Properties of Aerogels

$30.00

Properties of Aerogels

M.A. Velazco-Medel, L.A. Camacho-Cruz, L. Duarte-Peña, and E. Bucio

Since the development of aerogels in 1934 by Kistler, these substrates have been the focus of a lot of research due to their interesting properties. The peculiar nature of their structure has allowed for the discovery of many useful properties in many fields. Due to these properties, such materials may be used for thermal and acoustic insulation, microelectronics, optical arrangements, and even for developing medical devices. In the interest of describing these materials, this chapter outlines the most relevant properties of different aerogels (silica, clay, polymeric, carbonaceous, etc.) focusing on the description of their properties and their uses.

Keywords
Aerogels, Thermal Conductivity, Acoustic Insulation, Biocompatibility, Electrical Conductivity, Mechanical Properties, Optical Properties, Structure and Morphology

Published online 9/20/2020, 29 pages

Citation: M.A. Velazco-Medel, L.A. Camacho-Cruz, L. Duarte-Peña, and E. Bucio, Properties of Aerogels, Materials Research Foundations, Vol. 84, pp 172-200, 2020

DOI: https://doi.org/10.21741/9781644900994-7

Part of the book on Aerogels I

References
[1] S. Zhao, W.J. Malfait, N. Guerrero-Alburquerque, M.M. Koebel, G. Nyström, Biopolymer aerogels and foams: Chemistry, properties, and applications, Angew. Chem. Int. Ed. 57 (2018) 7580–7608. https://doi.org/10.1002/anie.201709014.
[2] G. Reichenauer, Structural characterization of aerogels, in: M.A. Aegerter, N. Leventis, M.M. Koebel (Eds.), Aerogels handbook, Springer, New York, 2011: pp. 449–498. https://doi.org/10.1007/978-1-4419-7589-8-21.
[3] D.W. Hua, J. Anderson, S. Hæreid, D.M. Smith, G. Beaucage, Pore morphology study of silica aerogels, MRS Proceedings. 346 (1994) 985. https://doi.org/10.1557/PROC-346-985.
[4] J. jun Liao, P. zhao Gao, L. Xu, J. Feng, A study of morphological properties of SiO2 aerogels obtained at different temperatures, J. Adv. Ceram. 7 (2018) 307–316. https://doi.org/10.1007/s40145-018-0280-6.
[5] L. Canham, Pore volume (porosity) in porous silicon, in: L. Canham (Ed.), Handbookof porous silicon. 1–2 (2018) 291–298. https://doi.org/10.1007/978-3-319-71381-6_13.
[6] H. Maleki, L. Durães, An overview on silica aerogels synthesis and different mechanical reinforcing strategies, J. Non.-Cryst. Solids.385(2014)55–74. https://doi.org/10.1016/j.jnoncrysol.2013.10.017.
[7] F. Zhu, Starch based aerogels: Production, properties and applications, Trends Food Sci. Technol. 89 (2019) 1–10. https://doi.org/10.1016/j.tifs.2019.05.001.
[8] T. Budtova, Cellulose II aerogels: a review, Cellulose. 26 (2019) 81–121. https://doi.org/10.1007/s10570-018-2189-1.
[9] C. Jiménez-Saelices, B. Seantier, B. Cathala, Y. Grohens, Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties, Carbohydr. Polym. 157 (2017) 105–113. https://doi.org/10.1016/j.carbpol.2016.09.068.
[10] A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications, Chem. Rev. 102 (2002) 4243–4265. https://doi.org/10.1021/cr0101306.
[11] T. Woignier, J. Reynes, J. Phalippou, Sintering of Silica Aerogels for Glass Synthesis: Application to Nuclear Waste Containment, in: M.A. Aegerter, N. Leventis, M.M. Koebel (Eds.), Aerogels handbook, Springer, New York,2011: pp. 665-680. https://doi.org/10.1007/978-1-4419-7589-8_29.
[12] C. Bi, G.H. Tang, Effective thermal conductivity of the solid backbone of aerogel, Int. J. Heat Mass Transf. 64 (2013)452–456. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.053.
[13] M.A. Hasan, R. Sangashetty, A.C.M. Esther, S.B. Patil, B.N. Sherikar, A. Dey, Prospect of thermal insulation by silica aerogel: A brief review, J. Inst. Eng. India Ser. D. 98 (2017) 297–304. https://doi.org/10.1007/s40033-017-0136-1.
[14] T.-Y. Wei, T.-F. Chang, S.-Y. Lu, Y.-C. Chang, Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying, J. Am. Ceram. Soc. 90 (2007) 2003–2007. https://doi.org/10.1111/j.1551-2916.2007.01671.x.
[15] S.S. Kistler, A.G. Caldwell, Thermal conductivity of silica aërogel, Ind. Eng. Chem. 26 (1934) 658–662. https://doi.org/10.1021/ie50294a016.
[16] A. Soleimani Dorcheh, M.H. Abbasi, Silica aerogel; synthesis, properties and characterization, J. Mater. Process. Technol. 199 (2008) 10–26. https://doi.org/10.1016/j.jmatprotec.2007.10.060.
[17] G. Wei, Y. Liu, X. Zhang, X. Du, Radiative heat transfer study on silica aerogel and its composite insulation materials, J. Non.-Cryst. Solids. 362 (2013) 231–236. https://doi.org/10.1016/j.jnoncrysol.2012.11.041.
[18] J.P. Zhao, D.T. Ge, S.L. Zhang, X.L. Wei, Studies on thermal property of silica aerogel/epoxy composite, Mater. Sci. Forum. 546–549 (2007) 1581–1584. https://doi.org/10.4028/www.scientific.net/MSF.546-549.1581.
[19] J. Guo, B.N. Nguyen, L. Li, M.A.B. Meador, D.A. Scheiman, M. Cakmak, Clay reinforced polyimide/silica hybrid aerogel, J. Mater. Chem. A. 1 (2013) 7211. https://doi.org/10.1039/c3ta00439b.
[20] J. Feng, D. Le, S.T. Nguyen, V. Tan Chin Nien, D. Jewell, H.M. Duong, Silica-cellulose hybrid aerogels for thermal and acoustic insulation applications, Colloids Surfaces A: Physicochem. Eng. Aspects 506 (2016) 298–305. https://doi.org/10.1016/j.colsurfa.2016.06.052.
[21] J. Shi, L. Lu, W. Guo, J. Zhang, Y. Cao, Heat insulation performance, mechanics and hydrophobic modification of cellulose–SiO2 composite aerogels, Carbohydr. Polym. 98 (2013) 282–289. https://doi.org/10.1016/j.carbpol.2013.05.082.
[22] J. Laskowski, B. Milow, L. Ratke, The effect of embedding highly insulating granular aerogel in cellulosic aerogel, J. Supercrit. Fluids. 106 (2015) 93–99. https://doi.org/10.1016/j.supflu.2015.05.011.
[23] A. Demilecamps, C. Beauger, C. Hildenbrand, A. Rigacci, T. Budtova, Cellulose-silica aerogels, Carbohydr. Polym. 122 (2015) 293–300. https://doi.org/10.1016/j.carbpol.2015.01.022.
[24] S. Motahari, G.H. Motlagh, A. Moharramzadeh, Thermal and flammability properties of polypropylene/silica aerogel composites, J. Macromol. Sci. B. 54 (2015) 1081–1091. https://doi.org/10.1080/00222348.2015.1078619.
[25] G. Horvat, T. Fajfar, A. Perva Uzunalić, Ž. Knez, Z. Novak, Thermal properties of polysaccharide aerogels, J. Therm. Anal. Calorim. 127 (2017) 363–370. https://doi.org/10.1007/s10973-016-5814-y.
[26] S. Takeshita, S. Yoda, Chitosan aerogels: Transparent, flexible thermal insulators, Chem. Mater. 27 (2015) 7569–7572. https://doi.org/10.1021/acs.chemmater.5b03610.
[27] X. Lu, R. Caps, J. Fricke, C.T. Alviso, R.W. Pekala, Correlation between structure and thermal conductivity of organic aerogels, J. Non.-Cryst. Solids. 188 (1995) 226–234. https://doi.org/10.1016/0022-3093(95)00191-3.
[28] H. Maleki, L. Durães, A. Portugal, Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications, Microporous Mesoporous Mater. 197 (2014) 116–129. https://doi.org/10.1016/j.micromeso.2014.06.003.
[29] D.B. Mahadik, H.-N.-R. Jung, W. Han, H.H. Cho, H.-H. Park, Flexible, elastic, and superhydrophobic silica-polymer composite aerogels by high internal phase emulsion process, Compos. Sci. Technol. 147 (2017) 45–51. https://doi.org/10.1016/j.compscitech.2017.04.036.
[30] P. Paraskevopoulou, D. Chriti, G. Raptopoulos, G.C. Anyfantis, Synthetic polymer aerogels in particulate form, Materials. 12 (2019) 1543. https://doi.org/10.3390/ma12091543.
[31] X. Lu, M.C. Arduini-Schuster, J. Kuhn, O. Nilsson, J. Fricke, R.W. Pekala, Thermal conductivity of monolithic organic aerogels, Science. 255 (1992) 971–972. https://doi.org/10.1126/science.255.5047.971.
[32] H. Guo, M.A.B. Meador, L. McCorkle, D.J. Quade, J. Guo, B. Hamilton, M. Cakmak, G. Sprowl, Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane, ACS Appl. Mater. Interfaces. 3 (2011) 546–552. https://doi.org/10.1021/am101123h.
[33] M.A.B. Meador, C.R. Alemán, K. Hanson, N. Ramirez, S.L. Vivod, N. Wilmoth, L. McCorkle, Polyimide aerogels with amide cross-links: A low cost alternative for mechanically strong polymer aerogels, ACS Appl. Mater. Interfaces. 7 (2015) 1240–1249. https://doi.org/10.1021/am507268c.
[34] J. Feng, X. Wang, Y. Jiang, D. Du, J. Feng, Study on Thermal conductivities of aromatic polyimide aerogels, ACS Appl. Mater. Interfaces. 8 (2016) 12992–12996. https://doi.org/10.1021/acsami.6b02183.
[35] N. Diascorn, S. Calas, H. Sallée, P. Achard, A. Rigacci, Polyurethane aerogels synthesis for thermal insulation – textural, thermal and mechanical properties, J. Supercrit. Fluids. 106 (2015) 76–84. https://doi.org/10.1016/j.supflu.2015.05.012.
[36] J. Yamashita, T. Ojima, M. Shioya, H. Hatori, Y. Yamada, Organic and carbon aerogels derived from poly(vinyl chloride), Carbon. 41 (2003) 285–294. https://doi.org/10.1016/S0008-6223(02)00289-0.
[37] J. Biener, M. Stadermann, M. Suss, M.A. Worsley, M.M. Biener, K.A. Rose, T.F. Baumann, Advanced carbon aerogels for energy applications, Energy Environ. Sci. 4 (2011) 656–667. https://doi.org/10.1039/c0ee00627k.
[38] S. Araby, A. Qiu, R. Wang, Z. Zhao, C.H. Wang, J. Ma, Aerogels based on carbon nanomaterials, J. Mater. Sci. 51 (2016) 9157–9189. https://doi.org/10.1007/s10853-016-0141-z.
[39] M. Wiener, G. Reichenauer, S. Braxmeier, F. Hemberger, H.-P. Ebert, Carbon aerogel-based high-temperature thermal insulation, Int. J. Thermophys. 30 (2009) 1372–1385. https://doi.org/10.1007/s10765-009-0595-1.
[40] M. Wiener, G. Reichenauer, F. Hemberger, H.-P. Ebert, Thermal conductivity of carbon aerogels as a function of pyrolysis temperature, Int. J. Thermophys. 27 (2006) 1826–1843. https://doi.org/10.1007/s10765-006-0086-6.
[41] V. Bock, O. Nilsson, J. Blumm, J. Fricke, Thermal properties of carbon aerogels, J. Non.-Cryst. Solids. 185 (1995) 233–239. https://doi.org/10.1016/0022-3093(95)00020-8.
[42] X. Lu, O. Nilsson, J. Fricke, R.W. Pekala, Thermal and electrical conductivity of monolithic carbon aerogels, J. Appl. Phys. 73 (1993) 581–584. https://doi.org/10.1063/1.353367.
[43] M.B. Bryning, D.E. Milkie, M.F. Islam, L.A. Hough, J.M. Kikkawa, A.G. Yodh, Carbon nanotube aerogels, Adv. Mater. 19 (2007) 661–664. https://doi.org/10.1002/adma.200601748.
[44] Q. Zhang, F. Zhang, S.P. Medarametla, H. Li, C. Zhou, D. Lin, 3D printing of graphene aerogels, Small. 12 (2016) 1702–1708. https://doi.org/10.1002/smll.201503524.
[45] G. Gorgolis, C. Galiotis, Graphene aerogels: A review, 2D Mater. 4 (2017). https://doi.org/10.1088/2053-1583/aa7883.
[46] L.W. Hrubesh, R.W. Pekala, Dielectric properties and electronic applications of aerogels, in: Y.A. atta (Ed.), Sol-gel processing andapplications, Springer, Boston, MA, 1994: pp. 363–367. https://doi.org/10.1007/978-1-4615-2570-7_31.
[47] Y.K. Akimov, Fields of application of aerogels (review), Instruments and Experimental Techniques 46 (2003) 287–299. https://doi.org/10.1023/A:1024401803057.
[48] H. Seung, A. S., K. Baek, S. Sang, Low dielectric materials for microelectronics, in: M. A. Silaghi (Ed.), Dielectricmaterial, InTech, 2012. https://doi.org/10.5772/51499.
[49] H. Qi, E. Mäder, J. Liu, Electrically conductive aerogels composed of cellulose and carbon nanotubes, J. Mater. Chem. A. 1 (2013) 9714–9720. https://doi.org/10.1039/c3ta11734k.
[50] J. Kim, J. Kwon, M. Kim, J. Do, D. Lee, H. Han, Low-dielectric-constant polyimide aerogel composite films with low water uptake, Polym. J. 48 (2016) 829–834. https://doi.org/10.1038/pj.2016.37.
[51] A.M. Joseph, B. Nagendra, P. Shaiju, K.P. Surendran, E.B. Gowd, Aerogels of hierarchically porous syndiotactic polystyrene with a dielectric constant near to air, J. Mater. Chem. C. (2018) 360–368. https://doi.org/10.1039/c7tc05102f.
[52] X.M. Zhang, J.G. Liu, S.Y. Yang, Synthesis and characterization of flexible and high-temperature resistant polyimide aerogel with ultra-low dielectric constant, Express Polym. Lett. 10 (2016) 789–798. https://doi.org/10.3144/expresspolymlett.2016.74.
[53] P. Breüsch, F. Stucki, T. Baumann, P. Kluge-Weiss, B. Brühl, L. Niemeyer, R. Strümpler, B. Ziegler, M. Mielke, Electrical and infrared dielectrical properties of silica aerogels and of silica-aerogel-based composites, Appl. Phys. A Solids Surfaces. 57 (1993) 329–337. https://doi.org/10.1007/BF00332286.
[54] J.K. Yoo, R. Wagle, C.W. Lee, E.Y. Lee, Synthesis of silica aerogel thin sheets and evaluation of its thermal, electrical, and mechanical properties, Int. J. Appl. Ceram. Technol. 16 (2019) 832–842. https://doi.org/10.1111/ijac.13125.
[55] K.E. Swider, C.I. Merzbacher, P.L. Hagans, D.R. Rolison, Synthesis of ruthenium dioxide-titanium dioxide aerogels: Redistribution of electrical properties on the nanoscale, Chem. Mater. 9 (1997) 1248–1255. https://doi.org/10.1021/cm960622c.
[56] D.R. Rolison, B. Dunn, Electrically conductive oxide aerogels: New materials in electrochemistry, J. Mater. Chem. 11 (2001) 963–980. https://doi.org/10.1039/b007591o.
[57] H.P. Wong, B.C. Dave, F. Leroux, J. Harreld, B. Dunn, L.F. Nazar, Synthesis and characterization of polypyrrole/vanadium pentoxide nanocomposite aerogels, J. Mater. Chem. 8 (1998) 1019–1027. https://doi.org/10.1039/a706614g.
[58] J.H. Harreld, B. Dunn, L.F. Nazar, Design and synthesis of inorganic-organic hybrid microstructures, Int. J. Inorg. Mater. 1 (1999) 135–146. https://doi.org/10.1016/S1466-6049(99)00022-7.
[59] M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher, T.F. Baumann, Synthesis of graphene aerogel with high electrical conductivity, J. Am. Chem. Soc. 132 (2010) 14067–14069. https://doi.org/10.1021/ja1072299.
[60] H. Zhuo, Y. Hu, Z. Chen, X. Peng, L. Liu, Q. Luo, J. Yi, C. Liu, L. Zhong, A carbon aerogel with super mechanical and sensing performances for wearable piezoresistive sensors, J. Mater. Chem. A. 7 (2019) 8092–8100. https://doi.org/10.1039/c9ta00596j.
[61] F. Guo, Y. Jiang, Z. Xu, Y. Xiao, B. Fang, Y. Liu, W. Gao, P. Zhao, H. Wang, C. Gao, Highly stretchable carbon aerogels, Nat. Commun. 9 (2018) 1–9. https://doi.org/10.1038/s41467-018-03268-y.
[62] B. Lee, S. Lee, M. Lee, D.H. Jeong, Y. Baek, J. Yoon, Y.H. Kim, Carbon nanotube-bonded graphene hybrid aerogels and their application to water purification, Nanoscale. 7 (2015) 6782–6789. https://doi.org/10.1039/c5nr01018g.
[63] Y.N. Kharzheev, Use of silica aerogels in Cherenkov counters, Phys. Part. Nuclei 39 (2008) 107–135. https://doi.org/10.1134/s1063779608010085.
[64] M.F. L’Annunziata, Radiation physics and radionuclide decay, in:M.F. L’Annunziata (Ed.), Handbook ofradioactivityanalysis, Elsevier, Oxford, 2012: pp. 1–162. https://doi.org/https://doi.org/10.1016/C2009-0-64509-8.
[65] M. Tabata, I. Adachi, H. Kawai, M. Kubo, T. Sato, Recent progress in silica aerogel Cherenkov radiator, Phys. Procedia. 37 (2012)42–649. https://doi.org/10.1016/j.phpro.2012.02.410.
[66] L. Cremaldi, D.A. Sanders, P. Sonnek, D.J. Summers, J. Reidy, A cherenkov radiation detector with high density aerogels, IEEE Trans. Nucl. Sci. 56 (2009) 1475–1478. https://doi.org/10.1109/TNS.2009.2021266.
[67] T.A. Birks, M.D.W. Grogan, L.M. Xiao, M.D. Rollings, R. England, W.J. Wadsworth, Silica aerogel in optical fibre devices, 2010 12th Int. Conf. Transparent Opt. Networks, Ict. 2010. (2010) 1–4. https://doi.org/10.1109/ICTON.2010.5549052.
[68] K. Tsubaka, T. Kamae, H. Yokoyawa, M. Yokoyawa, K. Sonoda, Optical fiber with silica aerogel cladding,Panasonic Electric Works Co Ltd. EP0779523A3, 1996.
[69] R. Hui, M. O’Sullivan, Fundamentals of optical devices, in: Fiber Optic Measurement Techniques, 2009: pp. 1–128. https://doi.org/10.1016/b978-0-12-373865-3.00001-x.
[70] C.I. Merzbacher, S.R. Meier, J.R. Pierce, M.L. Korwin, Carbon aerogels as broadband non-reflective materials, J. Non.-Cryst. Solids. 285 (2001) 210–215. https://doi.org/10.1016/S0022-3093(01)00455-0.
[71] S.R. Meier, M.L. Korwin, C.I. Merzbacher, Carbon aerogel: a new nonreflective material for the infrared, Appl. Opt. 39 (2000) 3940-3944. https://doi.org/10.1364/ao.39.003940.
[72] J.C.H. Wong, H. Kaymak, P. Tingaut, S. Brunner, M.M. Koebel, Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites, Microporous Mesoporous Mater. 217 (2015) 150–158. https://doi.org/10.1016/j.micromeso.2015.06.025.
[73] T. Ficker, Young’s modulus of elasticity in student laboratories, Phys. Educ. 34 (1999) 376–383. https://doi.org/10.1088/0031-9120/34/6/407.
[74] J. Fricke, ed., Aerogels, Springer, Berlin, Heidelberg, 1986. https://doi.org/10.1007/978-3-642-93313-4.
[75] J. Lei, J. Hu, Z. Liu, 116. Mechanical properties of silica aerogel – A molecular dynamics study, 2013 World Congr. Adv. Struct. Eng. Mech. (2013) 778–785.
[76] K.E. Parmenter, F. Milstein, Mechanical properties of silica aerogels, J. Non.-Cryst. Solids. 223 (1998) 179–189. https://doi.org/10.1016/S0022-3093(97)00430-4.
[77] K.A.D. Obrey, K. V. Wilson, D.A. Loy, Enhancing mechanical properties of silica aerogels, J. Non.-Cryst. Solids. 357 (2011) 3435–3441. https://doi.org/10.1016/j.jnoncrysol.2011.06.014.
[78] T. Woignier, J. Primera, A. Alaoui, P. Etienne, F. Despestis, S. Calas-Etienne, Mechanical properties and brittle behavior of silica aerogels, Gels. 1 (2015) 256–275. https://doi.org/10.3390/gels1020256.
[79] C. Li, X. Cheng, Z. Li, Y. Pan, Y. Huang, L. Gong, Mechanical, thermal and flammability properties of glass fiber film/silica aerogel composites, J. Non.-Cryst. Solids. 457 (2017) 52–59. https://doi.org/10.1016/j.jnoncrysol.2016.11.017.
[80] S. He, X. Chen, Flexible silica aerogel based on methyltrimethoxysilane with improved mechanical property, J. Non.-Cryst. Solids. 463 (2017) 6–11. https://doi.org/10.1016/j.jnoncrysol.2017.02.014.
[81] N. Leventis, S. Mulik, X. Wang, A. Dass, V.U. Patil, C. Sotiriou-Leventis, H. Lu, G. Churu, A. Capecelatro, Polymer nano-encapsulation of templated mesoporous silica monoliths with improved mechanical properties, J. Non.-Cryst. Solids. 354 (2008) 632–644. https://doi.org/10.1016/j.jnoncrysol.2007.06.094.
[82] N. Leventis, A. Palczer, L. McCorkle, G. Zhang, C. Sotiriou-Leventis, Nanoengineered silica-polymer composite aerogels with no need for supercritical fluid drying, J. Sol-Gel Sci. Technol. 35 (2005) 99–105. https://doi.org/10.1007/s10971-005-1372-7.
[83] O.A. Madyan, M. Fan, L. Feo, D. Hui, Physical properties of clay aerogel composites: An overview, Compos. B Eng. 102 (2016) 29–37. https://doi.org/10.1016/j.compositesb.2016.06.057.
[84] O.A. Madyan, M. Fan, L. Feo, D. Hui, Enhancing mechanical properties of clay aerogel composites: An overview, Compos. Part B Eng. 98 (2016) 314–329. https://doi.org/10.1016/j.compositesb.2016.04.059.
[85] K. Haraguchi, H.-J. Li, Mechanical properties and structure of polymer−clay nanocomposite gels with high clay content, Macromolecules. 39 (2006) 1898–1905. https://doi.org/10.1021/ma052468y.
[86] W. Chen, H. Yu, Q. Li, Y. Liu, J. Li, Ultralight and highly flexible aerogels with long cellulose I nanofibers, Soft Matter. 7 (2011) 10360. https://doi.org/10.1039/c1sm06179h.
[87] P. Liu, T.Q. Tran, Z. Fan, H.M. Duong, Formation mechanisms and morphological effects on multi-properties of carbon nanotube fibers and their polyimide aerogel-coated composites, Compos. Sci. Technol. 117 (2015) 114–120. https://doi.org/10.1016/j.compscitech.2015.06.009.
[88] C. Jiao, J. Xiong, J. Tao, S. Xu, D. Zhang, H. Lin, Y. Chen, Sodium alginate/graphene oxide aerogel with enhanced strength–toughness and its heavy metal adsorption study, Int. J. Biol. Macromol. 83 (2016) 133–141. https://doi.org/10.1016/j.ijbiomac.2015.11.061.
[89] A. Feinle, N. Hüsing, Mixed metal oxide aerogels from tailor-made precursors, J. Supercrit. Fluids. 106 (2015) 2–8. https://doi.org/10.1016/j.supflu.2015.07.015.
[90] A. Benad, F. Jürries, B. Vetter, B. Klemmed, R. Hübner, C. Leyens, A. Eychmüller, Mechanical Properties of Metal Oxide Aerogels, Chem. Mater. 30 (2018) 145–152. https://doi.org/10.1021/acs.chemmater.7b03911.
[91] M. Gao, B. Liu, P. Zhao, X. Yi, X. Shen, Y. Xu, Mechanical strengths and thermal properties of titania-doped alumina aerogels and the application as high-temperature thermal insulator, J. Sol-Gel Sci. Technol. 91 (2019) 514–522. https://doi.org/10.1007/s10971-019-05057-5.
[92] M. Zhong, Z. Fu, L. Yuan, H. Zhao, J. Zhu, Y. He, C. Wang, Y. Tang, A solution-phase synthesis method to prepare Pd-doped carbon aerogels for hydrogen storage, RSC Adv. 5 (2015) 20966–20971. https://doi.org/10.1039/C4RA16505E.
[93] E. Moretti, F. Merli, E. Cuce, C. Buratti, Thermal and acoustic properties of aerogels: preliminary investigation of the influence of granule size, Energy Procedia. 111 (2017) 472–480. https://doi.org/10.1016/j.egypro.2017.03.209.
[94] T. Yang, X. Xiong, M. Venkataraman, R. Mishra, J. Novák, J. Militký, Investigation on sound absorption properties of aerogel/polymer nonwovens, J. Text. Inst. 110 (2019) 196–201. https://doi.org/10.1080/00405000.2018.1472540.
[95] K. Matsumoto, K. Ohmori, S. Abe, K. Kanamori, K. Nakanishi, Ultrasound propagation in dense aerogels filled with liquid 4He, J. Phys. Conf. Ser. 400 (2012). https://doi.org/10.1088/1742-6596/400/1/012045.
[96] Y. Xie, J. Beamish, Ultrasonic properties of silica aerogels at low temperatures, Phys. Rev. B. 57 (1998) 3406–3410. https://doi.org/10.1103/PhysRevB.57.3406.
[97] J. Gross, J. Fricke, Ultrasonic velocity measurements in silica, carbon and organic aerogels, J. Non.-Cryst. Solids. 145 (1992) 217–222. https://doi.org/10.1016/S0022-3093(05)80459-4.
[98] S. Ramakrishna, L. Tian, C. Wang, S. Liao, W.E. Teo, 6 – Safety testing of a new medical device, in: S. Ramakrishna, L. Tian, C. Wang, S. Liao, W.E. Teo (Eds.), Med. Devices, Woodhead Publishing, 2015: pp. 137–153. https://doi.org/https://doi.org/10.1016/B978-0-08-100289-6.00006-5.
[99] V. Narayan, 19 – Alternate antioxidants for orthopedic devices, in: S.M. Kurtz (Ed.), UHMWPE Biomaterials Handbook, William Andrew Publishing, Oxford, 2016: pp. 326–351. https://doi.org/https://doi.org/10.1016/B978-0-323-35401-1.00019-3.
[100] V.R. Sastri, 4 – Material requirements for plastics used in medical devices, in: V.R. Sastri (Ed.), Plast. Med. Devices, William Andrew Publishing, Oxford, 2014: pp. 33–54. https://doi.org/https://doi.org/10.1016/B978-1-4557-3201-2.00004-5.
[101] V. Vitcheva, Biological sata in the light of toxicological risk assessment, in: D. Neagu, A.N. Richarz (Eds.), Big data in predictive toxicology, The Royal Society of Chemistry,2020, pp: 38–68. https://doi.org/10.1039/9781782623656-00038.
[102] J. Hadley, J. Hirschman, B.I. Morshed, F. Sabri, RF Coupling of Interdigitated Electrode array on aerogels for in vivo nerve guidance applications, MRS Adv. 4 (2019) 1237–1244. https://doi.org/10.1557/adv.2019.141.
[103] F.P. Soorbaghi, M. Isanejad, S. Salatin, M. Ghorbani, S. Jafari, H. Derakhshankhah, Bioaerogels: Synthesis approaches, cellular uptake, and the biomedical applications, Biomed. Pharmacother. 111 (2019) 964–975. https://doi.org/10.1016/j.biopha.2019.01.014.
[104] R. Mavelil-Sam, L.A. Pothan, S. Thomas, Polysaccharide and protein based aerogels: An introductory outlook, in: S. Thomas, L.A. Pothan, R. Mavelil-Sam (Eds.) Biobased aerogels: Polysaccharideand protein-based Materials, The Royal Society of Chemistry, 2018: pp. 1–8. https://doi.org/10.1039/9781782629979-00001.
[105] A. Veronovski, Ž. Knez, Z. Novak, Preparation of multi-membrane alginate aerogels used for drug delivery, J. Supercrit. Fluids. 79 (2013) 209–215. https://doi.org/10.1016/j.supflu.2013.01.025.
[106] G. Orive, A.M. Carcaboso, R.M. Hernández, A.R. Gascón, J.L. Pedraz, Biocompatibility evaluation of different alginates and alginate-based microcapsules, Biomacromolecules. 6 (2005) 927–931. https://doi.org/10.1021/bm049380x.
[107] S. Fernández, A. León, F. Gude, M. Castaño, Biocompatibility of agarose gel as a dermal filler: Histologic evaluation of subcutaneous implants, Plast. Reconstr. Surg. 120 (2007) 1161–1169. https://doi.org/10.1097/01.prs.0000279475.99934.71.
[108] S. Rodrigues, M. Dionísio, C.R. López, A. Grenha, Biocompatibility of Chitosan Carriers with Application in Drug Delivery, J. Funct. Biomater. 3 (2012) 615–641. https://doi.org/10.3390/jfb3030615.
[109] S.B. Rao, C.P. Sharma, Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential, J. Biomed. Mater. Res. 34 (1997) 21–28. https://doi.org/10.1002/(SICI)1097-4636(199701)34:1<21::AID-JBM4>3.0.CO;2-P.
[110] A. Ubeyitogullari, S. Brahma, D.J. Rose, O.N. Ciftci, In vitro digestibility of nanoporous wheat starch aerogels, J. Agric. Food Chem. 66 (2018) 9490–9497. https://doi.org/10.1021/acs.jafc.8b03231.
[111] D.D. Lovskaya, A.E. Lebedev, N. V. Menshutina, Aerogels as drug delivery systems: In vitro and in vivo evaluations, J. Supercrit. Fluids. 106 (2015) 115–121. https://doi.org/10.1016/j.supflu.2015.07.011.