Magnetic Aerogels


Magnetic Aerogels

Praveen Kumar Yadav, Jyoti Raghav, Sapa Raghav, Pallavi Jain

Aerogels are exceptional solid-state materials having interconnected 3D solid networks with numerous air-filled pores, large specific surface area (SSA), ultra-low density, etc. The hybridization of aerogels with inorganic metals produces a unique composite with exceptionally improved properties such as flexibility, compressibility, controllable magnetization, electrical conductivities, etc. and these hybrid composites are called the magnetic aerogels (MAg). The development of MAg has increased the applicability of aerogels and provides more opportunity for its application in various new fields as well. So, the present chapter focuses more on the development of various types of MAgs along with their applications.

Aerogels, Specific Surface Area (SSA), Flexibility, Magnetization, Magnetic Aerogels

Published online 9/20/2020, 17 pages

Citation: Praveen Kumar Yadav, Jyoti Raghav, Sapa Raghav, Pallavi Jain, Magnetic Aerogels, Materials Research Foundations, Vol. 84, pp 155-171, 2020


Part of the book on Aerogels I

[1] S.S. Kistler, 1931. Coherent expanded aerogels and jellies, Nature 127 (1931) 741.
[2] S. Mulik, C. Sotiriou-Leventis, G. Churu, H. Lu, N. Leventis, Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization, Chem. Mater. 20 (2008) 5035–46.
[3] D.H. Everett, Manual of symbols and terminology for physicochemical quantities and units, Appendix II: definitions, terminology and symbols in colloid and surface chemistry, Pure Appl. Chem. 31 (2009) 577–638.
[4] N. Leventis, A. Sadekar, N. Chandrasekaran, C. Sotiriou-Leventis, Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3D silica networks, Chem. Mater. 22 (2010) 2790–803.
[5] L. Falk, A. Nikita, S. Christian, P. Antje P, R. Thomas, Bacterial cellulose aerogels: from lightweight dietary food to functional materials. Funct. Mater. Renew. Sources 1107 (2012) 57–74. https:// 10.1021/bk-2012-1107.ch004
[6] O. Ikkala, R.H.A. Ras, N. Houbenov, J. Ruokolainen, M. Pääkkö, J. Laine, Solid state nanofibers based on self-assemblies: From cleaving from self-assemblies to multilebel hierarchical constructs, Faraday Discussions, 143 (2009) 95–107.
[7] A.J. Svagan, L.A. Berglund, P. Jensen, Cellulose nanocomposite biopolymer foam-hierarchical structure effects on energy absorption, ACS Appl. Mater. Interfaces, 3 (2011) 1411–1417.
[8] H. Jin, M. Kettunen, A. Laiho, H. Pynnönen, J. Paltakari, A. Marmur, et al. Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil, Langmuir, 27 (2011) 1930–1934.
[9] M. Pääkkö, J. Vapaavuori, R. Silvennoinen, H. Kosonen, M. Ankerdors, T. Lindström, T., et al. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter. 4 (2008) 2492–2499.
[10] S. Liu, Q. Yan, D. Tao, T. Yu, X. Liu, Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates, Carbohy. Polymers 89 (2012) 551– 557.
[11] X. Wang, S. Jiang, S. Cui, Y. Tang, Z. Pei, H. Duan, Magnetic-controlled aerogels from carboxylated cellulose and MnFe2O4 as a novel adsorbent for removal of Cu (II), Cellulose 26 (2019) 5051–5063. 10.1007/s10570-019-02444-7
[12] M. Yu, Y. Han, J. Li, L. Wang, Magnetic N-doped carbon aerogel from sodium carboxymethyl cellulose/collagen composite aerogel for dye adsorption and electrochemical supercapacitor, Int. J. Biol. Macromol. 115 (2018) 185-193.
[13] S.F. Chin, A.N.B. Romainor, S.C. Pang, Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity, Mater. Letters 115 (2014) 241–243.d
[14] J. Dai, R. Zhang, W. Ge, A. Xie, Z. Chang, S. Tian, Z. Zhou, Y. Yan, 3D macroscopic superhydrophobic magnetic porous carbon aerogel converted from biorenewable popcorn for selective oil-water separation, Mater. Design 139 (2018) 122–131.
[15] P. Arabkhani, A. Asfaram, Development of a novel three-dimensional magnetic polymer aerogel as an efficient adsorbent for malachite green removal, J. Hazrd. Mater. 384 (2019) 121394.
[16] H. Gu, X. Zhou, S. Lyu, D. Pan, M. Dong, S. Wu, T. Ding, X. Wei, I. Seok, S. Wei, Z. Guo, Magnetic nanocellulose-magnetite aerogel for easy oil adsorption, J. Colloid Interface Sci. 560 (2020) 849-856.
[17] B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi, J. Liu, Reduced graphene oxides: light-weight and high efficiency electromagnetic interference shielding at elevated temperatures, Adv. Mater 26 (2014) 3484-3489.
[18] P.B. Liu, Y. Huang, J. Yan, Y. Zhao, Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption, J. Mater. Chem. C 4 (2016) 6362-6370.
[19] D. Xu, S. Yang, P. Chen, Q. Yu, X. Xiong, J. Wang, Synthesis of magnetic graphene aerogels for microwave absorption by a in-situ pyrolysis, Carbon, 146 (2019) 301-312.
[20] L.D. Quana, N.H. Dang, T.H. Tua, V.N.P. Linha, L.T.M. Thya, H.M. Nama, M.T. Phong, N.H. Hieua, Preparation of magnetic iron oxide/graphene aerogel nanocomposites for removal of bisphenol A from water, Synthetic Metals, 255 (2019) 116106.
[21] K. Tadyszaka, K. Chybczyńska, P. Ławniczak, A. Zalewska, B. Cieniek, M. Gonet, M. Murias, Magnetic and electric properties of partially reduced graphene oxide aerogels, J. Magnetism Magnetic Mater. 492 (2019) 165656.
[22] S. Zhou, W. Jiang, T. Wang, Y. Lu, Highly Hydrophobic, Compressible, magnetic polystyrene/Fe3O4/graphene aerogel composite for oil-water separation, Industrial Eng. Chem. Res. 54 (2015) 5460-5467.
[23] D. Xu, J. Liu, P. Chen, Q. Yu, J. Wang, S. Yang, X. Guo, In situ growth and pyrolysis synthesis of super-hydrophobic graphene aerogels embedded with ultrafine β-co nanocrystals for microwave absorption, 7 (2019) 3869-3880.
[24] H.B. Zhao, Z.B. Fu, X.Y. Liu, X.C. Zhou, H.B. Chen, M.L. Zhong, C.Y. Wang, Magnetic and conductive Ni/carbon aerogels toward high-performance microwave absorption, Industrial Eng. Chem. Res. 57 (2017) 202-211.
[25] S. Yea, W. Jina, Q. Huanga, Y. Hua, Y. Lia, B. Lia, KGM-based magnetic carbon aerogels matrix for the uptake of methylene blue and methyl orange, Inter. J. Biol. Macromolecul. 92 (2016) 1169–1174.
[26] Y. Lu, Z. Niu, W. Yuan, Multifunctional magnetic superhydrophobic carbonaceous aerogel with micro/nano-scale hierarchical structures for environmental remediation and energy storage, Appl. Surface Sci. 480 (2019) 851-860.
[27] P. Shanmugama, W. Wei, K. Qiana, Z. Jianga, J. Lua, J. Xiea, Efficient removal of erichrome black T with biomass-derived magnetic carbonaceous aerogel sponge, Mater. Sci. Eng. B 248 (2019) 114387.
[28] M. Li, S. Dong, N. Li, H. Tang, J. Zheng, Magnetic Fe3O4 Carbon aerogel and ionic liquid composite films as an electrochemical interface for accelerated electrochemistry of glucose oxidase and myoglobin, RSC Adv. 5 (2015) 14704-14711.
[29] T. Feng, X. Ye, Y. Zhao, Z. Zhao, S. Hou, N. Liang, L. Zhao, Magnetic silica aerogels with high efficiency for selective adsorption of pyrethroid insecticides in juice and tea beverages, New J Chem. 43 (2019) 5159-5166.
[30] Z.D. Li, H.L. Wang, X.N. Wei, X.Y. Liu, Y.F. Yang, W.F. Jiang, Preparation and photocatalytic performance of magnetic Fe3O4@TiO2 core-shell microspheres supported by silica aerogels from industrial fly ash, J. Alloy Comp. 659 (2015) 240-247.
[31] H. Maleki, L. Durães, B.F.O. Costa, R.F. Santos, A. Portugal, Design of multifunctional magnetic hybrid silica aerogels with improved properties, Microporous Mesoporous Mater. 232 (2016) 227-237.
[32] L. Amirkhani, J. Moghaddas, H. Jafarizadeh-Malmiri, Candida rugosa lipase immobilization on magnetic silica aerogel nanodispersion, RSC Adv. 6 (2016) 12676-12687.
[33] J.W. Long, M.S. Logan, C.P. Rhodes, E.E. Carpenter, R.M. Stroud, D.R. Rolison, Nanocrystalline iron oxide aerogels as mesoporous magnetic architectures, J. Am. Chem. Soc., 126 (2004) 16879–16889.
[34] J.W. Long, M.S. Logan, C.P. Rhodes, E.E. Carpenter, R.M. Stroud, D.R. Rolison, Nanocrystalline iron oxide aerogels as mesoporous magnetic architectures, J. Am. Chem. Soc. 126 (2004) 16879–16889.
[35] E. Taboada, R.P. del Real, M. Gich, A. Roig and E. Molins, Faraday rotation measurements in maghemite-silica aerogels, J. Magn. Magn. Mater. 301 (2006) 175–180.
[36] M. Popovici, M. Gich, A. Roig, L. Casas, E. Molins, C. Savii, D. Becherescu, J. Sort, S. Surinach, J.S. Munoz, M.D. Baro, J. Nogues, Ultraporous single phase iron oxide− silica nanostructured aerogels from ferrous precursors, Langmuir 20 (2004) 1425–1429.
[37] R.T. Olsson, M.A.S. Azizi Samir, G.S. Alvarez, L. Belova, V. Strom, L.A. Berglund, O. Ikkala, J. Nogue´s, U.W. Gedde, Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates, Nat. Nanotechnol. 5 (2010) 584–588.
[38] C.A. Garcıa-Gonzalez, E. Carenza, M. Zeng, I. Smirnova, A. Roig, Design of biocompatible magnetic pectin aerogel monoliths and microspheres, RSC Adv. 2 (2012) 9816–9823. https:// 10.1039/C2RA21500D