Implementation of Fuzzy Logic in Industrial Databases

Implementation of Fuzzy Logic in Industrial Databases

KARPISZ Dariusz and KIEŁBUS Anna

download PDF

Abstract. The paper presents selected solutions for the implementation of fuzzy logic in industrial databases. Streaming data processing and classification is one of the most important problems in the Industry 4.0 era. The use of a database engine and appropriate design of the data model for the use of fuzzy logic is a response to expectations of the market. Examples of four types of fuzzy attributes are described. The universal fuzzy data model and its implementation are presented in the article for various internal industry information systems.

Fuzzy Logic, Industrial Databases, Manufacturing Databases, Production Engineering

Published online , 8 pages
Copyright © 2020 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: KARPISZ Dariusz and KIEŁBUS Anna, Implementation of Fuzzy Logic in Industrial Databases, Materials Research Proceedings, Vol. 17, pp 100-107, 2020


The article was published as article 15 of the book Terotechnology XI

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] D. Karpisz, A. Kielbus, Selected problems of designing modern industrial databases, MATEC Web of Conferences 183 (2018) art. 01017,
[2] D. Karpisz, Design of manufacturing databases, Technical Transactions 113 (10) (2016) 73-77, doi: 10.4467/2353737XCT.16.123.5734
[3] D. Karpisz, A. Kielbus, M. Zembytska, Selected problems of industry databases and information infrastructure security, QPI 1 (1) (2019) 371-377,
[4] E. Skrzypczak-Pietraszek, J. Pietraszek, Phenolic acids in in vitro cultures of Exacum affine Balf. f. Acta Biol. Crac. Ser. Bot. 51 (2009) 62-62.
[5] E. Skrzypczak-Pietraszek, I. Kwiecien, A. Goldyn, J. Pietraszek, HPLC-DAD analysis of arbutin produced from hydroquinone in a biotransformation process in Origanum majorana L. shoot culture. Phytochemistry Letters 20 (2017) 443-448.
[6] T. Lipinski, The structure and mechanical properties of Al-7%SiMg alloy treated with a homogeneous modifier. Solid State Phenomena 163 (2010) 183-186.
[7] T. Lipinski, Double modification of AlSi9Mg alloy with boron, titanium and strontium. Arch. Metall. Mater. 60 (2015) 2415-2419.
[8] D. Klimecka-Tatar, Electrochemical characteristics of titanium for dental implants in case of the electroless surface modification. Arch. Metall. Mater. 61 (2016) 923-26.
[9] L. Dabek, A. Kapjor, L.J. Orman, Boiling heat transfer augmentation on surfaces covered with phosphor bronze meshes. MATEC Web of Conf. 168 (2018) art. 07001.
[10] M. Domagala, H. Momein, J. Domagala-Fabis, G. Filo, M. Krawczyk, J. Rajda, Simulation of particle erosion in a hydraulic valve. Materials Research Proceedings 5 (2018) 17-24.
[11] D. Przestacki, M. Kuklinski, A. Bartkowska, Influence of laser heat treatment on microstructure and properties of surface layer of Waspaloy aimed for laser-assisted machining. Int. J. Adv. Manuf. Technol. 93 (2017) 3111-3123.
[12] S. Wojciechowski, D. Przestacki, T. Chwalczuk, The evaluation of surface integrity during machining of Inconel 718 with various laser assistance strategies. MATEC Web of Conf. 136 (2017) art. 01006.
[13] Radek, N., Kurp, P., Pietraszek, J., Laser forming of steel tubes. Technical Transactions 116 (2019) 223-229.
[14] J. Pietraszek, A. Gadek-Moszczak, The Smooth Bootstrap Approach to the Distribution of a Shape in the Ferritic Stainless Steel AISI 434L Powders. Solid State Phenomena 197 (2012) 162-167.
[15] J. Pietraszek, A. Gadek-Moszczak, T. Torunski, Modeling of Errors Counting System for PCB Soldered in the Wave Soldering Technology. Advanced Materials Research 874 (2014) 139-143.
[16] A. Pacana, K. Czerwinska, R. Dwornicka, Analysis of non-compliance for the cast of the industrial robot basis, METAL 2019 28th Int. Conf. on Metallurgy and Materials (2019), Ostrava, Tanger 644-650.
[17] J. Galindo, A. Urrutia, M. Piattini, Representation of Fuzzy Knowledge in Relational Databases, in: Fuzzy databases: modeling, design and implementation, Idea Group Publishing, London, 2005, 145-151.
[18] J. Widom, S. Ceri, Active database systems: triggers and rules for advanced database processing, Burlington, Morgan Kaufmann, 1996.