistics processes of SMES in the metal industry. METAL 2016: 25th Int. Conf. on Metallurgy and Materials, Ostrava, TANGER, 2016, 1956-1961.
[15] A. Pacana, K. Czerwinska, R. Dwornicka, Analysis of non-compliance for the cast of the industrial robot basis, METAL 2019 28th Int. Conf. on Metallurgy and Materials (2019), Ostrava, Tanger 644-650.
[16] A. Gadek-Moszczak, S. Kuciel, L. Wojnar, W. Dziadur, Application of computer-aided analysis of an image for assessment of reinforced polymers structures. Polimery 51 (2006) 206-211.
[17] A. Szczotok, M. Sozanska, a comparison of grain quantitative evaluation performed with standard method of imaging with light microscopy and EBSD analysis. Prakt. Metallogr.-Pract. Metallogr. 46 (2009) 454-468.
[18] A. Gadek-Moszczak, History of stereology. Image Anal. Stereol. 36 (2017) 151-152.
[19] L. Dąbek, A. Kapjor, Ł.J. Orman, Distilled water and ethyl alcohol boiling heat transfer on selected meshed surfaces, Mech. Ind. 20 (2019) 701.
[20] K. Strąk, M. Piasecka, B. Maciejewska, Spatial orientation as a factor in flow boiling heat transfer of cooling liquids in enhanced surface minichannels, Int. J. Heat Mass Transf. 117 (2018) 375-387.
[21] M. Grabowski, S. Hożejowska, A. Pawińska, M.E. Poniewski, J. Wernik, Heat transfer coefficient identification in minichannel flow boiling with hybrid Picard-Trefftz method, Energies 11 (2018) 1-13.
[22] B. Maciejewska, M. Piasecka, An application of the non-continuous Trefftz method to the determination of heat transfer coefficient for flow boiling in a minichannel, Heat Mass Transf. 53 (2017) 1211-1224.
[23] L. Hożejowski, S. Hożejowska, Trefftz method in an inverse problem of two-phase flow boiling in a minichannel, Eng. Anal. Bound. Elem. 98 (2019) 27-34.
[24] B. Maciejewska, M. Piasecka, Trefftz function-based thermal solution of inverse problem in unsteady-state flow boiling heat transfer in a minichannel, Int. J. Heat Mass Transf. 107 (2017) 925-933.