Hybrid Silica Aerogel

$30.00

Hybrid Silica Aerogel

Matheus Costa Cichero, João Henrique Zimnoch Dos Santos

Silica aerogel is one of most promising material in many application segments, such as insulator, adsorbents, catalyst, batteries, sensing and drug delivery devices and many more. All due its impressive properties as low thermal conductivity, low density and high surface area. In spite of the potential, silica aerogel is associated with some drawbacks as cost, time-consuming process and especially the inherent brittleness that limits its full applicability. To overpass these disadvantages, one of the most common procedures is to incorporate an organic compound to the silica backbone – enhancing its mechanical strength and potentially decreasing processing time – and thus creating a hybrid silica aerogel. This chapter presents an overview of the recent strategies adopted in the literature that utilizes polymers, biomolecules and graphene when composing hybrid silica aerogel.

Keywords
Hybrid Silica Aerogel, Silica, Polymer, Biomolecule, Graphene

Published online 9/20/2020, 26 pages

Citation: Matheus Costa Cichero, João Henrique Zimnoch Dos Santos, Hybrid Silica Aerogel, Materials Research Foundations, Vol. 84, pp 83-108, 2020

DOI: https://doi.org/10.21741/9781644900994-3

Part of the book on Aerogels I

References
[1] J.V. Alemán, A.V. Chadwick, J.He, M.Hess, K.Horie, R.G. Jones, P.Kratochvíl, I. Meisel, I. Mita, G. Moad, S. Penczek and R.F.T.Stepto, Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007), Pure Appl. Chem., 79(2007) 1801-1829. doi:10.1351/pac200779101801.
[2] S.S. Kistler, Coherent expanded aerogels and jellies, Nature. 127 (1931) 741. doi:10.1038/127741a0.
[3] S.S. Kistler, Coherent expanded-aerogels, J. Phys. Chem. 36 (1932) 52–64. doi:10.1021/j150331a003.
[4] U. Schubert, Chemistry and fundamentals of the Sol–Gel process, in: U.Schubert, and N. Hüsing,Synthesis of Inorganic Materials, third ed., VCH Wiley Verlag GmbH, Weinheim, 2012, pp.3–27.
[5] A. Hulanicki, S. Glab F.Ingman, Chemical sensors: definitions and classification, PureAppl. Chem. 63 (1991) 1247-1250, doi:10.1351/pac199163091247
[6] T. Pirzada, Z. Ashrafi, W. Xie, S.A. Khan, Cellulose silica hybrid nanofiber aerogels: from sol–gel electrospun nanofibers to multifunctional aerogels. Adv. Funct. Mater. 2020, 30, 1907359.doi:10.1002/adfm.201907359
[7] X. Zou, K. Liao, D. Wang, Q. Lu, C. Zhou, P. He, R. Ran, W. Zhou, W. Jin, Z. Shao, Water-proof, electrolyte-nonvolatile, and flexible Li-Air batteries via O2-Permeable silica-aerogel-reinforced polydimethylsiloxane external membranes, Energy Storage Mater. 27 (2020) 297–306. doi:10.1016/j.ensm.2020.02.014.
[8] A.S. Harper-Leatherman, E.R. Pacer, N.D. Kosciuszek, Encapsulating cytochrome c in silica aerogel nanoarchitectures without metal nanoparticles while retaining gas-phasebioactivity, J.Vis. Exp. (2016) e53802–e53802. doi:10.3791/53802.
[9] W.-J. Yang, A.C.Y. Yuen, A. Li, B. Lin, T.B.Y. Chen, W. Yang, H.D. Lu, G.H. Yeoh, Recent progress in bio-based aerogel absorbents for oil/water separation, Cellulose. 26 (2019) 6449–6476. doi:10.1007/s10570-019-02559-x.
[10] S. Salimian, A. Zadhoush, M. Naeimirad, R. Kotek, S. Ramakrishna, A review on aerogel: 3D nanoporous structured fillers in polymer-based nanocomposites, Polym. Compos. 39 (2018) 3383–3408. doi:10.1002/pc.24412.
[11] A.C. Pierre, History of aerogels, in: M. Aegerter, N. Leventis, M. Koebel (Eds.), Aerogels handbook. Advances in sol-gel derived materials and technologies. Springer, New York, 2011, pp. 3-18.
[12] A.C. Pierre, A. Rigacci, SiO2 aerogels, in: M. Aegerter, N. Leventis, M. Koebel (Eds.), Aerogels handbook. Advances in sol-gel derived materials and technologies. Springer, New York, 2011, pp. 21-45.
[13] K.Kanamori, Hybrid aerogels, in: L. Klein, M. Aparicio, A. Jitianu (Eds.), Handbook of sol-gel science and technology. Springer, Cham, 2016, pp. 3317-3338.
[14] A.M. Anderson, M.K.Carroll, Hydrophobic silica aerogels: review of synthesis, properties and applications, in: M. Aegerter, N. Leventis, M. Koebel (Eds.), Aerogels handbook. Advances in sol-gel derived materials and technologies. Springer, New York,2011, pp. 47-77.
[15] N. Leventis, H. Lu, Polymer-crosslinked aerogels, in: M. Aegerter, N. Leventis, M. Koebel (Eds.), Aerogels handbook. Advances in sol-gel derived materials and technologies. Springer, New York, 2011, pp. 251-285.
[16] S.S. Prakash, C.J. Brinker, A.J. Hurd, S.M. Rao, Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage, Nature 374 (1995) 439–443. doi:10.1038/374439a0.
[17] J. Stergar, U. Maver, Review of aerogel-based materials in biomedical applications, J. Sol-Gel Sci. Technol. 77 (2016) 738–752. doi:10.1007/s10971-016-3968-5.
[18] C. Sanchez, F. Ribot, B. Lebeau, Molecular design of hybrid organic-inorganic nanocomposites synthesized via sol-gel chemistry, J. Mater. Chem. 9 (1999) 35–44. doi:10.1039/A805538F.
[19] Y. Hu, J.D. Mackenzie, Rubber-like elasticity of organically modified silicates, J. Mater. Sci. 27 (1992) 4415–4420. doi:10.1007/BF00541574.
[20] J.L. Gurav, I.K. Jung, H.H. Park, E.S. Kang, D.Y. Nadargi, Silica aerogel: synthesis and applications, J. Nanomater. 2010 (2010) 409310. doi:10.1155/2010/409310.
[21] A. Soleimani Dorcheh, M.H. Abbasi, Silica aerogel; synthesis, properties and characterization, J. Mater. Process. Technol. 199 (2008) 10–26. doi:10.1016/j.jmatprotec.2007.10.060.
[22] D. Li, C. Zhang, Q. Li, C. Liu, M. Arıcı, Y. Wu, Thermal performance evaluation of glass window combining silica aerogels and phase change materials for cold climate of China, Appl. Therm. Eng. 165 (2020) 114547. doi:10.1016/j.applthermaleng.2019.114547.
[23] S. Karami, S. Motahari, M. Pishvaei, N. Eskandari, Improvement of thermal properties of pigmented acrylic resin using silica aerogel, J. Appl. Polym. Sci. 135 (2018) 45640. doi:10.1002/app.45640.
[24] D. Li, V. Rohani, F. Fabry, A. Parakkulam Ramaswamy, M. Sennour, L. Fulcheri, Direct conversion of CO2 and CH4 into liquid chemicals by plasma-catalysis, Appl. Catal. B Environ. 261 (2020) 118228. doi:10.1016/j.apcatb.2019.118228.
[25] X.-D. Gao, Y.D. Huang, T.T. Zhang, Y.Q. Wu, X.M. Li, Amphiphilic SiO2 hybrid aerogel: an effective absorbent for emulsified wastewater, J. Mater. Chem. A. 5 (2017) 12856–12862. doi:10.1039/C7TA02196H.
[26] A. Najafidoust, M. Haghighi, E. Abbasi Asl, H. Bananifard, Sono-solvothermal design of nanostructured flowerlike BiOI photocatalyst over silica-aerogel with enhanced solar-light-driven property for degradation of organic dyes, Sep. Purif. Technol. 221 (2019) 101–113. doi:10.1016/j.seppur.2019.03.075.
[27] J.E. Amonette, J. Matyáš, Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: a review, Micropor. Mesopor. Mater. 250 (2017) 100–119. doi:10.1016/j.micromeso.2017.04.055.
[28] N. Ganonyan, N. Benmelech, G. Bar, R. Gvishi, D. Avnir, Entrapment of enzymes in silica aerogels, Mater. Today. 33 (2020) 24–35. doi:10.1016/j.mattod.2019.09.021.
[29] N. Bheekhun, A.R. Abu Talib, M.R. Hassan, Aerogels in aerospace: an overview, Adv. Mater. Sci. Eng. 2013 (2013) 406065. doi:10.1155/2013/406065.
[30] A. Percot, E.L. Zins, A. Al Araji, A.T. Ngo, J. Vergne, M. Tabata, A. Yamagishi, M.C. Maurel, Detection of biological bricks in space. The case of adenine in silica aerogel, Life 9 (2019) 82. doi:10.3390/life9040082.
[31] L.W. Hrubesh, Aerogel applications, J. Non. Cryst. Solids. 225 (1998) 335–342. doi:10.1016/S0022-3093(98)00135-5.
[32] M.A. Hasan, R. Sangashetty, A.C.M. Esther, S.B. Patil, B.N. Sherikar, A. Dey, Prospect of thermal insulation by silica aerogel: a brief review, J. Inst. Eng. Ser. D. 98 (2017) 297–304. doi:10.1007/s40033-017-0136-1.
[33] G. Jia, Z. Li, P. Liu, Q. Jing, Applications of aerogel in cement-based thermal insulation materials: an overview, Mag. Concr. Res. 70 (2018) 822–837. doi:10.1680/jmacr.17.00234.
[34] S. Karamikamkar, H.E. Naguib, C.B. Park, Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: a review, Adv. Colloid Interface Sci. 276 (2020) 102101. doi:10.1016/j.cis.2020.102101.
[35] C.J. Brinker, G.W. Scherer, Hydrolysis and condensation II: Silicates, in: C.J. Brinker, G.W.Scherer (Eds.), Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, San Diego, 1990: pp. 96–233. https://doi.org/10.1016/B978-0-08-057103-4.50008-8
[36] C.J. Brinker, G.W. Scherer, Hydrolysis and condensation I: Nonsilicates, in: C.J. Brinker, G.W.Scherer (Eds.), Sol-gel science: the physics and chemistry of sol-gel processing.Academic Press, San Diego, 1990: pp. 20–95. https://doi.org/10.1016/B978-0-08-057103-4.50007-6
[37] S. Rezaei, A.M. Zolali, A. Jalali, C.B. Park, Novel and simple design of nanostructured, super-insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor, J. Colloid Interface Sci. 561 (2020) 890–901. https://doi.org/10.1016/j.jcis.2019.11.072.
[38] M. de F. Júlio, L.M. Ilharco, Hydrophobic granular silica-based aerogels obtained from ambient pressure monoliths, Materialia. 9 (2020) 100527. https://doi.org/10.1016/j.mtla.2019.100527.
[39] H. Choi, V.G. Parale, T. Kim, Y.S. Choi, J. Tae, H.-H. Park, Structural and mechanical properties of hybrid silica aerogel formed using triethoxy(1-phenylethenyl)silane, Microporous Mesoporous Mater. 298 (2020) 110092. https://doi.org/10.1016/j.micromeso.2020.110092.
[40] L. Wang, G. Song, X. Qiao, G. Xiong, Y. Liu, J. Zhang, R. Guo, G. Chen, Z. Zhou, Q. Li, Facile Fabrication of flexible, robust, and superhydrophobic hybrid aerogel, Langmuir. 35 (2019) 8692–8698. https://doi.org/10.1021/acs.langmuir.9b00521.
[41] G. Horvat, M. Pantić, Ž. Knez, Z. Novak, Preparation and characterization of polysaccharide – silica hybrid aerogels, Sci. Rep. 9 (2019) 16492. https://doi.org/10.1038/s41598-019-52974-0.
[42] Z. Shariatinia, A. Esmaeilzadeh, Hybrid silica aerogel nanocomposite adsorbents designed for Cd(II) removal from aqueous solution, Water Environ. Res. 91 (2019) 1624–1637. https://doi.org/10.1002/wer.1162.
[43] P. Herman, I. Fábián, J. Kalmár, Mesoporous Silica–gelatin aerogels for the selective adsorption of aqueous Hg(II), ACS Appl. Nano Mater. 3 (2020) 195–206. https://doi.org/10.1021/acsanm.9b01903.
[44] S. Karamikamkar, A. Abidli, E. Behzadfar, S. Rezaei, H.E. Naguib, C.B. Park, The effect of graphene-nanoplatelets on gelation and structural integrity of a polyvinyltrimethoxysilane-based aerogel, RSC Adv. 9 (2019) 11503–11520. https://doi.org/10.1039/C9RA00994A.
[45] X. Zhao, Y. Zhu, Y. Wang, Z. Li, Y. Sun, S. Zhao, X. Wu, D. Cao, Hydrophobic, blocky silica-reduced graphene oxide hybrid sponges as highly efficient and recyclable sorbents, Appl. Surf. Sci. 486 (2019) 303–311. https://doi.org/10.1016/j.apsusc.2019.05.017.
[46] E. Tiryaki, Y. Başaran Elalmış, B. Karakuzu İkizler, S. Yücel, Novel organic/inorganic hybrid nanoparticles as enzyme-triggered drug delivery systems: dextran and dextran aldehyde coated silica aerogels, J. Drug Deliv. Sci. Technol. 56 (2020) 101517. https://doi.org/10.1016/j.jddst.2020.101517.
[47] N. Leventis, A. Sadekar, N. Chandrasekaran, C. Sotiriou-Leventis, Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3D silica networks, Chem. Mater. 22 (2010) 2790–2803. https://doi.org/10.1021/cm903662a.
[48] G. Churu, B. Zupančič, D. Mohite, C. Wisner, H. Luo, I. Emri, C. Sotiriou-Leventis, N. Leventis, H. Lu, Synthesis and mechanical characterization of mechanically strong, polyurea-crosslinked, ordered mesoporous silica aerogels, J. Sol-Gel Sci. Technol. 75 (2015) 98–123. https://doi.org/10.1007/s10971-015-3681-9.
[49] A. Bang, C. Buback, C. Sotiriou-Leventis, N. Leventis, Flexible aerogels from hyperbranched polyurethanes: probing the role of molecular rigidity with poly(urethane acrylates) versus poly(urethane norbornenes), Chem. Mater. 26 (2014) 6979–6993. https://doi.org/10.1021/cm5031443.
[50] P. Paraskevopoulou, D. Chriti, G. Raptopoulos, C.G. Anyfantis, Synthetic polymer aerogels in particulate form, Materials . 12 (2019). https://doi.org/10.3390/ma12091543.
[51] G.D.Sorarù, E.Zera, R.Campostrini, Aerogels from preceramic polymers, in: L.Klein, M.Aparicio, A.Jitianu (Eds.), Handbook of sol-gel science and technology. Springer, Cham, 2018, pp. 1013-1037.
[52] H.K. Jung, B.M. Jung, U.H. Choi, Synthesis and characterization of silica aerogel-polymer hybrid materials, Mol. Cryst. Liq. Cryst. 687 (2019) 97–104. https://doi.org/10.1080/15421406.2019.1651058.
[53] D. Lasrado, S. Ahankari, K. Kar, Nanocellulose-based polymer composites for energy applications-A review, J. Appl. Polym. Sci. n/a (2020) 48959. https://doi.org/10.1002/app.48959.
[54] H. Kargarzadeh, J. Huang, N. Lin, I. Ahmad, M. Mariano, A. Dufresne, S. Thomas, A. Gałęski, Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites, Prog. Polym. Sci. 87 (2018) 197–227. https://doi.org/10.1016/j.progpolymsci.2018.07.008.
[55] L.Y. Long, Y.X. Weng, Y.Z. Wang, Cellulose aerogels: Synthesis, applications, and prospects, Polym. 10 (2018). https://doi.org/10.3390/polym10060623.
[56] M. Sánchez-Soto, L. Wang, T. Abt, L.G. De La Cruz, D.A. Schiraldi, Thermal, electrical, insulation and fire resistance properties of polysaccharide and protein-based aerogels, in: S.Thomas, L. A. Pothan, R. Mavelil-Sam (Eds.), Biobased aerogels: Polysaccharide and protein-based Materials, The Royal Society of Chemistry, 2018: pp. 158–176. https://doi.org/10.1039/9781782629979-00158.
[57] K. Ganesan, T. Budtova, L. Ratke, P. Gurikov, V. Baudron, I. Preibisch, P. Niemeyer, I. Smirnova, B. Milow, Review on the production of polysaccharide aerogel particles, Materials 11 (2018). https://doi.org/10.3390/ma11112144.
[58] M.A. Worsley, T.F. Baumann, Carbon Aerogels, in: L. Klein, M. Aparicio, A. Jitianu (Eds.), Handbook of sol-gel science and technology: Processing, characterization and applications. Springer International Publishing, Cham, 2018: pp. 3339–3374. https://doi.org/10.1007/978-3-319-32101-1_90.
[59] S. Long, H. Wang, K. He, C. Zhou, G. Zeng, Y. Lu, M. Cheng, B. Song, Y. Yang, Z. Wang, X. Luo, Q. Xie, 3D graphene aerogel based photocatalysts: Synthesized, properties, and applications, Coll. Surf. A Physicochem. Eng. Asp. 594 (2020) 124666. https://doi.org/10.1016/j.colsurfa.2020.124666.
[60] J.-H. Lee, S.J. Park, Recent advances in preparations and applications of carbon aerogels: A review, Carbon N. Y. 163 (2020) 1–18. https://doi.org/10.1016/ j.carbon.2020.02.073.
[61] A. Lamy-Mendes, R.F. Silva, L. Durães, Advances in carbon nanostructure–silica aerogel composites: a review, J. Mater. Chem. A. 6 (2018) 1340–1369. https://doi.org/10.1039/C7TA08959G.
[62] M.A.B. Meador, E.F. Fabrizio, F. Ilhan, A. Dass, G. Zhang, P. Vassilaras, J.C. Johnston, N. Leventis, Cross-linking amine-modified silica aerogels with epoxies:  mechanically strong lightweight porous materials, Chem. Mater. 17 (2005) 1085–1098. https://doi.org/10.1021/cm048063u.
[63] L.A. Capadona, M.A.B. Meador, A. Alunni, E.F. Fabrizio, P. Vassilaras, N. Leventis, Flexible, low-density polymer crosslinked silica aerogels, Polymer. 47 (2006) 5754–5761. https://doi.org/10.1016/j.polymer.2006.05.073.
[64] D.J. Boday, P.Y. Keng, B. Muriithi, J. Pyun, D.A. Loy, Mechanically reinforced silica aerogel nanocomposites via surface initiated atom transfer radical polymerizations, J. Mater. Chem. 20 (2010) 6863–6865. https://doi.org/10.1039/C0JM01448F.
[65] S. Rezaei, A. Jalali, A.M. Zolali, M. Alshrah, S. Karamikamkar, C.B. Park, Robust, ultra-insulative and transparent polyethylene-based hybrid silica aerogel with a novel non-particulate structure, J. Colloid Interface Sci. 548 (2019) 206–216. https://doi.org/10.1016/j.jcis.2019.04.028.
[66] M.E. Li, S.X. Wang, L.X. Han, W.J. Yuan, J.-B. Cheng, A.N. Zhang, H.-B. Zhao, Y.-Z. Wang, Hierarchically porous SiO2/polyurethane foam composites towards excellent thermal insulating, flame-retardant and smoke-suppressant performances, J. Hazard. Mater. 375 (2019) 61–69. https://doi.org/10.1016/j.jhazmat.2019.04.065.
[67] S. Ookuma, K. Igarashi, M. Hara, K. Aso, H. Yoshidome, H. Nakayama, K. Suzuki, K. Nakajima, Porous ion-exchanged fine cellulose particles, method for production thereof, and affinity carrier, US5196527A, 4 May 1988.
[68] R. Mavelil-Sam, L.A. Pothan, S. Thomas,Polysaccharide and protein based aerogels: An introductory outlook, in: S. Thomas, L. A. Pothan, R. Mavelil-Sam (Eds.), Biobased aerogels: Polysaccharide and Protein-based Materials, The Royal Society of Chemistry, 2018: pp. 1–8. https://doi.org/10.1039/9781782629979-00001.
[69] R. Wang, X.-G. Ren, Z. Yan, L.J. Jiang, W.E.I. Sha, G.C. Shan, Graphene based functional devices: a short review, Front. Phys. 14 (2018) 13603. https://doi.org/10.1007/s11467-018-0859-y.
[70] E. Barrios, D. Fox, Y.Y. Li Sip, R. Catarata, J.E. Calderon, N. Azim, S. Afrin, Z. Zhang, L. Zhai, Nanomaterials in advanced, high-performance aerogel composites: a review, Polymers. 11 (2019) 726. https://doi.org/10.3390/polym11040726.
[71] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80 (1958) 1339. https://doi.org/10.1021/ja01539a017.
[72] W. Wang, J. Motuzas, X.S. Zhao, J.C. Diniz da Costa, 2D/3D assemblies of amine-functionalized graphene silica (templated) aerogel for enhanced CO2 sorption, ACS Appl. Mater. Interfaces. 11 (2019) 30391–30400. https://doi.org/10.1021/acsami.9b07192.