Silica Aerogel


Silica Aerogel

Nidhi Joshi, Ravi Kumar Pujala

Over the last decade, silica aerogels have drawn enormous attention in science and technology due to their porous structure, low density, lightweight, exceptional thermal insulation property, high surface area, low refractive index, and excellent optical properties over conventional materials. Numerous advanced synthetic techniques have been applied to fabricate silica aerogels for their usage in various applications which extend from chemical sensors to thermal insulation system to drug delivery. This chapter presents the synthesis, properties, as well as review of the literature on emerging developments in the area of application of silica aerogels and future prospects.

Aerogels, Silica, Porous, Insulation System, Biomedical

Published online 9/20/2020, 24 pages

Citation: Nidhi Joshi, Ravi Kumar Pujala, Silica Aerogel, Materials Research Foundations, Vol. 84, pp 109-132, 2020


Part of the book on Aerogels I

[1] J. Fricke, Aerogels‒highly tenuous solids with fascinating properties, J. Non-Cryst. Solids 100 (1988) 169‒173.
[2] C.E. Carraher Jr., General topics: Silica aerogels‒properties and uses, Polym. News 30 (2005) 386‒388.
[3] D.A. Ward, E.I. Ko, Preparing catalytic materials by the sol-gel method, Ind. Eng. Chem. Res. 34 (1995) 421‒433.
[4] V. Gibiat, O. Lefeurre, T. Woignier, J. Pelous, J. Phalippou, Acoustic properties and potential applications of silica aerogels, J. Non-Cryst. Solids 186 (1995) 244‒255.
[5] X. Du, C. Wang, T. Li, M. Chen, Studies on the performance of silica aerogel electrodes for the application of supercapacitor, Ionics 15 (2009) 561‒565.
[6] J.P. Cunha, F. Neves, M.I. Lopes, On the reconstruction of cherenkov rings from aerogels radiators, Nucl. Instrum. Meth. A 452 (2000) 401‒421.
[7] L.C. Alexa, G.M. Huber, G.J. Lolos, F. Farzanpay, F. Garibaldi, M. Jodice, A. Leone, R. Perrino, Z. Papandreou, D.L. Humphrey, P. Ulmer, R. Deleo, Empirical tests and model of a silica aerogel cherenkov detector for CEBAF, Nucl. Instrum. Meth. A 365 (1995) 299‒307.
[8] C.T. Wang, C.L. Wu, I.C. Chen, Y.H. Huang, Humidity sensors based on silica nanoparticle aerogel thin films, Sensor. Actuator. B Chem. 107 (2005) 402‒410.
[9] M. Rubin, C.M. Lampert, Transparent silica aerogels for window insulation, Sol. Energy Mater. 7 (1983) 393‒400.
[10] S.M. Jones, Aerogel: space exploration applications, J. Sol-Gel Sci. Technol. 40 (2006) 351‒357.
[11] J.P. Randall, M.A.B. Meador, S.C. Jana, Tailoring mechanical properties of aerogels for aerospace applications, ACS Appl. Mater. Interfaces, 3 (2011) 613‒626.
[12] V. Wittwer, Development of aerogel windows, J. Non-Cryst. Solids 145 (1992) 233‒236.
[13] C. Buratti, E. Moretti, Glazing systems with silica aerogel for energy savings in buildings, Appl. Energy 98 (2012) 396‒403.
[14] H. Maleki, Recent advances in aerogels for environmental remediation applications: A review, Chem. Eng. J. 300 (2016) 98‒118.
[15] I. Smirnova, J. Mamic, W. Arlt, Adsorption of drugs on silica aerogels, Langmuir, 19 (2003) 8521‒8525.
[16] P.A.S. Jorge, P. Caldas, C.C. Rosa, A.G. Oliva, J.L. Santos, Optical fiber probes for fluorescene based oxygen sensing, Sensor. Actuator. B Chem. 103 (2004) 290‒299.
[17] J.E. Amonette, J. Matyas, Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review, Micropor. Mesopor. Mat. 250 (2017) 100‒119.
[18] T. Woignier, J. Phalippou, Mechanical strength of silica aerogels, J. Non-Cryst. Solids 100 (1988) 404‒408.
[19] M.A. Aegerter, N. Leventis, M.M. Koebel, Aerogels handbook, Springer Science & Business Media, New York, 2011.
[20] G. Zhang, A. Dass, A.M. Rawashdeh, J. Thomas, J.A. Counsil, C.S. Leventis, E.F. Fabrizio, F. Ilhan, P. Vassilaras, D.A. Scheiman, L. Mccorkle, A. Palczer, J.C. Johnston, M.A. Meador, N. Leventis, Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization, J. Non-Cryst. Solids 350 (2004) 152‒164.
[21] M.A.B. Meador, S.L. Vivod, L. Mccorkle, D. Quade, R.M. Sullivan, L.J. Ghosn, N. Clark, L.A. Capadona, Reinforcing polymer cross-linked aerogels with carbon nanofibers, J. Mater. Chem. 18 (2008) 1843‒1852.
[22] S. Kabiri, D.N.H. Tran, S. Azari, D. Losic, Graphene-diatom silica aerogels for efficient removal of mercury ions from water, ACS Appl. Mater. Interfaces 22 (2015) 11815‒11823.
[23] H. Nakamura, Y. Matsui, Silica gel nanotubes obtained by the sol-gel method, J. Am. Chem. Soc. 117 (1995) 2651‒2652.
[24] Y. Huang, L. Gong, Y. Pan, C. Li, T. Zhou, X. Cheng, Facile construction of the aerogel/geopolymer composite with ultra-low thermal conductivity and high mechanical performance, RSC Adv. 8 (2018) 2350‒2356.
[25] I. Smirnova, S. Suttiruengwong, W. Arlt, Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems, J. Non-Cryst. Solids 350 (2004) 54-60.
[26] S. Standeker, Z. Novak, Z. Knez, Adsorption of toxic organic compounds from water with hydrophobic silica aerogels, J. Colloid Interface Sci. 310 (2007) 362‒368.
[27] D. Wang, E. Mclaughlin, R. Pfeffer, Y.S. Lin, Adsorption of oils from pure liquid and oil-water emulsion on hydrophobic silica aerogels, Sep. Purif. Technol. 99 (2012) 28‒35.
[28] A.V. Rao, M.M. Kulkarni, S.D. Bhagat, Transport of liquids using superhydrophobic aerogels, J. Colloid Interface Sci. 285 (2005) 413‒418.
[29] H. Maleki, L. Duraes, A. Portugal, An overview on silica aerogels synthesis and different mechanical reinforcing strategies, J. Non-Cryst. Solids 385 (2014) 55‒74.
[30] M. Stolarski, J. Walendziewski, M. Steininger, B. Pniak, Synthesis and characteristic of silica aerogels, Appl. Catal. A Gen. 177 (1999) 139‒148.
[31] A.S. Dorcheh, M.H. Abbasi, Silica aerogel: synthesis, properties and characterization, J. Mater. Process. Technol. 199 (2008) 10‒26.
[32] Z. Deng, J. Wang, J. Wei, J. Shen, B. Zhou, L. Chen, Physical properties of silica aerogels prepared with polyethoxydisiloxanes, J. Sol-Gel Sci. Technol. 19 (2000) 677‒680.
[33] A. Jitianu, A. Britchi, C. Deleanu, V. Badescu, M. Zaharescu, Comparative study of the sol-gel processes starting with different substituted Si-alkoxides, J. Non-Cryst. Solids 319 (2003) 263‒279.
[34] M.A. Einarsrud, E. Nilsen, A. Rigacci, G.M. Pajonk, S. Buathier, D. Valette, M. Durant, B. Chevalier, P. Nitz, F. Ehrburger-Dolle, Strengthening of silica gels and aerogels by washing and aging processes, J. Non-Cryst. Solids 285 (2001) 1‒7.
[35] A.V. Rao, G.M. Pajonk, S.D. Bhagat, Comparative studies on the surface chemical modification of silica aerogels based on various organosilane compounds of the type RnSiX4-n, J. Non-Cryst. Solids 350 (2004) 216‒223.
[36] R.A. Strom, Y. Masmoudi, A. Rigacci, G. Petermann, L. Gullberg, B. Chevalier, M.A. Einarsrud, Strengthening and aging of wet silica gels for up-scaling of aerogel preparation, J. Sol-Gel Sci. Technol. 41 (2007) 291-298.
[37] C.J. Brinker, G.W. Scherer, Sol-gel science: The physics and chemistry of sol-gel processing, Academic press, Boston, 1990.
[38] A.V. Rao, P.B. Wagh, Preparation and characterization of hydrophobic silica aerogels, Mater. Chem. Phys. 53 (1998) 13‒18.
[39] A.V. Rao, M. Kulkarni, G.M. Pajonk, D.P. Amalnerkar, T. Seth, Synthesis and characterization of hydrophobic silica aerogels using trimethylethoxysilane as a co-precursor, J. Sol-Gel Sci. Technol. 27 (2003) 103‒109.
[40] A.V. Rao, M.M. Kulkarni, D.P. Amalnerkar, T. Seth, Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes, Appl. Surf. Sci. 206 (2003) 262‒270.
[41] S.D. Bhagat, A.V. Rao, Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid-base) sol-gel process, Appl. Surf. Sci. 252 (2006) 4289‒4297.
[42] Y. Duan, S.C. Jana, B. Lama, M.P. Espe, Hydrophobic silica aerogels by silylation, J. Sol Gel Sci. Technol. 437 (2016) 26‒33.
[43] A.L. Mendes, R.F. Silva, L. Duraes, Advances in carbon nanostructure-silica aerogel composites: A review, J. Mater. Chem. A. 6 (2018) 1340‒1369.
[44] K. Chen, Z. Bao, A. Du, X. Zhu, J. Shen, G. Wu, Z. Zhang, B. Zhou, One-pot synthesis, characterization and properties of acid-catalyzed resorcinol/formaldehyde cross-linked silica aerogels and their conversion to hierarchical porous carbon monoliths, J. Sol-Gel Sci. Technol. 62 (2012) 294‒303.
[45] J. Huang, H. Liu, S. Chen, C. Ding, Hierarchical porous MWCNTs-silica aerogel synthesis for high-efficiency oily water treatment, J. Environ. Chem. Eng. 4 (2016) 3274‒3282.
[46] S. Dervin, Y. Lang, T. Perova, S.H. Hinder, S.C. Pillai, Graphene oxide reinforced high surface area silica aerogels, J. Non-Cryst. Solids 465 (2017) 31‒38.
[47] J.C.H. Wong, H. Kaymak, P. Tingaut, S. Brunner, M.M. Koebel, Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites, Micropor. Mesopor. Mat. 217 (2015) 150‒158.
[48] J. Feng, D. Le, S.T. Nguyen, V.T. Nien, D. Jewell, H.M. Duong, Silica-cellulose hybrid aerogels for thermal and acoustic insulation applications, Colloids Surf. 506 (2016) 298‒305.
[49] M.R. Ayers, A.J. Hunt, Synthesis and properties of chitosan-silica hybrid aerogels, J. Non-Cryst. Solids 285 (2001) 123‒127.
[50] A. Karout, P. Buisson, A. Perrard, A.C. Pierre, Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fiber felts, J. Sol-Gel Sci. Techn. 36 (2005) 163‒171.
[51] Z.T. Mazraeh-shahi, A.M. Shoushtari, A.M. Bahramian, M. Abdouss, Synthesis, structure and thermal protective behavior of silica aerogel/PET nonwoven fiber composite, Fibers Polym. 15 (2014) 2154‒2159.
[52] Z. Li, L. Gong, X. Cheng, S. He, C. Li, H. Zhang, Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior, Mater. Des. 99 (2016) 349‒355.
[53] M.A.B. Meador, A.S. Weber, A. Hindi, M. Naumenko, L. McCorkle, D. Quade, S.L. Vivod, G.L. Gould, S. White, K. Deshpande, Structure-property relationships in porous 3D nanostructures: Epoxy-cross-linked silica aerogels produced using ethanol as the solvent, ACS Appl. Mater. Interfaces 4 (2009) 894‒906.
[54] K. Chang, Y. Wang, K. Peng, H. Tsai, J. Chen, C. Huang, K. Ho, W. Lien, Preparation of silica aerogel/polyurethane composites for the application of thermal insulation, J. Polym. Res. 21 (2014) 338‒343.
[55] K. Khezri, H. Mahdavi, Polystyrene-silica aerogel nanocomposites by in situ simultaneous reverse and normal initiation technique for ATRP, Micropor. Mesopor. Mat. 228 (2016) 132‒140.
[56] A.K. Gougas, D. Ilie, S. Ilie, V. Pojidaev, Behavior of hydrophobic aerogel used as a Cherenkov medium, Nucl. Instrum. Meth. A 421 (1999) 249‒255.
[57] A.V. Rao, G. Pajonk, D. Haranath, Synthesis of hydrophobic aerogels for transparent window insulation applications, Mater. Sci. Technol. 17 (2001) 343‒348.
[58] D. Ge, L. Yang, Y. Li, J. Zhao, Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite, J. Non-Cryst. Solids 355 (2009) 2610‒2615.
[59] M.H, Sorour, H.A. Hani, G.A. Al-Bazedi, A.M. El-Rafei, Hydrophobic silica aerogels for oil spills clean-up, synthesis, characterization and preliminary performance evaluation, J. Porous Mater. 23 (2016) 1410‒1409.
[60] L.W. Hrubesh, P.R. Coronado, J.H. Satcher Jr., Solvent removal from water with hydrophobic aerogels, J. Non-Cryst. Solids 285 (2001) 328‒332.
[61] U. Guenther, I. Smirnova, R.H.H. Neubert, Hydrophobic silica aerogels as dermal drug delivery systems- Dithranol as a model drug, Eur. J. Pharm. Biopharm. 69 (2008) 935‒942.
[62] J. Stergar, U. Maver, Review of aerogel-based materials in biomedical applications, J. Sol-Gel Sci. Technol. 77 (2016) 738‒752.
[63] M. Ishino, J. Chiba, H. Enyo, H. Funahashi, A. Ichikawa, M. Ieiri, H. Kanda, A. Masaike, S. Mihara, T. Miyashita, T. Murakami, A. Nakamura, M. Naruki, R. Muto, K. Ozawa, H.D. Sato, M. Sekimoto, T. Tabaru, H. Yokogawa, Mass production of hydrophobic silica aerogel and readout optics of Cherenkov light, Nucl. Instrum. Meth. A 457 (2001) 581‒587.
[64] M. Tabata, I. Adachi, H. Kawai, T. Sumiyoshi, H. Yokogawa, Hydrophobic silica aerogel production at KEK, Nucl. Instrum. Meth. A 668 (2012) 64‒70.
[65] J.E. Fesmire, Aerogel insulation systems for space launch applications, Cryogenics 46 (2006) 111‒117.
[66] K. Maghsoudi, S. Motahari, Mechanical, thermal, and hydrophobic properties of silica aerogelepoxy composites, Appl. Polym. Sci. 135 (2017) 45706‒45710.
[67] P.B. Wagh, S.V. Ingale, Comparison of some physic-chemical properties of hydrophilic and hydrophobic silica aerogels, Ceram. Int. 28 (2002) 43-50.
[68] X. Li, D. Reinhoudt, M. Crego-Calama, What do we need for a superhydrophobic surface?Areview on the recent progress in the preparation of superhydrophobic surfaces, Chem. Soc. Rev. 36 (2009) 1350–1368.
[69] A.V. Rao, M.M. Kulkarni, S.D. Bhagat, Transport of liquids using hydrophobic aerogels. J. Colloid Interface Sci. 285 (2005) 413–418.
[70] A.A. Pisal, A.V. Rao, Development of hydrophobic and optically transparent monolithic silica aerogels for window panel applications. J. Porous Mater. 24 (2017) 685‒695.
[71] K.H. Lee, S.Y. Kim, K.P. Yoo, Low density, hydrophobic aerogels, J. Non-Cryst. Solids 186 (1995) 18‒22.
[72] A.J. Hunt, Light scattering for aerogel characterization, J. Non-Cryst. Solids 225 (1998) 303‒306.
[73] A. Hasmy, E. Anglaret, M. Foret, J. Pelous, R. Jullien, Small-angle neutron scattering investigation of long-range correlations in silica aerogels: simulations and experiments, Phys. Rev. B 50 (1994) 6006‒6009.
[74] G. Qin, Y. Yao, W. Wei, T. Zhang, Preparation of hydrophobic granular silica aerogels and adsorption of phenol from water, Appl. Surf. Sci. 280 (2013) 806‒811.
[75] M. Reim, G. Reichenauer, W. Korner, J. Manara, M. Arduini-Schuster, A. Beck, J. Fricke, Silica-aerogel granulate-Structural, optical and thermal properties, J. Non-Cryst. Solids 350 (2004) 358‒363.
[76] M. Reim, W. Korner, J. Manara, S. Korder, M. Arduini-Schuster, F.J. Potter, Silica aerogel granulate material for thermal insulation and daylighting, Sol. Energy 79 (2005) 131‒139.
[77] L.W. Hrubesh, P.R. Coronado, J.H. Satcher Jr, Solvent removal from water with hydrophobic aerogels, J. Non-Cryst. Solids 285 (2001) 328‒332.
[78] Y. Li, Y. Liu, M. Wang, X. Xu, T. Lu, C.Q. Sun, L. Pan, Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization, Carbon 130 (2018) 377-383.
[79] S.A. Glauser, H. Lee, Luminescent studies of fluorescent chromophore-doped silica aerogels for flat panel display applications, MRS Online Proceedings Library A 471, 1997.
[80] P.C. Thapliyal, K. Singh, Aerogels as promising thermal insulating materials: An overview, Journal of materials (2014) 1‒10.