Matrix FMEA Analysis of a Spool Control Valve

Matrix FMEA Analysis of a Spool Control Valve


download PDF

Abstract. Spool control valves are one of the most common use components of fluid power systems. They play an important role in hydraulic systems controlling flow direction and movement of actuators. Therefore, high reliability of such valves is required. It may be achieved by using quality improvement tools. This paper presents implementation of matrix FMEA analysis of directional flow control valve. Results of conducted analysis allowed to indicate failure with highest probability of occurrence during valve operation.

FMEA, Spool Control Valve

Published online , 7 pages
Copyright © 2020 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: FABIS-DOMAGALA Joanna, BIKASS Saeed, MOMENI Hassan, DOMAGALA Mariusz, FILO Grzegorz and KWIATKOWSKI Dominik, Matrix FMEA Analysis of a Spool Control Valve, Materials Research Proceedings, Vol. 17, pp 9-15, 2020


The article was published as article 2 of the book Terotechnology XI

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] M.E. Stock, R.B. Stone, I.Y. Tumer, Going back in time to improve design: The elemental function-failure design method, in: ASME 2003 Int. Design Eng. Tech. Conf. and Computers and Information in Eng. Conf., September 2–6, 2003, Chicago, Illinois, USA, Vol.3b: 15th Int. Conf. Design Theory and Methodology,
[2] J. Fabis-Domagala, H. Momeni, M. Domagala, G. Filo, S. Bikass, P. Lempa, Matrix FMEA analysis of the flow control valve, QPI 1 (1) (2019) 590-595.
[3] X. Liu, H. Ji, W. Min, Z. Zheng, J. Wang, Erosion behavior and influence of solid particles in hydraulic spool valve without notches, Eng. Fail. Anal. 108 (2020) art. 104262.
[4] M. Domagala, H. Momeni, J. Domagala-Fabis, G. Filo, M. Krawczyk, J. Rajda, Simulation of particle erosion in a hydraulic valve, Materials Research Proceedings 5 (2018) 17-24.
[5] M. Domagala, H. Momeni, J. Domagala-Fabis, G. Filo, D. Kwiatkowski, Simulation of Cavitation Erosion in a Hydraulic Valve, Materials Research Proceedings 5 (2018) 1-6.
[6] J. Fabis-Domagała, H. Momeni, M. Domagała, G. Filo, Matrix FMEA analysis as a preventive method for quality design of hydraulic components, CzOTO 1 (1) (2019) 684-691.
[7] J. Fabis-Domagała, H. Momeni, G. Filo, M. Domagała, Instruments of identification of hydraulic components potential failures, MATEC Web Conf. 183 (2018) art. 03008.
[8] A. Pacana, K. Czerwinska, R. Dwornicka, Analysis of non-compliance for the cast of the industrial robot basis, METAL 2019 28th Int. Conf. on Metallurgy and Materials (2019), Ostrava, Tanger 644-650.
[9] E. Skrzypczak-Pietraszek, I. Kwiecien, A. Goldyn, J. Pietraszek, HPLC-DAD analysis of arbutin produced from hydroquinone in a biotransformation process in Origanum majorana L. shoot culture. Phytochemistry Letters 20 (2017) 443-448.
[10] E. Skrzypczak-Pietraszek, K. Piska, J. Pietraszek, Enhanced production of the pharmaceutically important polyphenolic compounds in Vitex agnus castus L. shoot cultures by precursor feeding strategy. Engineering in Life Sciences 18 (2018) 287-297.
[11] Z. Ignaszak, P. Popielarski, T. Strek, Estimation of coupled thermo-physical and thermo-mechanical properties of porous thermolabile ceramic material using Hot Distortion Plus® test. Defect and Diffusion Forum 312-315 (2011) 764-769.
[12] A. Tiziani, A. Molinari, J. Kazior, G. Straffelini, Effect of vacuum sintering on the mechanical-properties of copper-alloyed stainless-steel. Powder Metall. 22 (1990) 17-19.
[13] E. Radzyminska-Lenarcik, R. Ulewicz, M. Ulewicz, Zinc recovery from model and waste solutions using polymer inclusion membranes (PIMs) with 1-octyl-4-methylimidazole, Desalin. Water Treat. 102 (2018) 211-219.
[14] D. Klimecka-Tatar, Electrochemical characteristics of titanium for dental implants in case of the electroless surface modification. Arch. Metall. Mater. 61 (2016) 923-26.
[15] J. Korzekwa, W. Skoneczny, G. Dercz, M. Bara, Wear mechanism of Al2O3/WS2 with PEEK/BG plastic. J. Tribol.-Trans. ASME 136 (2014) art. 011601.
[16] S. Wojciechowski, D. Przestacki, T. Chwalczuk, The evaluation of surface integrity during machining of Inconel 718 with various laser assistance strategies. MATEC Web of Conf. 136 (2017) art. 01006.
[17] N. Radek, A. Szczotok, A. Gadek-Moszczak, R. Dwornicka, J. Broncek, J. Pietraszek, The impact of laser processing parameters on the properties of electro-spark deposited coatings. Arch. Metall. Mater. 63 (2018) 809-816.
[18] T. Styrylska, J. Pietraszek, Numerical modeling of non-steady-state temperature-fields with supplementary data. ZAMM 72 (1992) T537-T539.
[19] Radek, N., Kurp, P., Pietraszek, J., Laser forming of steel tubes. Technical Transactions 116 (2019) 223-229.
[20] J. Pietraszek, A. Gadek-Moszczak, The Smooth Bootstrap Approach to the Distribution of a Shape in the Ferritic Stainless Steel AISI 434L Powders. Solid State Phenomena 197 (2012) 162-167.
[21] A. Gadek-Moszczak, J. Pietaszek, B. Jasiewicz, S. Sikorska, L. Wojnar, The Bootstrap Approach to the Comparison of Two Methods Applied to the Evaluation of the Growth Index in the Analysis of the Digital X-ray Image of a Bone Regenerate. New Trends in Comp. Collective Intell. 572 (2015) 127-136.