Porous Aerogels


Porous Aerogels

Samad Yaseen, Ata-ur-Rehman, Ghulam Ali, Ghulam Shabbir, Syed Mustansar Abbas

The current chapter reviews porous aerogels that have been more utilized including silicate and non-silicate (ZrO2 and TiO2) aerogels. In addition, the recently focused aerogels like composite/hybrid aerogels, polymeric, carbon-based (mostly CNTs and graphene-based) and biogels have been summarized. The metal chalcogenide aerogels display unique properties, unlike the conventional oxide-based aerogels. The diverse utility of these porous aerogels encompasses environmental, biomedical, catalytic and advanced applications especially graphene and CNTs based aerogels have applications in modern devices primarily due to surpassed surface area, porosity and structural adaptability.

Xerogel, Hybrid, Chalcogenide, Graphene, Biogels, Tissue Engineering, Surface Area

Published online 9/20/2020, 49 pages

Citation: Samad Yaseen, Ata-ur-Rehman, Ghulam Ali, Ghulam Shabbir, Syed Mustansar Abbas, Porous Aerogels, Materials Research Foundations, Vol. 84, pp 34-82, 2020

DOI: https://doi.org/10.21741/9781644900994-2

Part of the book on Aerogels I

[1] S.S. Kistler, Coherent expanded-aerogels, J. Phys. Chem. 36 (2002) 52-64. https://doi.org/10.1021/j150331a003
[2] C.J. Brinker, G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing, Academic press, California, 2013
[3] F. Broecker, W. Heckmann, F. Fischer, M. Mielke, J. Schroeder, A. Stange, Structural analysis of granular silica aerogels, in: J. Fricke (Ed.) Aerogels, Springer, Berlin, Heidelberg, 1986, pp. 160-166. https://doi.org/10.1007/978-3-642-93313-4_21
[4] S.W. Hwang, H.H. Jung, S.H. Hyun, Y.S. Ahn, Effective preparation of crack-free silica aerogels via ambient drying, J. Sol-Gel Sci.Technol. 41 (2007) 139-146. https://doi.org/10.1007/s10971-006-0513-y
[5] C. Lee, G. Kim, S. Hyun, Synthesis of silica aerogels from waterglass via new modified ambient drying, J.Mater.Sci. 37 (2002) 2237-2241. https://doi.org/10.1023/A:1015309014546
[6] K. Nakanishi, H. Minakuchi, N. Soga, N. Tanaka, Structure design of double-pore silica and its application to HPLC, J. Sol-Gel Sci. Technol. 13 (1998) 163-169. https://doi.org/10.1023/A:1008644514849
[7] L. Pauling, The Nature of the Chemical Bond, Cornell university press Ithaca, Newyork, 1960
[8] R. Mozzi, B. Warren, The structure of vitreous silica, J. Appl. Crystallogr. 2 (1969) 164-172. https://doi.org/10.1107/S0021889869006868
[9] A. Ayral, J. Phalippou, T. Woignier, Skeletal density of silica aerogels determined by helium pycnometry, J. Mater. Sci. 27 (1992) 1166-1170. https://doi.org/10.1007/BF01142014
[10] L. Kocon, F. Despetis, J. Phalippou, Ultralow density silica aerogels by alcohol supercritical drying, J. Non-Cryst. Solids. 225 (1998) 96-100. https://doi.org/10.1016/S0022-3093(98)00322-6
[11] G. Reichenauer, Thermal aging of silica gels in water, J. Non-Cryst. Solids. 350 (2004) 189-195. https://doi.org/10.1016/j.jnoncrysol.2004.07.073
[12] B. Zhou, J. Shen, Y. Wu, G. Wu, X. Ni, Hydrophobic silica aerogels derived from polyethoxydisiloxane and perfluoroalkylsilane, Mater. Sci. Eng., C. 27 (2007) 1291-1294. https://doi.org/10.1016/j.msec.2006.06.032
[13] B. Yoldas, M. Annen, J. Bostaph, Chemical engineering of aerogel morphology formed under nonsupercritical conditions for thermal insulation, Chem. Mater. 12 (2000) 2475-2484. https://doi.org/10.1021/cm9903428
[14] K. Duer, S. Svendsen, Monolithic silica aerogel in superinsulating glazings, Sol. Energy. 63 (1998) 259-267. https://doi.org/10.1016/S0038-092X(98)00063-2
[15] N. Hüsing, U. Schubert, Aerogels-airy materials: chemistry, structure, and properties, Ang. Chem. Int. Ed. 37 (1998) 22-45. https://doi.org//10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I
[16] A. Charlton, I. McKinnie, M. Meneses-Nava, T. King, A tunable visible solid state laser, J. Mod. Opt. 39 (1992) 1517-1523. https://doi.org/10.1080/09500349214551531
[17] S. Jun, Z. Lei, W. Jue, W. Xiang, L. Yufen, Preparation of fullerence doped silica aerogels and the study of photoluminescence-properties, J. Inorg. Mater.11 (1997) 371-374
[18] J. Shen, J. Wang, B. Zhou, Z. Deng, Z. Weng, L. Zhu, L. Zhao, Y. Li, Photoluminescence of fullerenes doped in silica aerogels, J. Non-Cryst. Solids. 225 (1998) 315-318. https://doi.org/10.1016/S0022-3093(98)00050-7
[19] N. Leventis, I.A. Elder, D.R. Rolison, M.L. Anderson, C.I. Merzbacher, Durable modification of silica aerogel monoliths with fluorescent 2, 7-diazapyrenium moieties. Sensing oxygen near the speed of open-air diffusion, Chem. Mater. 11 (1999) 2837-2845. https://doi.org/10.1021/cm9901966
[20] D. Feldman, Quasi-long-range order in nematics confined in random porous media, Phys.Rev.Lett. 84 (2000) 4886. https://doi.org/10.1103/PhysRevLett.84.4886
[21] M. Power, B. Hosticka, E. Black, C. Daitch, P. Norris, Aerogels as biosensors: viral particle detection by bacteria immobilized on large pore aerogel, J. Non-Cryst. Solids. 285 (2001) 303-308. https://doi.org/10.1016/S0022-3093(01)00471-9
[22] D. L. Bernik, Silicon based materials for drug delivery devices and implants, Recent patents on nanotechnology, 1 (2007) 186-192. https://doi.org/10.2174/187221007782360402
[23] A. Buzykaev, A. Danilyuk, S. Ganzhur, E. Kravchenko, A. Onuchin, Measurement of optical parameters of aerogel, nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Res., Sect. A. 433 (1999) 396-400. https://doi.org/10.1016/S0168-9002(99)00325-3
[24] T. Woignier, J. Reynes, J. Phalippou, Sintering of silica aerogels for glass synthesis: application to nuclear waste containment. In Aerogels Handbook, Springer, New York, 2011, pp. 665-680. https://doi.org/10.1007/978-1-4419-7589-8_29
[25] I. Mejri, M. Younes, A. Ghorbel, P. Eloy, E. M. Gaigneaux, Comparative study of the sulfur loss in the xerogel and aerogel sulfated zirconia calcined at different temperatures: effect on n-hexane isomerization, in Studies in surface science and catalysis, Elsevier. 2006, pp. 953-960. https://doi.org/10.1016/S0167-2991(06)81002-5
[26] D.A. Ward, E.I. Ko, One-step synthesis and characterization of zirconia-sulfate aerogels as solid superacids, J. Catal. 150 (1994) 18-33. https://doi.org/10.1006/jcat.1994.1319
[27] J. V. Stark, D.G. Park, I. Lagadic, K.J. Klabunde, Nanoscale metal oxide particles/clusters as chemical reagents. Unique surface chemistry on magnesium oxide as shown by enhanced adsorption of acid gases (sulfur dioxide and carbon dioxide) and pressure dependence, Chem. Mater. 8 (1996) 1904-1912. https://doi.org/10.1021/cm950583p
[28] I. Ferino, M.F. Casula, A. Corrias, M.G. Cutrufello, R. Monaci, G. Paschina, 4-Methylpentan-2-ol dehydration over zirconia catalysts prepared by sol-gel, Phys. Chem. Chem. Phys. 2 (2000) 1847-1854. https://doi.org/10.1039/A908992F
[29] D.W. Richerson, Modern ceramic engineering: properties, processing, and use in design, CRC press, 2005
[30] J. F. Shackelford, R.H. Doremus, Ceramic and glass materials, Structure, properties and processing, Springer, Boston MA, 2008. https://doi.org/10.1007/978-0-387-73362-3
[31] D.J. Suh, T.J. Park, Sol-gel strategies for pore size control of high-surface-area transition-metal oxide aerogels, Chem. Mater. 8 (1996) 509-513. https://doi.org/10.1021/cm950407g
[32] A. Bedilo, K. Klabunde, Synthesis of high surface area zirconia aerogels using high temperature supercritical drying, Nanostruct.Mater. 8 (1997) 119-135. https://doi.org/10.1016/S0965-9773(97)00011-1
[33] G. Štefanić, S. Musić, Factors influencing the stability of low temperature tetragonal ZrO2, Croa.Chem.Acta, 75 (2002) 727-767
[34] C.N. Chervin, B.J. Clapsaddle, H.W. Chiu, A.E. Gash, J.H. Satcher, S.M. Kauzlarich, Role of cyclic ether and solvent in a non-alkoxide sol-gel synthesis of yttria-stabilized zirconia nanoparticles, Chem. Mater. 18 (2006) 4865-4874. https://doi.org/10.1021/cm061258c
[35] R.W. Matthews, Photooxidation of organic impurities in water using thin films of titanium dioxide, J. Phys. Chem. 91 (1987) 3328-3333. https://doi.org/10.1021/j100296a044
[36] L.R. Matthews, D. Avnir, A.D. Modestov, S. Sampath, O. Lev, The incorporation of titania into modified silicates for solar photodegradation of aqueous species, J. Sol-Gel Sci. Technol. 8 (1997) 619-623. https://doi.org/10.1007/BF02436911
[37] E. Traversa, M. L. Di Vona, S. Licoccia, M. Sacerdoti, M. C. Carotta, M. Gallana, G. Martinelli, Sol-gel nanosized semiconducting titania-based powders for thick-film gas sensors, J. Sol-Gel Sci. Technol. 19 (2000) 193-196. https://doi.org/10.1023/A:1008723902604
[38] P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, M. Grätzel, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte, Nature Mat. 2 (2003) 402. https://doi.org/10.1038/nmat904
[39] H. Hirashima, C. Kojima, H. Imai, Application of alumina aerogels as catalysts, J. Sol-Gel Sci. Technol. 8 (1997) 843-846. https://doi.org/10.1023/A:1018310829773
[40] H. Hirashima, H. Imai, V. Balek, Characterization of alumina gel catalysts by emanation thermal analysis (ETA), J. Sol-Gel Sci. Technol. 19 (2000) 399-402. https://doi.org/10.1023/A:1008731026228
[41] R.J. Willey, C.T. Wang, J.B. Peri, Vanadium-titanium oxide aerogel catalysts, J. Non-Cryst. Solids. 186 (1995) 408-414. https://doi.org/10.1016/0022-3093(95)00063-1
[42] C. Hoang-Van, O. Zegaoui, P. Pichat, Vanadia–titania aerogel deNOx catalysts, J. Non-Cryst. Solids. 225 (1998) 157-162. https://doi.org/10.1016/S0022-3093(98)00036-2
[43] K. Shimizu, H. Imai, H. Hirashima, K. Tsukuma, Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions, Thin Solid Films, 351 (1999) 220-224. https://doi.org/10.1016/S0040-6090(99)00084-X
[44] H. Imai, Y. Takei, K. Shimizu, M. Matsuda, H. Hirashima, Direct preparation of anatase TiO2 nanotubes in porous alumina membranes, J. Mater. Chem. 9 (1999) 2971-2972. https://doi.org/10.1039/A906005G
[45] P. Zugenmaier, Crystalline cellulose and derivatives: characterization and structures, Springer, 2008
[46] J. T. Marsh, F. C. Wood, Introduction to the Chemistry of Cellulose, AGRIS, Chapman & Hall Ltd, 1942
[47] H. Maleki, L. Durães, C. A. García-González, P. del Gaudio, A. Portugal, M. Mahmoudi, Synthesis and biomedical applications of aerogels: Possibilities and challenges, Adv. ColloidInterface Sci. 236 (2016) 1-27. https://doi.org/10.1016/j.cis.2016.05.011
[48] K.S. Mikkonen, K. Parikka, A. Ghafar, M. Tenkanen. Prospects of polysaccharide aerogels as modern advanced food materials, Trends Food Sci.Technol. 34 (2013) 124-136. https://doi.org/10.1016/j.tifs.2013.10.003
[49] H. Derakhshankhah, M.J. Hajipour, E. Barzegari, A. Lotfabadi, M. Ferdousi, A.A. Saboury, E. P. Ng, M. Raoufi, H. Awala, S. Mintova, Zeolite nanoparticles inhibit Aβ–fibrinogen interaction and formation of a consequent abnormal structural clot, ACS Appl.Mater.Interfaces. 8 (2016) 30768-30779. https://doi.org/10.1021/acsami.6b10941
[50] E. Poorakbar, A. Shafiee, A.A. Saboury, B.L. Rad, K. Khoshnevisan, L. Ma’mani, H. Derakhshankhah, M.R. Ganjali, M. Hosseini, Synthesis of magnetic gold mesoporous silica nanoparticles core shell for cellulase enzyme immobilization: Improvement of enzymatic activity and thermal stability, Process Biochem. 71 (2018) 92-100. https://doi.org/10.1016/j.procbio.2018.05.012
[51] M. Robitzer, F. Di Renzo, F. Quignard, Natural materials with high surface area. Physisorption methods for the characterization of the texture and surface of polysaccharide aerogels, Microporous Mesoporous Mater. 140 (2011) 9-16. https://doi.org/10.1016/j.micromeso.2010.10.006
[52] J. Singh, P. Dutta, J. Dutta, A. Hunt, D. Macquarrie, J. Clark, Preparation and properties of highly soluble chitosan–l-glutamic acid aerogel derivative, Carbohydr. Polym. 76 (2009) 188-195. https://doi.org/10.1016/j.carbpol.2008.10.011
[53] J. Radwan-Pragłowska, M. Piątkowski, Ł. Janus, D. Bogdał, D. Matysek, V. Cablik, Microwave-assisted synthesis and characterization of antioxidant chitosan-based aerogels for biomedical applications, Int. J. Polym. Anal. Charact. 23 (2018) 721-729. https://doi.org/10.1080/1023666X.2018.1504471
[54] A. Veronovski, G. Tkalec, Ž. Knez, Z. Novak, Characterisation of biodegradable pectin aerogels and their potential use as drug carriers, Carbohydr. Polym. 113 (2014) 272-278. https://doi.org/10.1016/j.carbpol.2014.06.054
[55] C. A. García-González, E. Carenza, M. Zeng, I. Smirnova, A. Roig, Design of biocompatible magnetic pectin aerogel monoliths and microspheres, RSC Adv. 2 (2012) 9816-9823. https://doi.org/10.1039/C2RA21500D
[56] G. Horvat, T. Fajfar, A.P. Uzunalić, Ž. Knez, Z. Novak, Thermal properties of polysaccharide aerogels, J.Therm. Anal. Calorim. 127 (2017) 363-370. https://doi.org/10.1007/s10973-016-5814-y
[57] M. Pantić, Ž. Knez, Z. Novak, Supercritical impregnation as a feasible technique for entrapment of fat-soluble vitamins into alginate aerogels, J. Non-Cryst. Solids. 432 (2016) 519-526. https://doi.org/10.1016/j.jnoncrysol.2015.11.011
[58] X.L. Li, M.J. Chen, H.B. Chen, Facile fabrication of mechanically-strong and flame retardant alginate/clay aerogels, Compos., B. 164 (2019) 18-25. https://doi.org/10.1016/j.compositesb.2018.11.055
[59] M. Alnaief, R. Obaidat, H. Mashaqbeh, Effect of processing parameters on preparation of carrageenan aerogel microparticles, Carbohydr. Polym., 180 (2018) 264-275. https://doi.org/10.1016/j.carbpol.2017.10.038
[60] K. Ganesan, L. Ratke, Facile preparation of monolithic κ-carrageenan aerogels, Soft Matter. 10 (2014) 3218-3224. https://doi.org/10.1039/C3SM52862F
[61] J. Blazek, H. Salman, A.L. Rubio, E. Gilbert, T. Hanley, L. Copeland, Structural characterization of wheat starch granules differing in amylose content and functional characteristics, Carbohydr. Polym. 75 (2009) 705-711. https://doi.org/10.1016/j.carbpol.2008.09.017
[62] P. Chen, L. Yu, G.P. Simon, X. Liu, K. Dean, L. Chen, Internal structures and phase-transitions of starch granules during gelatinization, Carbohydr. Polym. 83 (2011) 1975-1983. https://doi.org/10.1016/j.carbpol.2010.11.001
[63] T. Mehling, I. Smirnova, U. Guenther, R. Neubert, Polysaccharide-based aerogels as drug carriers, J. Non-Cryst. Solids. 355 (2009) 2472-2479. https://doi.org/10.1016/j.jnoncrysol.2009.08.038
[64] E.D. Barker, Starch-based hydrogel for biomedical applications, U.S. Patent Application No. 12/459,123, 2010
[65] G.M. Glenn, A.P. Klamczynski, D.F. Woods, B. Chiou, W.J. Orts, S.H. Imam, Encapsulation of plant oils in porous starch microspheres, J. Agric. Food. Chem. 58 (2010) 4180-4184. https://doi.org/10.1021/jf9037826
[66] C. García-González, M. Alnaief, I. Smirnova, Polysaccharide-based aerogels-Promising biodegradable carriers for drug delivery systems, Carbohydr. Polym. 86 (2011) 1425-1438. https://doi.org/10.1016/j.carbpol.2011.06.066
[67] M.E. El-Naggar, A.M. Abdelgawad, A. Tripathi, O. J. Rojas, Curdlan cryogels reinforced with cellulose nanofibrils for controlled release, J. Environ. Chem. Eng. 5 (2017) 5754-5761. https://doi.org/10.1016/j.jece.2017.10.056
[68] G. El-Feky, M. El-Rafie, M. El-Sheikh, M. E. El-Naggar, A.V. Hebeish, Utilization of crosslinked starch nanoparticles as a carrier for indomethacin and acyclovir drugs, J. Nanomed. Nanotechnol. 6 (2015) 1-8. https://doi.org/10.4172/2157-7439.1000254
[69] M.E. El-Naggar, T.I. Shaheen, M.M. Fouda, A.A. Hebeish, Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core–shell silver–gold nanoparticles, Carbohydr. Polym. 136 (2016) 1128-1136. https://doi.org/10.1016/j.carbpol.2015.10.003
[70] A. Hebeish, M. El-Rafie, M. El-Sheikh, M.E. El-Naggar, Ultra-fine characteristics of starch nanoparticles prepared using native starch with and without surfactant, J. Inorg. Organomet. Polym. Mater. 24 (2014) 515-524. https://doi.org/10.1007/s10904-013-0004-x
[71] T.I. Shaheen, M.E. El-Naggar, J.S. Hussein, M. El-Bana, E. Emara, Z. El-Khayat, M.M. Fouda, H. Ebaid, A. Hebeish, Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats, Biomed. Pharmacother. 83 (2016) 865-875. https://doi.org/10.1016/j.biopha.2016.07.052
[72] A.M. Abdelgawad, M.E. El-Naggar, W.H. Eisa, O.J. Rojas, Clean and high-throughput production of silver nanoparticles mediated by soy protein via solid state synthesis, J.Cleaner Prod. 144 (2017) 501-510. https://doi.org/10.1016/j.jclepro.2016.12.122
[73] M.E. El-Naggar, A.M. Abdelgawad, C. Salas, O.J. Rojas, Curdlan in fibers as carriers of tetracycline hydrochloride: Controlled release and antibacterial activity, Carbohydr. Polym. 154 (2016) 194-203. https://doi.org/10.1016/j.carbpol.2016.08.042
[74] A. Hebeish, T. I. Shaheen, M. E. El-Naggar, Solid state synthesis of starch-capped silver nanoparticles, Int. J. Biol.Macromol. 87 (2016) 70-76. https://doi.org/10.1016/j.ijbiomac.2016.02.046
[75] J. Hussein, M.E. El Naggar, Y. A. Latif, D. Medhat, M. El Bana, E. Refaat, S. Morsy, Solvent-free and one pot synthesis of silver and zinc nanoparticles: activity toward cell membrane component and insulin signaling pathway in experimental diabetes, Colloids Surf. B. 170 (2018) 76-84. https://doi.org/10.1016/j.colsurfb.2018.05.058
[76] D. Medhat, J. Hussein, M.E. El-Naggar, M.F. Attia, M. Anwar, Y.A. Latif, H.F. Booles, S. Morsy, A.R. Farrag, W.K. Khalil, Effect of Au-dextran NPs as anti-tumor agent against EAC and solid tumor in mice by biochemical evaluations and histopathological investigations, Biomed. Pharmacother. 91 (2017) 1006-1016. https://doi.org/10.1016/j.biopha.2017.05.043
[77] M.E. El-Naggar, M. El-Rafie, M. El-Sheikh, G.S. El-Feky, A. Hebeish, Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles, Int. J. Biol. Macromol. 81 (2015) 718-729. https://doi.org/10.1016/j.ijbiomac.2015.09.005
[78] D. Klemm, B. Philpp, T. Heinze, U. Heinze, W. Wagenknecht, Comprehensive cellulose chemistry. Volume 1: Fundamentals and analytical methods, Wiley-VCH Verlag GmbH, Weinheim, 1998
[79] J. Hearle, A fringed fibril theory of structure in crystalline polymers, J. Polym. Sci. 28 (1958) 432-435. https://doi.org/10.1002/pol.1958.1202811722
[80] R. Weatherwax, D. Caulfield, Cellulose aerogels: An improved method for preparing a highly expanded form of dry cellulose, Tappi, 54 (1971) 985-986
[81] B. Alinče, Porosity of swollen solvent-exchanged cellulose and its collapse during final liquid removal, Colloid Polym. Sci. 253 (1975) 720-729. https://doi.org/10.1007/BF02464455
[82] C. Tan, B.M. Fung, J.K. Newman, C. Vu, Organic aerogels with very high impact strength, Adv.Mater. 13 (2001) 644-646. https://doi.org/10.1002/1521-4095(200105)13:9<644::AID-ADMA644>3.0.CO;2-%23
[83] H. Jin, Y. Nishiyama, M. Wada, S. Kuga, Nanofibrillar cellulose aerogels, Colloids Surf. A. 240 (2004) 63-67. https://doi.org/10.1016/j.colsurfa.2004.03.007
[84] O. Ishida, D.Y. Kim, S. Kuga, Y. Nishiyama, R.M. Brown, Microfibrillar carbon from native cellulose, Cellulose, 11 (2004) 475-480. https://doi.org/10.1023/B:CELL.0000046410.31007.0b
[85] J.C. Intyre, Synthetic Fibres: Nylon, Polyester, Acrylic, Polyolefin,. Woodhead Publishing Limited, Cambridge. England. 2004
[86] B. Schmenk, L. Ratke, T. Gries. Solution spinning process for porous cellulose aerogel filaments. in Proceedings of the 2nd Aachen-Dresden International Textile Conference, Dresden. 2008
[87] C. Hacker, T. Gries, C. Popescu, L. Ratke, Solution spinning process for highly porous, nanostructured cellulose fibers, Chem. Fibers Int. 59 (2009) 85-87
[88] J. Fricke, Aerogels-highly tenuous solids with fascinating properties, J. Non-Cryst. Solids. 100 (1988) 169-173. https://doi.org/10.1016/0022-3093(88)90014-2
[89] S. Mulik, C. Sotiriou-Leventis, Resorcinol–formaldehyde aerogels, in Aerogels handbook, Springer, New York, 2011, pp. 215-234. https://doi.org/10.1007/978-1-4419-7589-8_11
[90] L.L. Hench, J.K. West, The sol-gel process, Chem.Rev. 90 (1990) 33-72
[91] G. Carlson, D. Lewis, K. McKinley, J. Richardson, T. Tillotson, Aerogel commercialization: technology, markets and costs, J. Non-Cryst. Solids., 186 (1995) 372-379. https://doi.org/10.1016/0022-3093(95)00069-0
[92] R. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, J. Mater. Sci. 24 (1989) 3221-3227. https://doi.org/10.1007/BF01139044
[93] S.A. Al-Muhtaseb, J.A. Ritter, Preparation and properties of resorcinol–formaldehyde organic and carbon gels, Adv. Mater. 15 (2003) 101-114. https://doi.org/10.1002/adma.200390020
[94] S. Mulik, C. Sotiriou-Leventis, N. Leventis, Time-efficient acid-catalyzed synthesis of resorcinol−formaldehyde aerogels, Chem. Mater. 19 (2007) 6138-6144. https://doi.org/10.1021/cm071572m
[95] O. Barbieri, F. Ehrburger-Dolle, T.P. Rieker, G.M. Pajonk, N. Pinto, A.V. Rao, Small-angle X-ray scattering of a new series of organic aerogels, J. Non-Cryst. Solids. 285 (2001) 109-115.https://doi.org/10.1016/S0022-3093(01)00440-9
[96] R. Brandt, J. Fricke, Acetic-acid-catalyzed and subcritically dried carbon aerogels with a nanometer-sized structure and a wide density range, J. Non-Cryst. Solids. 350 (2004) 131-135. https://doi.org/10.1016/j.jnoncrysol.2004.06.039
[97] S. Mulik, L. Sotiriou-Leventis, N. Leventis, Acid-catalyzed time-efficient synthesis of resorcinol-formaldehyde aerogels and crosslinking with isocyanates, Polym. Preprints.47 (2006) 364-365
[98] F. Conceição, P. Carrott, M.R. Carrott, New carbon materials with high porosity in the 1–7 nm range obtained by chemical activation with phosphoric acid of resorcinol–formaldehyde aerogels, Carbon. 47 (2009) 1874-1877. https://doi.org/10.1016/j.carbon.2009.03.026
[99] S.S. Prakash, C.J. Brinker, A.J. Hurd, S.M. Rao, Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage, Nature, 374 (1995) 439-443
[100] A.P. Rao, A.V. Rao, G. Pajonk, Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents, Appl.Surf.Sci. 253 (2007) 6032-6040. https://doi.org/10.1016/j.apsusc.2006.12.117
[101] A.P. Rao, A.V. Rao, Microstructural and physical properties of the ambient pressure dried hydrophobic silica aerogels with various solvent mixtures, J. Non-Cryst. Solids. 354 (2008) 10-18. https://doi.org/10.1016/j.jnoncrysol.2007.07.021
[102] J. She, T. Ohji, S. Kanzaki, Oxidation bonding of porous silicon carbide ceramics with synergistic performance, J. Eur. Ceram. Soc. 24 (2004) 331-334. https://doi.org/10.1016/S0955-2219(03)00225-5
[103] S.T. Oh, K.I. Tajima, M. Ando, T. Ohji, Strengthening of porous alumina by pulse electric current sintering and nanocomposite processing, J. Am. Ceram. Soc. 83 (2000) 1314-1316. https://doi.org/10.1111/j.1151-2916.2000.tb01380.x
[104] H.S. Ma, A.P. Roberts, J.H. Prévost, R. Jullien, G.W. Scherer, Mechanical structure–property relationship of aerogels, J. Non-Cryst. Solids. 277 (2000) 127-141. https://doi.org/10.1016/S0022-3093(00)00288-X
[105] T. Woignier, J. Phalippou, Mechanical strength of silica aerogels, J. Non-Cryst. Solids. 100 (1988) 404-408. https://doi.org/10.1016/0022-3093(88)90054-3
[106] S. Hæreid, J. Anderson, M. Einarsrud, D. Hua, D. Smith, Thermal and temporal aging of TMOS-based aerogel precursors in water, J. Non-Cryst. Solids. 185 (1995) 221-226. https://doi.org/10.1016/0022-3093(95)00016-X
[107] E.M. Lucas, M.S. Doescher, D.M. Ebenstein, K.J. Wahl, D.R. Rolison, Silica aerogels with enhanced durability, 30-nm mean pore-size, and improved immersibility in liquids, J. Non-Cryst. Solids. 350 (2004) 244-252. https://doi.org/10.1016/j.jnoncrysol.2004.07.074
[108] M.A. Einarsrud, M.B. Kirkedelen, E. Nilsen, K. Mortensen, J. Samseth, Structural development of silica gels aged in TEOS, J. Non-Cryst. Solids. 231 (1998) 10-16. https://doi.org/10.1016/S0022-3093(98)00405-0
[109] S. Bag, I. U. Arachchige, M.G. Kanatzidis, Aerogels from metal chalcogenides and their emerging unique properties, J. Mater. Chem. 18 (2008) 3628-3632. https://doi.org/10.1039/B804011G
[110] I.U. Arachchige, S.L. Brock, Sol–gel methods for the assembly of metal chalcogenide quantum dots, Acc.Chem.Res. 40 (2007) 801-809. https://doi.org/10.1021/ar600028s
[111] S. L. Brock, I.U. Arachchige, K.K. Kalebaila, Metal chalcogenide gels, xerogels and aerogels, Comments Inorg. Chem. 27 (2006) 103-126. https://doi.org/10.1080/02603590601084434
[112] K.K. Kalebaila, D.G. Georgiev, S.L. Brock, Synthesis and characterization of germanium sulfide aerogels, J. Non-Cryst. Solids. 352 (2006) 232-240. https://doi.org/10.1016/j.jnoncrysol.2005.11.035
[113] S. Bag, P.N. Trikalitis, P.J. Chupas, G.S. Armatas, M.G. Kanatzidis, Porous semiconducting gels and aerogels from chalcogenide clusters, Science. 317 (2007) 490-493. https://doi.org/10.1126/science.1142535
[114] P.N. Trikalitis, K.K. Rangan, T. Bakas, M.G. Kanatzidis, Varied pore organization in mesostructured semiconductors based on the [SnSe4]4-anion, Nature. 410 (2001) 671-675. https://doi.org/10.1038/35070533
[115] M.J. MacLachlan, N. Coombs, G.A. Ozin, Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10)4− clusters, Nature. 397 (1999) 681-684. https://doi.org/10.1038/17776
[116] S.D. Korlann, A.E. Riley, B.L. Kirsch, B.S. Mun, S.H. Tolbert, Chemical tuning of the electronic properties in a periodic surfactant-templated nanostructured semiconductor, J. Am. Chem. Soc. 127 (2005) 12516-12527. https://doi.org/10.1021/ja045446k
[117] T. Gacoin, L. Malier, J.P. Boilot, New transparent chalcogenide materials using a Sol-Gel process, Chem. Mater., 9 (1997) 1502-1504. https://doi.org/10.1021/cm970103p
[118] T. Gacoin, L. Malier, J.P. Boilot, Sol–gel transition in CdS colloids, J. Mater. Chem.7 (1997) 859-860. https://doi.org/10.1039/A701035D
[119] T. Gacoin, K. Lahlil, P. Larregaray, J. Boilot, Transformation of CdS colloids: sols, gels, and precipitates, J. Phys. Chem., B. 105 (2001) 10228-10235. https://doi.org/10.1021/jp011738l
[120] L. Malier, J. Boilot, T. Gacoin, Sulfide gels and films: Products of non-oxide gelation, J. Sol-Gel Sci. Technol. 13 (1998) 61-64. https://doi.org/10.1023/A:1008695003946
[121] X. Zhang, D. Chang, J. Liu, Y. Luo, Conducting polymer aerogels from supercritical CO2 drying PEDOT-PSS hydrogels, J. Mater. Chem. 20 (2010) 5080-5085. https://doi.org/10.1039/C0JM00050G
[122] Y. Xu, Z. Sui, B. Xu, H. Duan, X. Zhang, Emulsion template synthesis of all conducting polymer aerogels with superb adsorption capacity and enhanced electrochemical capacitance, J. Mater. Chem. 22 (2012) 8579-8584. https://doi.org/10.1039/C2JM30565H
[123] X. Liang, M. Zeng, C. Qi, One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization, Carbon. 48 (2010) 1844-1848. https://doi.org/10.1016/j.carbon.2010.01.030
[124] Y. Lu, W. He, T. Cao, H. Guo, Y. Zhang, Q. Li, Z. Shao, Y. Cui, X. Zhang, Elastic, conductive, polymeric hydrogels and sponges, Sci.Rep. 4 (2014) 5792. https://doi.org/10.1038/srep05792
[125] W. He, G. Li, S. Zhang, Y. Wei, J. Wang, Q. Li, X. Zhang, Polypyrrole/silver coaxial nanowire aero-sponges for temperature-independent stress sensing and stress-triggered joule heating, ACS Nano. 9 (2015) 4244-4251. https://doi.org/10.1021/acsnano.5b00626
[126] M. Tarasevich, Ultrasonic hydrolysis of a metal alkoxide without alcohol solvents, Am. Cer. Bull. 63 (1984) 500
[127] J. Zarzycki, Sonogels, Hetero. Chem. Rev. 1 (1994) 243-253
[128] E. Blanco, L. Esquivias, R. Litrán, M. Piñero, M. R.D. Solar, N.D.L. Rosa-Fox, Sonogels and derived materials, Appl.Organomet.Chem. 13 (1999) 399-418. https://doi.org/10.1002/(SICI)1099-0739(199905)13:5<399::AID-AOC825>3.0.CO;2-A
[129] X. Zhang, Z. Sui, B. Xu, S. Yue, Y. Luo, W. Zhan, B. Liu, Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources, J. Mater. Chem. 21 (2011) 6494-6497. https://doi.org/10.1039/C1JM10239G
[130] W. Chen, L. Yan, In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures, Nanoscale. 3 (2011) 3132-3137. https://doi.org/10.1039/C1NR10355E
[131] Z. S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, K. Müllen, Three-dimensional nitrogen and boron Co-doped graphene for high‐performance all-solid-state supercapacitors, Adv. Mater. 24 (2012) 5130-5135. https://doi.org/10.1002/adma.201201948
[132] L. Zhang, G. Chen, M. N. Hedhili, H. Zhang, P. Wang, Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method, Nanoscale. 4 (2012) 7038-7045. https://doi.org/10.1039/C2NR32157B
[133] S. Yang, L. Zhang, Q. Yang, Z. Zhang, B. Chen, P. Lv, W. Zhu, G. Wang, Graphene aerogel prepared by thermal evaporation of graphene oxide suspension containing sodium bicarbonate, J. Mater. Chem., A. 3 (2015) 7950-7958. https://doi.org/10.1039/C5TA01222H
[134] W. Si, X. Wu, J. Zhou, F. Guo, S. Zhuo, H. Cui, W. Xing, Reduced graphene oxide aerogel with high-rate supercapacitive performance in aqueous electrolytes, Nanoscale Res.Lett. 8 (2013) 247. https://doi.org/10.1186/1556-276X-8-247
[135] M. Gudkov, A. Y. Gorenberg, A. Shchegolikhin, D. Shashkin, V. Mel’nikov. Explosive reduction of graphite oxide by hydrazine vapor at room temperature, Doklady Phys. Chem.478 (2018) 11-14. https://doi.org/10.1134/S0012501618010037
[136] S. Nardecchia, D. Carriazo, M. L. Ferrer, M. C. Gutiérrez, F. del Monte, Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications, Chem. Soc. Rev. 42 (2013) 794-830. https://doi.org/10.1039/C2CS35353A
[137] M. Bryning, D. MilNie, M. Islam, J. KiNNawa, Yodh, Carbon nanotube aerogels. Adv. Mater. 19 (2007) 661-664. https://doi.org/10.1002/adma.200601748
[138] X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu, D. Wu, Carbon nanotube sponges, Adv. Mater. 22 (2010) 617-621. https://doi.org/10.1002/adma.200902986
[139] M. A. Worsley, M. Stadermann, Y. M. Wang, J. H. Satcher Jr, T. F. Baumann, High surface area carbon aerogels as porous substrates for direct growth of carbon nanotubes, Chem. Commun. 46 (2010) 9253-9255. https://doi.org/10.1039/C0CC03457F
[140] B. Lee, S. Lee, M. Lee, D. H. Jeong, Y. Baek, J. Yoon, Y. H. Kim, Carbon nanotube-bonded graphene hybrid aerogels and their application to water purification, Nanoscale. 7 (2015) 6782-6789. https://doi.org/10.1039/C5NR01018G
[141] C. Hoecker, F. Smail, M. Pick, A. Boies, The influence of carbon source and catalyst nanoparticles on CVD synthesis of CNT aerogel, Chem. Eng. J. 314 (2017) 388-395. https://doi.org/10.1016/j.cej.2016.11.157
[142] S. M. Jung, H. Y. Jung, M. S. Dresselhaus, Y. J. Jung, J. Kong, A facile route for 3D aerogels from nanostructured 1D and 2D materials, Sci.Rep. 2 (2012) 849. https://doi.org/10.1038/srep00849
[143] K. H. Kim, Y. Oh, M. Islam, Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue, Nature Nanotechnol. 7 (2012) 562. https://doi.org/10.1038/nnano.2012.118
[144] Z. Lin, X. Gui, Q. Gan, W. Chen, X. Cheng, M. Liu, Y. Zhu, Y. Yang, A. Cao, Z. Tang, In-situ welding carbon nanotubes into a porous solid with super-high compressive strength and fatigue resistance, Sci. Rep. 5 (2015) 11336. https://doi.org/10.1038/srep11336
[145] M.A. Worsley, J.H. Satcher Jr, T.F. Baumann, Synthesis and characterization of monolithic carbon aerogel nanocomposites containing double-walled carbon nanotubes, Langmuir, 24 (2008) 9763-9766. https://doi.org/10.1021/la8011684
[146] M.A. Worsley, S.O. Kucheyev, J.H. Satcher Jr, A.V. Hamza, T.F. Baumann, Mechanically robust and electrically conductive carbon nanotube foams, Appl. Phys. Lett. 94 (2009) 073115. https://doi.org/10.1063/1.3086293.
[147] R. Pekala, C. Alviso, J. LeMay, Organic aerogels: microstructural dependence of mechanical properties in compression, J. Non-Cryst. Solids. 125 (1990) 67-75. https://doi.org/10.1016/0022-3093(90)90324-F
[148] T. Woignier, J. Reynes, A.H. Alaoui, I. Beurroies, J. Phalippou, Different kinds of structure in aerogels: relationships with the mechanical properties, J. Non-Cryst. Solids. 241 (1998) 45-52. https://doi.org/10.1016/S0022-3093(98)00747-9
[149] N. Leventis, C. Sotiriou-Leventis, G. Zhang, A.M. M. Rawashdeh, Nanoengineering strong silica aerogels, Nano Lett. 2 (2002) 957-960. https://doi.org/ 10.1021/nl025690e
[150] S. Kucheyev, T. Baumann, C. Cox, Y. Wang, J. Satcher Jr, A. Hamza, J. Bradby, Nanoengineering mechanically robust aerogels via control of foam morphology, Appl. Phys. Lett. 89 (2006) 041911. https://doi.org/10.1063/1.2236222
[151] M. C. Gutiérrez, D. Carriazo, A. Tamayo, R. Jiménez, F. Picó, J. M. Rojo, M.L. Ferrer, F. del Monte, Deep-eutectic-solvent-assisted synthesis of hierarchical carbon electrodes exhibiting capacitance retention at high current densities, Chem. Eur. J. 17 (2011) 10533-10537. https://doi.org/10.1002/chem.201101679
[152] M.A. Worsley, P.J. Pauzauskie, S.O. Kucheyev, J.M. Zaug, A.V. Hamza, J.H. Satcher Jr, T. F. Baumann, Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading, Acta Mater. 57 (2009) 5131-5136. https://doi.org/10.1016/j.actamat.2009.07.012
[153] M.M. Koebel, L. Huber, S. Zhao, W.J. Malfait, Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale, J. Sol-Gel Sci. Technol. 79 (2016) 308-318. https://doi.org/10.1007/s10971-016-4012-5
[154] C. Sanchez, B. Julián, P. Belleville, M. Popall, Applications of hybrid organic–inorganic nanocomposites, J. Mater. Chem. 15 (2005) 3559-3592. https://doi.org/10.1039/B509097K
[155] C. Sanchez, F. Ribot, B. Lebeau, Molecular design of hybrid organic-inorganic nanocomposites synthesized via sol-gel chemistry, J. Mater. Chem. 9 (1999) 35-44. https://doi.org/10.1039/A805538F
[156] C. Sanchez, P. Belleville, M. Popall, L. Nicole, Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market, Chem. Soc. Rev. 40 (2011) 696-753. https://doi.org/10.1039/C0CS00136H
[157] B.M. Novak, D. Auerbach, C. Verrier, Low-density, mutually interpenetrating organic-inorganic composite materials via supercritical drying techniques, Chem. Mater. 6 (1994) 282-286. https://doi.org/10.1021/cm00039a006
[158] G. Gould, D. Ou, R. Begag, W. Rhine, Highly-transparent polymer modified silica aerogels, Polym. Prepr, 49 (2008) 534-535.
[159] R. Reisfeld, Spectroscopy and applications of molecules in glasses, J. Non-Cryst. Solids. 121 (1990) 254-266. https://doi.org/10.1016/0022-3093(90)90141-8
[160] J. McKiernan, E. Simoni, B. Dunn, J.I. Zink, Proton diffusion in the pores of silicate sol-gel glasses, J. Phys. Chem. 98 (1994) 1006-1009. https://doi.org/10.1021/j100054a043
[161] R. Takahashi, S. Sato, T. Sodesawa, M. Suzuki, K. Ogura, Preparation of microporous silica gel by sol-gel process in the presence of ethylene glycol oligomers, Bull. Chem. Soc. Jpn. 73 (2000) 765-774. https://doi.org/10.1246/bcsj.73.765
[162] K. Nakane, T. Yamashita, K. Iwakura, F. Suzuki, Properties and structure of poly (vinyl alcohol)/silica composites, J. Appl. Polym. Sci. 74 (1999) 133-138. https://doi.org/10.1002/(SICI)1097-4628(19991003)74:1<133::AID-APP16>3.0.CO;2-N
[163] A. Bandyopadhyay, M. De Sarkar, A. Bhowmick, Poly (vinyl alcohol)/silica hybrid nanocomposites by sol-gel technique: Synthesis and properties, J. Mater. Sci. 40 (2005) 5233-5241. https://doi.org/10.1007/s10853-005-4417-y
[164] D. Fragiadakis, P. Pissis, L. Bokobza, Modified chain dynamics in poly (dimethylsiloxane)/silica nanocomposites, J. Non-Cryst. Solids. 352 (2006) 4969-4972. https://doi.org/10.1016/j.jnoncrysol.2006.02.159
[165] D. Fragiadakis, P. Pissis, Glass transition and segmental dynamics in poly (dimethylsiloxane)/silica nanocomposites studied by various techniques, J. Non-Cryst. Solids. 353 (2007) 4344-4352. https://doi.org/10.1016/j.jnoncrysol.2007.05.183
[166] N. Leventis, A. Palczer, L. McCorkle, G. Zhang, C. Sotiriou-Leventis, Nanoengineered silica-polymer composite aerogels with no need for supercritical fluid drying, J. Sol-Gel Sci. Technol. 35 (2005) 99-105. https://doi.org/10.1007/s10971-005-1372-7
[167] Y. Hu, J. Mackenzie, Rubber-like elasticity of organically modified silicates, J. Mater. Sci. 27 (1992) 4415-4420. https://doi.org/10.1007/BF00541574
[168] N. Leventis, Three-dimensional core-shell superstructures: mechanically strong aerogels, Acc. Chem. Res. 40 (2007) 874-884. https://doi.org/10.1021/ar600033s
[169] J. P. Randall, M.A. B. Meador, S.C. Jana, Tailoring mechanical properties of aerogels for aerospace applications, ACS Appl. Mater. Interfaces. 3 (2011) 613-626. https://doi.org/10.1021/am200007n.
[170] Y.L. He, T. Xie, Advances of thermal conductivity models of nanoscale silica aerogel insulation material, Appl. Therm. Eng. 81 (2015) 28-50. https://doi.org/10.1016/j.applthermaleng.2015.02.013.
[171] M. Koebel, A. Rigacci, P. Achard, Aerogel-based thermal superinsulation: an overview, J. Sol-Gel Sci. Technol. 63 (2012) 315-339. https://doi.org/10.1007/s10971-012-2792-9
[172] H. Yang, H. Zhao, Z. Li, K. Zhang, X. Liu, C. Tang, Microstructure evolution process of porous silicon carbide ceramics prepared through coat-mix method, Ceramics Int. 38 (2012) 2213-2218. https://doi.org/10.1016/j.ceramint.2011.10.069
[173] C. Bi, G. Tang, Z. Hu, H. Yang, J. Li, Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation, Int. J. Heat Mass Transfer. 79 (2014) 126-136. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.098
[174] Y. Liu, Heat transfer mechanism and thermal design of nanoporous insulating materials, School of Mechanical Engineering, PhD Thesis, University of Science and Technology Beijing, Beijing, 2007
[175] C. Bi, G. Tang, Effective thermal conductivity of the solid backbone of aerogel, Int. J. Heat Mass Transfer. 64 (2013) 452-456. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.053
[176] J. Quevedo, G. Patel, R. Pfeffer, R. Dave, Agglomerates and granules of nanoparticles as filter media for submicron particles, Powder Technol. 183 (2008) 480-500. https://doi.org/10.1016/j.powtec.2008.01.020
[177] M. Guise, B. Hosticka, B. Earp, P. Norris, An experimental investigation of aerosol collection utilizing packed beds of silica aerogel microspheres, J. Non-Cryst. Solids. 285 (2001) 317-322. https://doi.org/10.1016/S0022-3093(01)00473-2
[178] S. Deville, Freeze-casting of porous ceramics: a review of current achievements and issues, Adv. Eng. Mater 10 (2008) 155-169. https://doi.org/10.1002/adem.200700270
[179] J.E. Amonette, J. Matyáš, Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review, Microporous Mesoporous Mater. 250 (2017) 100-119. https://doi.org/10.1016/j.micromeso.2017.04.055
[180] C. Gebald, J. A. Wurzbacher, P. Tingaut, T. Zimmermann, A. Steinfeld, Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air, Environ.Sci.Technol. 45 (2011) 9101-9108. https://doi.org/10.1021/es202223p
[181] Y.F. Lin, C.C. Ko, C.H. Chen, K.L. Tung, K.S. Chang, Reusable methyltrimethoxysilane-based mesoporous water-repellent silica aerogel membranes for CO2 capture, RSC Adv. 4 (2014) 1456-1459. https://doi.org/10.1039/C3RA45371E
[182] S. Cao, N. Yao, K.L. Yeung, Synthesis of freestanding silica and titania-silica aerogels with ordered and disordered mesopores, J. Sol-Gel Sci. Technol. 46 (2008) 323-333. https://doi.org/10.1007/s10971-008-1701-8
[183] P. Hu, B. Tan, M. Long, Advanced nanoarchitectures of carbon aerogels for multifunctional environmental applications, Nanotech. Rev. 5 (2016) 23-39. https://doi.org/ 10.1515/ntrev-2015-0050
[184] E. Unur, Functional nanoporous carbons from hydrothermally treated biomass for environmental purification, Microporous Mesoporous Mater. 168 (2013) 92-101. https://doi.org/10.1016/j.micromeso.2012.09.027
[185] D. Wang, T. Silbaugh, R. Pfeffer, Y. Lin, Removal of emulsified oil from water by inverse fluidization of hydrophobic aerogels, Powder Technol. 203 (2010) 298-309. https://doi.org/10.1016/j.powtec.2010.05.021
[186] M.O. Adebajo, R.L. Frost, J.T. Kloprogge, O. Carmody, S. Kokot, Porous materials for oil spill cleanup: a review of synthesis and absorbing properties, J. Porous Mater. 10 (2003) 159-170. https://doi.org/10.1023/A:1027484117065
[187] N. Chen, Q. Pan, Versatile fabrication of ultralight magnetic foams and application for oil–water separation, ACS Nano. 7 (2013) 6875-6883. https://doi.org/10.1021/nn4020533
[188] A. Pasila, A biological oil adsorption filter, Mar.Pollut.Bull. 49 (2004) 1006-1012. https://doi.org/10.1016/j.marpolbul.2004.07.004
[189] M. Hartmann, S. Kullmann, H. Keller, Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials, J. Mater. Chem. 20 (2010) 9002-9017. https://doi.org/10.1039/C0JM00577K
[190] H. Liu, W. Sha, A.T. Cooper, M. Fan, Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds, Colloids Surf. A. 347 (2009) 38-44. https://doi.org/10.1016/j.colsurfa.2008.11.033
[191] M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?, Electrochim. Acta. 55 (2010) 3845-3856. https://doi.org/10.1016/j.electacta.2010.02.012
[192] S.J. Seo, H. Jeon, J.K. Lee, G.Y. Kim, D. Park, H. Nojima, J. Lee, S.H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res. 44 (2010) 2267-2275. https://doi.org/10.1016/j.watres.2009.10.020
[193] F. A. AlMarzooqi, A.A. Al Ghaferi, I. Saadat, N. Hilal, Application of capacitive deionisation in water desalination: a review, Desalination, 342 (2014) 3-15. https://doi.org/10.1016/j.desal.2014.02.031
[194] L. Han, K. Karthikeyan, M. Anderson, J. Wouters, K.B. Gregory, Mechanistic insights into the use of oxide nanoparticles coated asymmetric electrodes for capacitive deionization, Electrochim. Acta. 90 (2013) 573-581. https://doi.org/10.1016/j.electacta.2012.11.069
[195] J.Y. Lee, S.J. Seo, S.H. Yun, S.H. Moon, Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI), Water Res. 45 (2011) 5375-5380. https://doi.org/10.1016/j.watres.2011.06.028
[196] S. Porada, L. Weinstein, R. Dash, A. Van Der Wal, M. Bryjak, Y. Gogotsi, P. Biesheuvel, Water desalination using capacitive deionization with microporous carbon electrodes, ACS Appl. Mater. Interfaces. 4 (2012) 1194-1199. https://doi.org/10.1021/am201683j
[197] H. Li, L. Pan, T. Lu, Y. Zhan, C. Nie, Z. Sun, A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization, J. Electroanal. Chem. 653 (2011) 40-44. https://doi.org/10.1016/j.jelechem.2011.01.012
[198] I. Villar, D. J. Suarez-De la Calle, Z. González, M. Granda, C. Blanco, R. Menéndez, R. Santamaría, Carbon materials as electrodes for electrosorption of NaCl in aqueous solutions, Adsorption. 17 (2011) 467-471. https://doi.org/10.1007/s10450-010-9296-0
[199] L. Li, L. Zou, H. Song, G. Morris, Ordered mesoporous carbons synthesized by a modified sol–gel process for electrosorptive removal of sodium chloride, Carbon. 47 (2009) 775-781. https://doi.org/10.1016/j.carbon.2008.11.012
[200] G. Wang, Q. Dong, Z. Ling, C. Pan, C. Yu, J. Qiu, Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization, J. Mater. Chem. 22 (2012) 21819-21823. https://doi.org/10.1039/C2JM34890J
[201] J.C. Farmer, J.H. Richardson, D.V. Fix, S.L. Thomson, S.C. May, Desalination with carbon aerogel electrodes, Lawrence Livermore National Laboratory Report No. UCRL-ID-125298, 1996
[202] M. E. Suss, T.F. Baumann, W.L. Bourcier, C.M. Spadaccini, K.A. Rose, J.G. Santiago, M. Stadermann, Capacitive desalination with flow-through electrodes, Energy Environ. Sci. 5 (2012) 9511-9519. https://doi.org/10.1039/C2EE21498A
[203] C. Hou, C. Huang, C. Hu, Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions, Int. J. Environ. Sci. Technol. 10 (2013) 753-760. https://doi.org/10.1007/s13762-013-0232-1
[204] C. García-González, I. Smirnova, Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems, J. Supercrit. Fluids. 79 (2013) 152-158. https://doi.org/10.1016/j.supflu.2013.03.001
[205] M. Betz, C. García-González, R. Subrahmanyam, I. Smirnova, U. Kulozik, Preparation of novel whey protein-based aerogels as drug carriers for life science applications, J. Supercrit. Fluids. 72 (2012) 111-119. https://doi.org/10.1016/j.supflu.2012.08.019
[206] A. Veronovski, Ž. Knez, Z. Novak, Comparison of ionic and non-ionic drug release from multi-membrane spherical aerogels, Int.J.Pharma. 454 (2013) 58-66. https://doi.org/10.1016/j.ijpharm.2013.06.074
[207] C.A. Garcia-Gonzalez, A. Concheiro, C. Alvarez-Lorenzo, Processing of materials for regenerative medicine using supercritical fluid technology, Bioconjugate Chem. 26 (2015) 1159-1171. https://doi.org/10.1021/bc5005922
[208] L. Servat-Medina, A. Gonzalez-Gomez, F. Reyes-Ortega, I.M.O. Sousa, N.D.C.A. Queiroz, P.M.W. Zago, M.P. Jorge, K.M. Monteiro, J.E. de Carvalho, J. San Román, Chitosan–tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: synthesis, characterization, biocompatibility, and antiulcerogenic activity, Int.J.Nanomed. 10 (2015) 3897. https://doi.org/10.2147/IJN.S83705
[209] E. Reverchon, P. Pisanti, S. Cardea, Nanostructured PLLA-hydroxyapatite scaffolds produced by a supercritical assisted technique, Ind. Eng. Chem.Res. 48 (2009) 5310-5316. https://doi.org/10.1021/ie8018752
[210] N. Pircher, S. Veigel, N. Aigner, J.M. Nedelec, T. Rosenau, F. Liebner, Reinforcement of bacterial cellulose aerogels with biocompatible polymers, Carbohydr. Polym. 111 (2014) 505-513. https://doi.org/10.1016/j.carbpol.2014.04.029
[211] X. Chen, G.S. Wilson, Electrochemical and spectroscopic characterization of surface sol-gel processes, Langmuir. 20 (2004) 8762-8767. https://doi.org/10.1021/la034940j
[212] J.M. Wallace, J.K. Rice, J.J. Pietron, R.M. Stroud, J.W. Long, D.R. Rolison, Silica nanoarchitectures incorporating self-organized protein superstructures with gas-phase bioactivity, Nano Lett. 3 (2003) 1463-1467. https://doi.org/10.1021/nl034646b