Carbon Aerogels

$30.00

Carbon Aerogels

Subhajit Kundu, Debarati Mitra, Mahuya Das

Aerogel is a porous solid material derived from gel in which the liquid is replaced by gas. The wide application of aerogel in the field of adsorbent is due to its macro dimension. It can be removed very easily from an aqueous reaction medium in comparison to the nanostructured powdered materials. Currently, carbon-based aerogel, having a 3D micro and mesoporous network structure interconnected by nanosized primary particles, are getting much attention as adsorbents for their large surface area and higher adsorption capacity. Actually, carbon aerogels have some unique backbone density and connectivity properties along with very small pore size, high porosity and high surface area which facilitates its wide range of applications including electrical fields, hydrogen storage and adsorption, catalyst support, thermal insulation, optical fields, sensor, broadband non-reflective materials etc.

Keywords
Aerogel, Classification, Porous, Carbon Aerogel, Adsorption

Published online 9/20/2020, 22 pages

Citation: Subhajit Kundu, Debarati Mitra, Mahuya Das, Carbon Aerogels, Materials Research Foundations, Vol. 84, pp 133-154, 2020

DOI: https://doi.org/10.21741/9781644900994-5

Part of the book on Aerogels I

References
[1] S.S. Kistler, Coherent expanded aerogels, J .Phys. Chem. 36 (1932) 52–64. https://doi.org/10.1021/j150331a003.
[2] C.J. Brinker, G.W. Scherer, Sol-gel science: The physics and chemistry of sol-gel processing, Academic Press, New-York, 1990.
[3] A.E. Gash, T.M. Tillotson, Jr. J.H. Satcher, L.W. Hrubesh, R.L. Simpson, New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J. Non Cryst. Solids. 285 (2001) 22–28. https://doi.org/10.1016/S0022-3093(01)00427-6.
[4] J. Eid, A.C. Pierre, G. Baret, Preparation and characterization of transparent Eu doped Y2O3 aerogel monoliths for application in luminescence, J. Non Cryst. Solids. 351 (2005) 218–227. hal-00012515.
[4] R.W. Pekala, F. M. Kong, Resorcinol-formaldehyde aerogels and their carbonized derivatives, Abstr. Pap. Am. Chem. Soc. 197 (1989) 113-115. DOE contract no: W-7405-ENG-48.
[5] R.W. Pekala., F.M. Kong, New organic aetogels based upon a phenolic-furfural reaction, J. Non. Cyst. Solids, 188 (1995) 34-40. https://doi.org/10.1016/0022-3093(95)00027-5.
[6] H.W. Sun, Z. Xu, C. Gao, Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels, Adv. Mater. 25 (2013) 2554-2560. https://doi.org/10.1002/adma.201204576.
[7] M.A. Worsley, T.Y. Olson, J.R.I. Lee, T.M. Willey, M.B. Nielson, S.K. Roberts, P.J. Pauzauskie, J. Biener, Jr. J.H. Satcher, T.F. Baumman, High surface area, sp2-cross-linked 3-D graphene monoliths, J. Phys. Chem. Lett. 2 (2011b) 921-925. https://doi.org/10.1021/jz200223x.
[8] T.F. Baumann, M.A. Worsley, Carbon aerogels, in: L. Klein et al. (Eds.), Handbook of sol-gel science and technology, Springer, New York, 2016, pp. 1-27
[9] P. J. Pauzauskie, M.J. Crane, M.B. Lim, X. Zhou, Synthesis and characterization of a nanocrystalline diamond aerogel, Proc. Natl. Acad. Sci. U.S.A., 108 (2011) 8550-8553. doi:10.1038/micronano.2017.32.
[10] R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, J. Mater Sci. 24 (1989) 3221–3227. https://doi.org/10.1007/BF01139044.
[11] R.W. Pekala, C.T. Alviso, X. Lu, J. Gross, J. Fricke, New organic aerogels based upon a phenolic-furfural reaction, J Non-Cryst Solids, 188 (1995) 34–40. https://doi.org/10.1016/0022-3093(95)00027-5.
[12] R. Zhang, Y. Lu, L. Zhan, X. Liang, G. Wu, L. Ling, Monolithic carbon aerogels from sol–gel polymerization of phenolic resoles and methylolated melamine, Carbon 41 ( 2002) 1660–1663. https://doi.org/10.1016/S0008-6223(03)00112-X.
[13] W. Li, G. Reichenauer, J. Fricke, Carbon aerogels derived from cresol–resorcinol–formaldehyde for supercapacitors, Carbon 40 (2002) 2955–2959. https://doi.org/10.1016/S0008-6223(02)00243-9.
[14] C. T. Alviso, R. W. Pekala, J. Gross, X. Lu, R. Caps, J. Fricke, Resorcinol–formaldehyde and carbon aerogel microspheres, Micropor. Macropor. Mater 431 (1996) 521–525. https://doi.org/10.1557/PROC-431-521.
[15] J. Yamashita, T. Ojima, M. Shioya, J. Hatori, Y. Yamada, Organic and carbon aerogels derived from poly (vinyl chloride), Carbon 41 (2003) 285–294. https://doi.org/10.1016/S0008-6223(02)00289-0.
[16] R.W. Pekala, C.T. Alviso, J.D. LeMay, Organic aerogels: Microstructural dependence of mechanical properties in compression, J. Noncryst. Solids 125 (1990) 67–75. https://doi.org/10.1016/0022-3093(90)90324-F.
[17] M. Schwan, L. Ratke, Flexibilisation of resorcinol-formaldehyde aerogels, J. Mater. Chem. A 1 (2013) 13462–13468. https://doi.org/10.1039/C3TA13172F.
[18] M. Schwan, R. Tannert, L. Ratke, New soft and spongy resorcinol–formaldehyde aerogels, J. Supercrit. Fluids 107 (2016) 201–208. https://doi.org/10.1016/j.supflu.2015.09.010.
[19] G. Zhou, F. Li, H.M. Cheng, Progress in flexible lithium batteries and future prospects, Energy Environ. Sci. (2014) 1307–1338. https://doi.org/10.1039/C3EE43182G.
[20] C. Wang, G.G. Wallace, Flexible electrodes and electrolytes for energy storage, Electrochem. Acta 175 (2015) 87–95. https://doi.org/10.1016/j.electacta.2015.04.067.
[21] H. Sun, Z. Xu, C. Gao, Multifunctional, ultra-weight, synergistically assembled carbon aerogels, Adv. Mater. 25 (2013) 2554–2560. https://doi.org/10.1002/adma.201204576.
[22] Y-L. Li, I.A. Kinloch, A.H. Windle, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis, Science, 304 (2004) 276-278. https://doi.org/10.1002/adma.201204576.
[23] Y. Shen, A. Du, XL. Wu, X-G. Li, J. Shen, B. Zhou, Low-cost carbon nanotube aerogels with varying and controllable density, J. Sol Gel. Sci. Technol. 79 (2016) 76-82. https://doi.org/10.1002/adma.201204576.
[24] Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process , ACS Nano, 4 (2010) 4324-4330. https://doi.org/10.1021/nn101187z.
[25] Y. Cheng, S. Zhou, P. Hu, G. Zhao, Y. Li, X. Zhang, W. Han, Enhanced mechanical, thermal and electrical properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction, Sci. Reports 7:1439 (2017) 1-11. https://doi.org/10.1038/s41598-017-01601-x.
[26] M. Zhang, S. Fang, A.A. Zakhidov, S.B. Less, A.E. Aliev, C.D. Williams, K.R. Atkinson, R.H. Baughman, Strong, transparent, multifunctional, carbon nanotube sheets, Science 309 (2005) 1215-1219. doi:10.1126/science.1115311.
[27] Y-D. Gao, Q.Q. Kong, Z. Liu, X-M. Li, C-M. Chen, R. Cai, Graphene oxide aerogels constructed using large or small graphene oxide with different electrical, mechanical and adsorbent properties, RSC Adv. 6 (2016) 9851-9856. https://doi.org/10.1039/C5RA26922A.
[28] P. Liu, Y. Huang, Synthesis of reduced graphene oxide-conducting polymers-Co3O4 composites and theor excellent microwave absorption properties, RSC Adv. 3 (2013) 19033-19039. https://doi.org/10.1039/C3RA43073A.
[29] P.J. Pauzauskie, J.C. Crowhurst, M.A. Worsley, T.A. Laurence, A.L.D. Kilcoyne, Y. Wang, T.M. Willey, K.S.Visbeck, S.C. Fakra, W.J. Evans, J.M. Zang, Jr.J.H. Satcher, Synthesis and characterization of a nanocrystalline diamond aerogel, Proc. Natl. Acad. Sci. U.S.A. doi:10.1073/pnas.1010600108.
[30] L. Roldan, A.M. Benito, E. Garc-a-Bordeje, Self-assembled graphene aerogel and nanodiamond hybrids as high performance catalysts in oxidative propane dehydrogenation, J. Mater Chem. A 3 (2015) 24379-24388. https://doi.org/10.1039/C5TA07404E.
[31] S. Manandhar, P.B. Roder, J.L. Hanson, M. Lim, B.E. Smith, A. Mann, P.J. Pauzauskie, Rapid sol–gel synthesis of nanodiamond aerogel, J. Mater Res. 29 (2014) 2905-2911. https://doi.org/10.1557/jmr.2014.336.
[32] M. Schwan, L. Ratke, Flexibilisation of resorcinol–formaldehyde aerogels, J. Mater. Chem. A 1 (2013) 13462. https://doi.org/10.1016/j.cap.2017.03.003.
[33] R. Tannert, M. Schwan, Z. Rege, M. Eggeler, J.C.D. Silva, M. Bartsch, B. Milow, M. Itskov, L. Ratke, The three-dimensional structure of flexible resorcinol-formaldehyde aerogels investigated by means of holotomography, J. Sol-Gel Sci. Technol. 84 (2017) 391–399. https://doi.org/10.1007/s10971-017-4363-6.
[34] G. Reichenauer, Structural characterization of aerogels, in: M.A. Aegerter, N. Leventis, M.M. Koebel (Eds.), Aerogels handbook, Springer, New York, 2011, pp. 449–498.
[35] J.U. Keller, M.U. Goebel, T. Seeger, Oscillometric-gravimetric measurements of pure gas adsorption equilibria without the non-adsorption of helium hypothesis, Adsorption 23 (2017) 753–766. https://doi.org/10.1007/s10450-017-9893-2.
[36] G. Reichenauer, C. Stumpf, J. Fricke, Characterization of SiO2, Rf and carbon aerogels by dynamic gas-expansion, J. Non-Cryst. Solids 186 (1995) 334–341. https://doi.org/10.1016/0022-3093(95)00057-7.
[37] H. Lu, H. Luo, N. Leventis, Mechanical characterization of aerogels, in: M.A. Aegerter, N. Leventis, M.M. Koebel (Eds.), Aeroogels handbook, Springer, New York, 2011, pp. 499–535.
[38] J. Gross, J. Fricke, Ultrasonic velocity-measurements in silica, carbon and organic aerogels, J. Non-Cryst. Solids 145 (1992) 217–222. https://doi.org/10.1016/S0022-3093(05)80459-4.
[39] W. Behr, A. Haose, G. Reichenauer, J. Fricke, Self and transport diffusion of fluids in SiO2 aerogels studied by NMR pulsed gradient spin echo and NMR imaging, J. Non-Cryst. Solids 225 (1998) 91–95. https://doi.org/10.1016/S0022-3093(98)00012-X.
[40] W. Behr, V.C. Behr, G. Reichenauer, Self diffusion coefficients of organic solvents and their binary mixtures with CO2 in silica alcogels at pressures up to 6 MPa derived by NMR pulsed gradient spin echo, J. Supercrit. Fluids 106 (2015) 50–56. https://doi.org/10.1016/j.supflu.2015.05.024.
[41] G. Reichenauer, J. Fricke, Gas transport in sol-gel derived porous carbon aerogels, Symposium FF-Dynamics in small confining systems III 464 (1996) 345. . https://doi.org/10.1557/PROC-464-345.
[42] G. Reichenauer, Aerogels, in: A. Seidel (Ed.), Kirk-Othmer encyclopedia of chemical technology, Wiley, Hoboken, 2008.
[43] M. Schwan, L. Ratke, Flexibilisation of resorcinol–formaldehyde aerogels, J. Mater. Chem. A 1 (2013) 13462-13468. https://doi.org/10.1016/j.carbon.2020.02.073.
[44] R. Saliger, V. Bock, R. Petricevic, T. Tillotson, S. Gris, J. Fricke, Carbon aerogels from dilute catalysis of resorcinol with formaldehyde, J. Non-Cryst. Solids 221 (1997) 144–150. https://doi.org/10.1016/S0022-3093(97)00411-0.
[45] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report), Pure Appl. Chem. 87 (2015) 1051–1069. https://doi.org/10.1515/pac-2014-1117.
[46] X. Lu, O. Nilsson,, J. Fricke, R.W. Pelala, Thermal and electrical conductivity of monolithic carbon aerogels, J. Appl. Phys. 73 (1993) 581-584. https://doi.org/10.1063/1.353367.
[47] V. Bock, O. Nilsson, J. Blumm, J. Fricke, Thermal properties of carbon aerogels, J. Non-Cryst. Solids, 185 (1995) 233-239. https://doi.org/10.1016/0022-3093(95)00020-8.
[48] Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemens, Thermo- physical Properties of Matter -the TPRC data series, Thermal conductivity-nonmetallic solids, Data book, 2 (1971)..
[49] A.W.P. Fung, G.A.M. Reynolds, H.Wang, M.S. Dresslehaus, G. Dresselhaus, R.W. Pekala, Relationship between particle size and magnetoresistance in carbon aerogels prepared under different catalyst conditions, J. Non- Cryst. Solids 186 (1995) 200-208. https://doi.org/10.1016/0022-3093(95)00056-9.
[50] G.A.M. Reynolds A.W.P. Fung, H. Wang, M.S. Dresslehaus, R.W. Pekala, Morphological effects on the transport and magnetic properties of polymeric and colloidal carbon aerogels, Phys. Rev. 50 (1994) 18590-18600. doi:10.1103/physrevb.50.18590.
[51] G.M. Jenkins, K.Kawamu, Polymeric carbons – carbon fiber, glass and char, 1st ed. Cambridge University Press, Cambridge, UK (1976).
[52] R.W. Pekala, J. Fricke, in J. E. Mark (Ed.), Encyclopedia of materials: organic-inorganic hybrid materials, Elsevier, Amsterdam, 2000.
[53] R.W. Pekala, S.T. Mayer, J.F. Poco, J.L. Kaschmitter, Structure and performance of carbon aerogel electrodes, Mat. Res. SOC. Symp. Proc. MRS Warrendale, 349(1994) 79-87. https://doi.org/10.1557/PROC-349-79.
[54] H. Probstle, C. Schmitt, J. Fricke, Button cell supercapacitors with monolithic carbon aerogels, Power Sources 205 (2002) 189-194. https://doi.org/10.1016/S0378-7753(01)00938-7.
[55] Z. Yang, J. Li, X. Xu, S. Pang, C. Hu, P. Guo, S. Tang, H.-M. Cheng, Synthesis of monolithic carbon aerogels with high mechanical strength via ambient pressure drying without solvent exchange, J. Mater. Sc. Technol. 50 (2020) 66-74.https://doi.org/10.1016/j.jmst.2020.02.013.
[56] J. Gross, G.W. Scherer, C.T.Alviso, R.W. Pekala, Elastic properties of crosslinked Resorcinol-Formaldehyde gels and aerogels, J. Non-Cryst. Solids 211 (1997) 132-142. https://doi.org/10.1016/S0022-3093(96)00621-7.
[57] J. Gross, J. Fricke, Ultrasonic velocity measurements in silica, carbon and organic aerogels, J. Non-Cryst. Solids, 145 (1992) 217-222. https://doi.org/10.1016/S0022-3093(05)80459-4.
[58] X. Lu, M.C. Arduini-Schuster, J. Kuhn, O. Nilsson, J. Fricke, R.W. Pekala, Thermal conductivity of monolithic organic aerogels, Science 255 (1992) 971-972. https://doi.org/10.1126/science.255.5047.971.
[59] G. Wei, L. Wang, L. Chen, X. Du, C. Xu, X. Zhang, Analysis of gas molecule mean free path and gaseous thermal conductivity in confined nanoporous structures, Int. J. Thermophys. 36 (2015) 2953-2966.https://doi.org/10.1007/s10765-015-1942-z.
[60] A. Emmerling, J. Fricke, Scaling properties and structure of aerogels, J. Sol-Gel Sci. Technol. 8 (1997) 781–788. https://doi.org/10.1023/A:1018381923413.
[61] K. Swimm, V. Reichenauer, S. Vidi, H.-P. Ebert, Gas pressure dependence of the heat transport in porous solids with pores smaller than 10 μm, Int. J. Thermophys. 30 (2009) 1329–1342. https://doi.org/10.1007/s10765-009-0617-z.
[62] H.-P. Ebert, Thermal properties of aerogels, in: M. A. Aegerter, N. Leventis, M.M. Koebel (Eds.), Aerogels handbook, Springer, New York, 2011, pp. 537–564.
[63] F. Hemberger, S. Weis, G. Reichenaur, H.-P. Ebert, Thermal transport properties of functionally graded carbon aerogels, Int. J. Thermophys. 30 (2009) 1357–1371. https://doi.org/10.1007/s10765-009-0616-0.
[64] S.R. Meier, M.L. Korwin, C.I. Merzbacher, Carbon aerogel: a new nonreflective material for the infrared, Applied Optics 39 (2000) 3940-3944. https://doi.org/10.1364/AO.39.003940.
[65] R. Saliger, U. Fischet, C. Herta, J. Fricke, High surface area carbon aerogels for supercapacitors, J Non-Cryst Solids 225 (1998) 81-85. https://doi.org/10.1016/S0022-3093(98)00104-5.
[66] J.M. Miller, B. Dum, T.D. Tran, R.W. Pekala, Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrode,. J Electrochem. Soc. 144 (1997) 309-311. https://doi.org/10.1149/1.1838142.
[67] J.L. Kaschmitter, S.T. Mayer, R.W. Pekala, Process for producing carbon foams for energy storage devices, US Patent 5789338 assigned to Regents of the University of California (1998).
[68] S.T. Mayer, R.W. Pekala, J.L. Kashmitter, The aerocapacitor: an electrochemical double-layer energy storage device, J Electrochem. Soc. 140 (1993) 446-451. https://doi.org/10.1149/1.2221066.
[69] A. Lherbier, X. Blasé, Y.M. Niquet, F. Trizon, S. Roche, Charge transport in chemically doped 2D graphene, Phys. Rev. Lett. 101 (2008) 036808-036811. https://doi.org/10.1103/PhysRevLett.101.036808.
[70] S. Meng, E. Kaxiras, Z.Y. Zhang, Metal-diboride nanotubes as high-capacity hydrogen storage media, NanoLett. 7 (2007) 663-697. https://doi.org/10.1021/nl062692g.
[71] F.J. Maldonado-Hodar, C. Moreno-Castilla, J. Rivera-Utrilla, M.A. Ferro-Garcia, Metal-carbon aerogels as catalysts and catalyst supports, Stud. Surf. Sci. Catal. 130 (2000) 1007-1012. https://doi.org/10.1016/S0167-2991(00)80330-4.
[72] J. Kima, J.W. Gratea, P. Wang, Nanostructures for enzyme stabilization, Chem. Eng. Sci. 61 (2006) 1017-1026. https://doi.org/10.1016/j.ces.2005.05.067.
[73] N. Job, A. Thery, R. Pirard, J. Marien, L. Kocon, J. N. Rouzand, F. Beguin, J. P. Pirard, Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials, Carbon 43 (2005) 2481-2494. https://doi.org/10.1016/j.carbon.2005.04.031.
[74] D. Kalpana, K.S. Omkumar, S.S. Kumar, N.G. Renganathan, A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor,Electrochem. Acta 52 (2006) 1309-1315. https://doi.org/10.1016/j.electacta.2006.07.032.
[75] S.Q. Zhang, C.G. Huang, Z.Y. Zhou, Z. Li, Investigation of the microwave absorbing properties of carbon aerogels, Mater. Sci. Eng. B 90 (2002) 38-41. https://doi.org/10.1016/S0921-5107(01)00750-4.
[76] J. Fricke (Ed.) Proceedings of the first international symposium on aerogels (ISA 1), Springer-Verlag, Berlin, Proc. Phys. 6 (1986) 167-173. https://doi.org/10.1007/978-3-642-93313-4
[77] J. Fricke, Proceedings of the third international symposium on aerogels (ISA 3), J. Non-Cryst. Solids 145 (1992) 141-145. https://doi.org/10.1016/S0022-3093(05)80444-2.
[78] V.P. Mahida, M.P. Patel, A novel approach for the synthesis of hydrogel nanoparticles and a removal study of reactive dyes from induatrial effluent, RSC Adv. 6 (2016) 21577-21589. https://doi.org/10.1039/C5RA19441E.
[79] H. Maleki, Recent advances in aerogels for environmental remediation applications: a review, Chem. Eng. J.300 (2016) 98-118. https://doi.org/10.1016/j.cej.2016.04.098.
[80] H. Wang, Y. Gong, Y. Wang, Cellulose-based hydrophobic carbon aerogels as versatile and superior adsorbents for sewage treatment, RSC Adv.4 (2014) 45753-45759. https://doi.org/10.1039/C4RA08446B.
[81] J. Li, L. Zhang, H. Liu, A novel carbon aerogel prepared for adsorption of copper (II) ion in water, J. Porous Mater.24 (2017) 1575-1580. https://doi.org/10.1007/s10934-017-0397-y.
[82] G. Gorgolis, C. Galiotis, Graphene aerogels: a review, 2D Mater 4 (2017) 032001. https://doi.org/10.1088/2053-1583/aa7883.
[83] X. Li, J. Yu, S. Wageh, A.A. Al-Ghamdi, J. Xie, Graphene in photocatalysis: a review, Small 12 (2016) 6640-6696. doi:10.1002/smll.201600382.
[84] M. Nawaz, W. Miran, J. Jang, D.S. Lee, One-step hydrothermal synthesis of porous 3D reduced graphene oxide/TiO2 aerogel for carbamazepine photo-degradation in aqueous solution, Appl. Catal. B Environ. 203 (2017) 85-95. https://doi.org/10.1016/j.apcatb.2016.10.007.
[85] M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, Jr. J.H. Satcher, T.F. Baumann, Synthesis of graphene aerogel with high electrical conductivity, J. Am. Chem. Soc. 132 (2010) 14067-14069. https://doi.org/10.1021/ja1072299.
[86] J.P. Randall, M.A. B. Meador, S.C. Jana, Tailoring mechanical properties of aerogels for aerospace applications, ACS Appl. Mater. Interfaces 3 (2011) 613-626. https://doi.org/10.1021/am200007n.
[87] D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications, Chem. Rev.112 (2012) 6027-6053. https://doi.org/10.1021/cr300115g.